
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Dissertations College of Engineering and Computer Science

2011

The Differential Scheme and Quantum Computation The Differential Scheme and Quantum Computation

Robert J. Irwin
Syracuse University

Follow this and additional works at: https://surface.syr.edu/eecs_etd

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Irwin, Robert J., "The Differential Scheme and Quantum Computation" (2011). Electrical Engineering and
Computer Science - Dissertations. 309.
https://surface.syr.edu/eecs_etd/309

This Dissertation is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Dissertations by an
authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Syracuse University Research Facility and Collaborative Environment

https://core.ac.uk/display/215683405?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://surface.syr.edu/
https://surface.syr.edu/eecs_etd
https://surface.syr.edu/eecs_etd
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_etd?utm_source=surface.syr.edu%2Feecs_etd%2F309&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=surface.syr.edu%2Feecs_etd%2F309&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_etd/309?utm_source=surface.syr.edu%2Feecs_etd%2F309&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

The Differential Scheme and Quantum Computation

By

Robert J. Irwin

Abstract of Dissertation

August 2011

It is well-known that standard models of computation are representable as simple

dynamical systems that evolve in discrete time, and that systems that evolve in

continuous time are often representable by dynamical systems governed by ordinary

differential equations. In many applications, e.g., molecular networks and hybrid

Fermi-Pasta-Ulam systems, one must work with dynamical systems comprising both

discrete and continuous components.

Reasoning about and verifying the properties of the evolving state of such systems

is currently a piecemeal affair that depends on the nature of major components of

a system: e.g., discrete vs. continuous components of state, discrete vs. continuous

time, local vs. distributed clocks, classical vs. quantum states and state evolution.

We present the Differential Scheme as a unifying framework for reasoning about

and verifying the properties of the evolving state of a system, whether the system

in question evolves in discrete time, as for standard models of computation, or

continuous time, or a combination of both. We show how instances of the differential

scheme can accommodate classical computation. We also generalize a relatively

new model of quantum computation, the quantum cellular automaton, with an eye

towards extending the differential scheme to accommodate quantum computation

and hybrid classical/quantum computation.

All the components of a specific instance of the differential scheme are Conver-

gence Spaces. Convergence spaces generalize notions of continuity and convergence.

The category of convergence spaces, Conv, subsumes both simple discrete struc-

tures (e.g., digraphs), and complex continuous structures (e.g., topological spaces,

domains, and the standard fields of analysis: R and C). We present novel uses for

convergence spaces, and extend their theory by defining differential calculi on Conv.

It is to the use of convergence spaces that the differential scheme owes its generality

and flexibility.

Keywords: Differential Scheme, Convergence Spaces, Quantum Computation, Hy-

brid Computation, Dynamical Systems, Cellular Automata.

The Differential Scheme

and Quantum Computation

By

Robert J. Irwin

B.S. Antioch College, 1973

M.S. Syracuse University, 1992

Dissertation

Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer and Information Science

in the Graduate School of Syracuse University

August 2011

© Copyright by Robert J. Irwin, 2011.

All Rights Reserved

Contents

List of Tables ix

List of Figures x

Preface xi

Acknowledgements xiii

1 Introduction: The Differential Scheme 1

1.1 Informal Definition of the Differential Scheme 3

1.2 Informal Example Instances of the Differential Scheme 5

1.2.1 Discrete Dynamical Systems . 5

1.2.2 Continuous Dynamical Systems 6

1.3 Goals and Results . 7

2 Convergence Spaces and Differential Calculi 10

2.1 Generalized Continuity & Differentiability 11

2.1.1 Continuity . 11

v

2.1.2 Differentiability . 13

2.2 Convergence Spaces Formally Defined 13

2.3 Continuous Spaces as Convergence Spaces 16

2.3.1 Topological Spaces . 16

2.3.2 Pretopological Spaces . 16

2.4 Discrete Structures as Convergence Spaces 18

2.5 Function Spaces . 20

2.6 Translation Groups and Homogeneous Convergence Spaces 21

2.7 Differential Calculi on Convergence Spaces 23

2.8 Differentiability . 24

2.9 The Chain Rule . 25

2.10 Differential Calculi With Non-homogeneous Objects 27

2.11 The Chain Rule for Generalized Differential Calculi 30

3 Examples of Differential Calculi 31

3.1 Classical Differential Calculi . 31

3.1.1 The classical differential calculus of real variables 31

3.1.2 The directional calculus of real variables 32

3.1.3 The classical affine differential calculus of real variables 32

3.2 Differential Calculi on Digraphs . 33

3.2.1 Graph differentials . 36

3.2.2 Discrete differentials . 40

3.2.3 Convergence of filters of differentials 42

3.2.4 Postdiscrete differentials . 49

3.2.5 Pretopological differentials . 54

3.2.6 Differential calculi With Kronecker products 57

3.3 Differential calculus on hybrid structures 64

3.3.1 Differentiating a function from 3R to K−
3 64

4 Dynamical Systems in the Differential Scheme 66

4.1 Discrete Dynamical Systems . 66

4.1.1 Classical Computation . 66

4.2 Continuous Dynamical Systems . 68

4.2.1 A Simple ODE . 68

4.2.2 A Finite System of ODEs . 69

5 Quantum Computation 71

5.1 Quantum Mechanics and Quantum Systems 76

5.1.1 Hilbert Space Formalization . 77

5.1.2 Compound Quantum Systems . 79

5.1.3 Examples of Quantum Systems 80

5.2 Standard Models of Quantum Computation 81

5.2.1 Quantum Turing Machines . 82

5.2.2 Quantum Circuits . 84

6 Quantization of Cellular Automata 86

6.1 The Watrous QCA Construction . 86

6.2 The Utility of Finite Support . 89

6.3 Eliminating the Quiescent State . 91

6.3.1 Decompositions in terms of tensor products 95

6.3.2 Factoring L2 spaces . 96

6.4 Specification Logic . 99

6.5 Effective Borel Sets . 99

7 Conclusion and Future Prospects 101

7.1 What We Have Done . 101

7.2 Future Work . 102

7.2.1 Further Examples . 102

7.2.2 Further Theorems . 103

Bibliography 104

Curriculum Vitae 113

List of Tables

1.1 Classes of instances of the differential scheme 4

2.1 Conv-related categories . 20

3.1 Unary Boolean operators and their discrete differentials in the calcu-

lus of complete finite Boolean digraphs 42

3.2 Boolean connectives and their discrete differentials in the calculus of

complete finite Boolean digraphs . 43

ix

List of Figures

6.1 Partitioned 1-dimensional QCA [Wat95] 89

x

Preface

This thesis is part of a program of work, led by Howard A. Blair, the overaching

objectives of which are to:

• show that continuous and discrete state evolution (subsuming computation)

are special cases of the same thing.

• lay groundwork for the treatment of hybrid systems, combining both discrete

and continuous components.

Central to the desired unification is the concept of the differential scheme, due to

Blair [Bla00], which is introduced in chapter 1. The differential scheme provides a

framework that:

• formalizes the general idea that state evolution takes place in a space, over

time, and that all evolutionary (e.g., computational) activity occurs locally.

• unifies discrete and continuous dynamical systems.

The formalization is intended to be so broad as to encompass purely discrete and

purely continuous systems as special cases, and to accommodate hybrid systems

naturally. The complete specification of the differential scheme rests in turn on the

convergence space concept, which is discussed in chapter 2.

The theory and vocabulary of dynamical systems provides much of the inspiration

for the present work. The phrase “dynamical system” is interpreted liberally, to

include the classical continuous systems as based on ordinary differential equations

(ODEs) [HS74, HW91, HW95], iterated function systems (IFSs) [Bar93], and the

xi

computations of abstract machines, viewed as evolutions of 1-dimensional cellular

automata.

The broad notions of continuity and differential that are required to support

such a wide variety of systems are adduced in chapter 2. Given this generality,

the set of possible interpretations of systems of ODEs is extended to include spaces

different from Euclidean spaces, even from manifolds (locally Euclidean spaces). In

particular, ODEs can be meaningfully interpreted over discrete as well as continuous

spaces.

The convergence space-based definition of continuity used herein is not unlike the

continuity concept encountered in the theory of programming languages. However,

the differentials presented live in a new and very general formulation of a differential

calculus. These differentials are not constrained by linearity concepts nor is their

definition tied to the properties of any particular domain of analysis such as the real

or complex numbers.

Chapter 3 provides a series of examples demonstrating the scope of the new cal-

culi, and chapter 4 casts some significant discrete and continuous dynamical systems

as instances of the differential scheme.

After reviewing quantum mechanical time evolution, and describing some related

spaces of interest in chapter 5, we proceed to the quantization of cellular automata

in chapter 6. We present Watrous’s construction of Quantum Cellular Automata

(QCA) [Wat95], a formalism that requires a notion of “quiescent state.” We then

show how to construct QCA without quiescent states, by using shift-invariant Les-

begue measure on Cantor space.

Open problems and future directions are discussed in chapter 7.

Acknowledgements

Without the constant guidance, assistance, example and encouragement provided

by my advisor, Prof. Howard A. Blair, this thesis would not have been completed.

I remember warmly our innumerable chats on a widely disparate range of subjects

as a wonderful entree into the life of the mind. To him, my deepest gratitude.

I would also like to thank Prof. James S. Royer for past support and many, many

hours of illuminating conversation.

The Department of Electrical Engineering and Computer Science and its chairs

both present (Prof. Chilukuri K. Mohan) and past (Prof. Carlos R.P. Hartmann),

gave me an outstanding variety of support and opportunities for teaching and re-

search. Despite many changes over the years, the department remains a great place

to study and work. Thanks.

The moral support of my family was sorely needed, generously given, and is

hereby most gratefully and inadequately acknowledged.

xiii

Chapter 1

Introduction:

The Differential Scheme

This thesis is a contribution to a larger program of work, initiated by Blair [Bla00],

the overarching objectives of which are to:

• unify continuous and discrete state evolution.

• lay the groundwork for a seamless treatment of hybrid dynamical systems,

combining both discrete and continuous components.

Importantly, discrete state evolution subsumes classical computation. Central to

the desired unification is the concept of the differential scheme, which we sketch in

this chapter. The differential scheme provides a framework that:

• formalizes the general idea that state evolution takes place in a space, over

time, and that all evolutionary (e.g., computational) activity occurs locally.

• unifies discrete and continuous dynamical systems via a very general concept

of what forms a differential calculus.

1

CHAPTER 1. INTRODUCTION: THE DIFFERENTIAL SCHEME 2

The theory and vocabulary of dynamical systems provide much of the inspiration

for the present work. The hybrid differential calculus regards a system of first-order

ordinary differential equations (ODEs) such as

dxi
dt

= f(x1, . . . , xn, t) i = 1, . . . , n

as a system of axioms which may be interpreted over different universes with widely

disparate continuity and differentiability properties. As will be shown, the cate-

gory of convergence spaces [Ken64, Hec03], Conv, each of whose objects combine

a carrier with a convergence structure, and each of whose morphisms is a continu-

ous function between carriers with respect to their convergence structures, is suf-

ficiently rich and general to provide the components required by the differential

scheme framework. In particular, over the same carriers, as the convergence struc-

ture varies, interpretations of a fixed system of differential equations can range from

those of conventional ODEs to those of discrete state transition rules. As a con-

sequence, dynamical systems may comprise classical continuous systems based on

ODEs [HS74, HW91, HW95], iterated function systems (IFSs) [Bar93], the compu-

tations of discrete abstract machines (viewed as evolutions of 1-dimensional cellular

automata; see below) and other systems, such as logic programs.

Again, the idea behind the differential scheme is to capture the essence of the

concept of a dynamical system as a collection of various elements whose states

evolve according to “differential” constraints, broadly interpreted. The structure of

an instance of the differential scheme depends upon the structure of its constituent

convergence spaces. Conv is a Cartesian closed category that contains hierarchies

of spaces obtained by beginning with discrete structures (represented as directed

graphs) and topological spaces, and then combining these spaces into hybrid spaces

through, for example, Cartesian products and exponentials. Differential calculi are

obtained on and between convergence spaces [BJIR07]. These calculi include con-

CHAPTER 1. INTRODUCTION: THE DIFFERENTIAL SCHEME 3

servative extensions of familiar differential calculi on the usual spaces of interest in

analysis, e.g., real and complex Hilbert spaces.

1.1 Informal Definition of the Differential Scheme

The differential scheme comprises four types of components. An instance of the

differential scheme defines a particular dynamical system by specifying a particular

component of each type.

Definition 1.1.1. An instance of the differential scheme consists of the fol-

lowing components:

1. a Computation Space (Comp)

2. a Time space (Time)

3. a collection of Local State Spaces (L; to each x ∈ Comp there corresponds

a local state space τ(x) ∈ L)

4. a Differential Calculus (D)

The differential scheme was initially advanced in [Bla00], though the key differential

calculus concept was not fully developed at that time.

In any instance of the differential scheme, the computation space, time, and all

local state spaces are particular convergence spaces, and the differential calculus

is a category whose construction begins with a collection of particular convergence

spaces. The rather involved formal specification of a differential calculus is deferred

to chapter 2, which discusses both convergence spaces and differential calculi in

detail.

Informally, one can think of a computation space as a collection of objects, each

of which is associated, at any particular point in time, with a value taken from a

CHAPTER 1. INTRODUCTION: THE DIFFERENTIAL SCHEME 4

fixed local state space. Time may pass continuously or discretely, depending on

the particular convergence space chosen for the Time component. The differential

calculus provides candidate differentials that determine how the values associated

with points of the computation space change over time, and allow us to interpret

the crucial “g is a differential of f at x” concept for the associated spaces.

It may be helpful to regard an instance of the differential scheme as a kind of

generalized cellular automaton (CA). Here, the computation space is the automa-

ton’s cell space. The values a particular cell may attain are given by the local state

space corresponding to that cell (note that, in general, different cells may have dif-

ferent local state spaces). Time acts as itself, and the associated differential calculus

provides CA update rules.

A CA of the most commonly studied type has a discrete computation space,

each element of which is associated with the same discrete, typically finite, local

state space, and evolves in discrete time steps. Table 1.1 [Bla00] shows how other

well-known types of dynamical systems model the differential scheme.

Space Time Local States Model

discrete discrete discrete Logic Program
discrete discrete continuous IFS
discrete continuous discrete Asynch Neural Net
discrete continuous continuous ODE

continuous discrete discrete discrete evolution
of spatial regions

continuous discrete continuous discrete evolution of
one space over ano.

continuous continuous discrete continuous evolution
of spatial regions

continuous continuous continuous PDE

Table 1.1: Classes of instances of the differential scheme

CHAPTER 1. INTRODUCTION: THE DIFFERENTIAL SCHEME 5

1.2 Informal Example Instances of the Differen-

tial Scheme

We present here some informal example instances of the differential scheme. Com-

plete formalizations of some examples will be given in Chapter 3 after the necessary

preliminaries on convergence spaces and differential calculi are presented in Chapter

2. In particular, specifics of the differential calculi involved are deferred.

First, some terminology. For a given instance of the differential scheme, we define

the global state space (GlSt) to be the product of the local state spaces:

GlSt = Π
x∈Compτ(x)

We then define a computation within an instance of the differential scheme to be

a mapping from the convergence space representing time to the convergence space

representing the global state space:

u ∶ TimeÐ→ GlSt

The progression of a computation over time is determined by the differential calculus

D that provides candidate differentials to drive the evolution of the system.

1.2.1 Discrete Dynamical Systems

Classical Computation

It is well-known that the class of cellular automata [vN66, Tof77] subsumes that of

Turing machines, so classical computation fits neatly into the differential scheme. In

fact, any given TM can be emulated by a 1-dimensional, radius-1 cellular automaton

(or (1d,1r)-CA, for short). Here,

CHAPTER 1. INTRODUCTION: THE DIFFERENTIAL SCHEME 6

1. Comp = Z (the set of CA cells indexed by integers corresponds to a two-way

infinite tape)

2. Time = N (discrete time steps starting from 0)

3. L = original TM tape alphabet, augmented with some additional symbols

4. the differentials are just the CA update rules (finite functions, in this case)

A computation (as defined above) of this instance of the differential scheme traces

the progression of instantaneous descriptions of the original TM. This example will

be formally presented in §4.1.1.

1.2.2 Continuous Dynamical Systems

We consider continuous dynamical systems described by systems of ordinary differ-

ential equations (ODEs). Such systems progress from the simplest ones consisting

of a single ODE, to finite systems of ODEs, to systems of infinitely many ODEs.

The following examples show how to interpret such continuous dynamical systems

as instances of the differential scheme.

A Simple ODE

Consider the single autonomous ODE:

dx

dt
= f(x) (1.1)

As an ODE over the real domain, a solution to (1.1) is a function

u ∶ TimeÐ→ R

CHAPTER 1. INTRODUCTION: THE DIFFERENTIAL SCHEME 7

such that

du

dt
∣
t0

= f(u(t0)), for all t0 ∈ R

In differential form, we have:

Dt0u = λ∆.[f(u(t0))](∆)

= [f(u(t0))]

As an instance of the differential scheme, we have:

1. Comp = {x} (a singleton set)

2. L = {R}

3. Time = R

4. differentials are the linear operators on R, of classical analysis

Thus, a solution is just a computation:

u ∶ TimeÐ→ GlSt

which is, in this case:

u ∶ RÐ→ R

1.3 Goals and Results

The advancement of the larger program discussed at the beginning of this chapter

requires the full specification of the proposed framework for the unification of discrete

CHAPTER 1. INTRODUCTION: THE DIFFERENTIAL SCHEME 8

and continuous dynamical systems. Our first goal, therefore, is to:

1. complete the formalization of the differential scheme begun in [Bla00].

As previously mentioned, such formalization requires the use of very flexible

structures for the components of the differential scheme, which have been found in

the category of convergence spaces. Accordingly, our next goal is to:

2. detail the properties of convergence spaces that lend themselves to their new

application to the differential scheme.

Differential calculi, constructed from convergence spaces, form the key compo-

nents of instances of the differential scheme. The generality of these structures must

be demonstrated, so a related goal is to:

3. provide specific examples of differential calculi, including the continuous dif-

ferential calculus of classical analysis as well as differential calculi on discrete

structures (digraphs).

To show the breadth of dynamical systems supported by the differential scheme,

we must:

4. provide specific examples of dynamical systems as instances of the differential

scheme, including classical computation — via classical cellular automata, as

previously discussed.

Just as a theory of quantum computation complementary to classical compu-

tation has been developed ([Deu85], et al), Watrous has introduced a theory of

quantum cellular automata (QCA) [Wat95]. In Watrous’s quantized model, how-

ever, the set of possible global QCA states is restricted to those in which all but

finitely many cells are in a ”quiescent state.” As our final goal, we:

CHAPTER 1. INTRODUCTION: THE DIFFERENTIAL SCHEME 9

5. show how to construct QCA based on Watrous’s model, but without quiescent

states.

In the sequel, Chapter 2 reviews the structure of convergence spaces, shows that

Conv subsumes vast categories of both continuous and discrete structures, and

details the abstract structure of the differential calculi at the heart of each instance

of the differential scheme; importantly, the chain rule for our differential calculi is

proved here.

Chapter 3 provides examples of our generalized differential calculi on both dis-

crete and continuous structures.

Chapter 4 casts some significant families of discrete and continuous dynamical

systems as instances of the full differential scheme. In particular, we show that

cellular automata and ODEs are subsumed in the differential scheme framework.

After reviewing quantum computational time evolution, and describing some

related spaces of interest in chapter 5, we proceed to the quantization of cellular

automata in chapter 6. In the latter chapter, we present Watrous’s construction

of a Quantum Cellular Automaton (QCA) [Wat95] and our rendition of this model

without quiescent states.

Open problems and future prospects for research are discussed in chapter 7.

Chapter 2

Convergence Spaces and

Differential Calculi

As adumbrated in Chapter 1, the power of the differential scheme to accommodate

both continuous and discrete dynamical systems depends upon the properties of

its constituent convergence spaces. Here we present sufficient of the theory of con-

vergence spaces to show that it provides a concept of continuity suitable for both

discrete and continuous structures, and from which a new concept of differentiabil-

ity is developed, one that allows the unified treatment of co-evolving ensembles of

discrete and continuous variables.

In classical continuous dynamical systems, the trajectory of a variable is deter-

mined by the variable’s value at a point in time and, as a function of the state of

the whole system (and possibly time), the variable’s derivative with respect to time.

We adapt this viewpoint to more general settings by appropriating the forms of the

well-established theory of continuous dynamical systems while generalizing their in-

stantiations to encompass discrete and heterogeneous systems. Our generalization

devolves upon the question of how to define “g is a differential of f at x,” where

f, g ∶ X Ð→ Y for convergence spaces X and Y , and x ∈ X. That is, we may unify

10

CHAPTER 2. CONVERGENCE SPACES AND DIFFERENTIAL CALCULI 11

discrete and continuous dynamical systems by showing how to define differential

calculi in the category of convergence spaces, Conv.

2.1 Generalized Continuity & Differentiability

2.1.1 Continuity

Ever since the idea of continuity was formalized for the continua of elementary

analysis, mathematicians have sought to extend it to more general structures. Their

efforts initially lead to the well-known and pervasive theory of topological spaces

[Bou49, Kel55, Wil70]. Later, pretopological spaces [Cho47], several non-equivalent

classes of structures each referred to as the class of filter spaces, and C̆ech’s closure

spaces [C̆ec66] were introduced, all extending the reach of the continuity concept

beyond Top, the category of topological spaces.

Within computer science, several research communities sought a notion of conti-

nuity suitable for mappings between various classes of discrete spaces. For example,

the AI/knowledge representation community’s work on modelling time, space and

motion in discrete domains lead to a thread of research concerned with continuity in

discrete space and/or time [All84, Dav90, RCC92, Sto97]. On another track, digital

imaging researchers developed “digital topology” as a means of placing digital image

processing on a rigorous basis [KKM90, KR89, Kov89].

Commonalities among such research communities were eventually recognized and

common frameworks for handling discrete spaces explored. In particular, C̆ech’s

closure spaces were advanced by Smyth [Smy95] and others [Gal03] as particularly

well-suited for extending the continuity concept to discrete spaces. Note that the

category of closure spaces is strictly larger than Top. We also note in passing

that categories like those of Scott domains (Dom), directed complete partial orders

CHAPTER 2. CONVERGENCE SPACES AND DIFFERENTIAL CALCULI 12

(Dcpo), etc., certainly provide for continuity between discrete spaces, but these are

sub-categories of Top via the Scott topology, so none of them actually generalize

the topological concept of continuity.

Conv was chosen as the basis of the differential scheme because it is the most gen-

eral among those categories whose morphisms embody a useful continuity concept;

this includes all the classes of structures mentioned above. Conv strictly subsumes

the category of closure spaces, the category of pretopological spaces (PreTop), most

formulations of “filter space” categories, and Top. (Conv is, in fact, identical to the

class of filter spaces as formulated in [Hyl79].) Significantly for the handling of dis-

crete spaces, and for computation in particular, Conv contains all reflexive directed

graphs1, both finite and infinite. Between digraph objects in Conv, morphisms

turn out to be just the “edge-preserving” maps, i.e., the continuous maps between

digraphs are ordinary digraph homomorphisms. Moreover, Conv is a Cartesian-

closed category — unlike Top. Three immediate consequences of this fact together

with the sub-categorical relationship between Top and Conv are:

1. convergence spaces broaden the notion of continuity, while preserving the topo-

logical concept of continuity for functions between convergence spaces that are

already topological spaces

2. there is a uniform way of regarding all spaces of continuous functions as con-

vergence spaces (this allows for hybrid functional analysis)

3. the composition operation on finite products of function spaces is continuous,

as is the evaluation function (this is key to differential calculi)

1graph reflexivity — the presence of self-loops at all nodes — is a necessary technicality, which
appears to pose no limitations in practice.

CHAPTER 2. CONVERGENCE SPACES AND DIFFERENTIAL CALCULI 13

2.1.2 Differentiability

As compared with generalized continuity, there has been considerably less sustained

ferment among researchers concerned with generalized differentiability. However,

from time to time over the past sixty years or so, some authors have made efforts

to extend the differentiability concept to more general spaces [Are46, AS68, Bin66,

BK66, Fox45, FB66, Kel74, Kri83, Mar63, Mic38]. Most of these formulations of

differentiability have depended heavily on the special nature of the spaces involved,

typically treating abstractions of the domains of classical analysis (e.g., Rn and Cn)

such as topological (or near-topological) vector spaces.

None of these efforts treated classes of spaces as general as Conv; in fact, most

treatments were restricted to subclasses of Top. Moreover, all the structures ad-

vanced in these investigations embodied linearity in one form or another. After all,

in the classical definition, the differential of function f at point x is the best linear

approximation of f near x. Our treatment does not presuppose linear structure.

2.2 Convergence Spaces Formally Defined

A convergence space is a set together with a convergence structure defined upon

it. Convergence structures in turn are defined with respect to the well-known filter

concept [Car37, Bou49, Cho47, Kel55].

Recall that a filter on a set X is a collection of subsets of X closed under finite

intersection and reverse inclusion (i.e., if A belongs to a filter on X and A ⊆ B ⊆X,

then B also belongs to that filter). A filter which does not include the empty set

as a member is called a proper filter. We let Φ(X) denote the set of all filters on

X, and use calligraphic letters like F , G and H to represent filters. For A ⊆ X, let

[A] = {B ∣A ⊆ B ⊆ X }. Clearly, [A] ∈ Φ(X); [A] is called the principal filter at

CHAPTER 2. CONVERGENCE SPACES AND DIFFERENTIAL CALCULI 14

A. For x ∈X, we abbreviate [{x}] by [x], and call it the point filter at x.

Definition 2.2.1. [Ken64, Hec03] A convergence structure on X is a relation ↓

(read “converges to”) on Φ(X) ×X such that for each x ∈X:

1. [x] ↓ x, and

2. if F ↓ x and F ⊆ G ∈ Φ(X), then G ↓ x.

Definition 2.2.2. [Ken64, Hec03] A pair (X, ↓) consisting of a set X and a con-

vergence structure ↓ on X is called a convergence space.

We may refer to a convergence space (X, ↓) by its carrier X when the particular

convergence structure is understood or immaterial. Similarly, we use “↓” to represent

different convergence structures in the context of different convergence spaces, when

no confusion should result.

Note that any function f ∶ X Ð→ Y , where X and Y are sets, induces a func-

tion between powersets f̂ ∶ 2X Ð→ 2Y via A ↦ {f(a) ∣ a ∈ A}; we call the last

set the f-image of A. Such an f also induces a function between filter collec-

tions
ˆ̂
f ∶ Φ(X)Ð→ Φ(Y) via F ↦ ⋃A∈F[f̂(A)].2 We overload notation and omit

decorations ˆ and ˆ̂ when typing considerations make the intended interpretation

unambiguous.

Definition 2.2.3. [Ken64, Hec03] Let f ∶X Ð→ Y , where X and Y are convergence

spaces, and let x0 ∈ X. We say f is continuous at x0 iff for each F ∈ Φ(X), if

F ↓ x0 in X, then f(F) ↓ f(x0) in Y .3 We say f is continuous iff f is continuous

at x, ∀x ∈X.

The category of convergence spaces, Conv, has the collection of all convergence

spaces for its objects, and the collection of all continuous functions between con-

2Note that, while the collection of the f -images of the sets in a filter do not necessarily form a
filter, the union of the upward closures of each member of this collection must be a filter.

3Recall that, by our overloading convention, f(F) is shorthand for
ˆ̂
f(F).

CHAPTER 2. CONVERGENCE SPACES AND DIFFERENTIAL CALCULI 15

vergence spaces for its morphisms. Continuity can also be characterized in terms of

filter members, which play a role analogous to that of neighborhoods in topological

spaces.4 We will rigorously define a concept of neighborhood in a convergence space

shortly.

Proposition 2.2.4. Let f ∶X Ð→ Y , where X and Y are convergence spaces, and let

x0 be a point of X. f is continuous at x0 iff, for every filter F converging to x0 in X,

there is a filter G converging to f(x0) in Y such that (∀V ∈ G)(∃U ∈ F)[f(U) ⊆ V].

Definition 2.2.5. [Ken64] A homeomorphism between two convergence spaces is

a continuous bijection whose inverse is continuous.

Definition 2.2.6. A subspace of a convergence space X is a convergence space W

such that

1. the carrier of W is a subset of the carrier of X, and

2. For each point w ∈ W and each filter F ∈ Φ(W), F ↓ w in W if and only if

F = {A ∩W ∣A ∈ G } for some filter G ∈ Φ(X) where G ↓ w in X.

Let {Xα ∣α ∈ Γ} be an indexed family of convergence spaces. For each index

α, let πα be the projection function from the product set ∏α∈ΓXα onto Xα, which

maps each tuple (xα)α∈Γ to its αth component xα.

Definition 2.2.7. The product convergence structure on ∏α∈ΓXα is defined

as follows: a filter F on the product set converges to a point (xα)α∈Γ if and only if

for each index α, πα(F) = {πα(A) ∣A ∈ F } converges to xα in Xα

We now define the concept of neighborhood in a convergence space:

4In the sense that a set N is a topological neighborhood of a point x iff x ∈ U ⊆ N for some
open set U .

CHAPTER 2. CONVERGENCE SPACES AND DIFFERENTIAL CALCULI 16

Definition 2.2.8. Let x be a point of a convergence space X, and let U be a subset

of X. We call U a neighborhood of x iff U belongs to every filter converging to x.

It is easily seen that the collection of all neighborhoods of a given point is a filter.

2.3 Continuous Spaces as Convergence Spaces

In the following, we show how the category of topological spaces, Top, and the

related category of pretopological spaces, PreTop, are subcategories of Conv. We

thus establish that Conv subsumes all classical continuity structures, and much

more besides.

2.3.1 Topological Spaces

If X is a topological space, F ∈ Φ(X), and x ∈X, then F is said to converge to x iff

the collection of all open sets containing x is a sub-collection of F . It is easily seen

that { (F , x) ∣F ∈ Φ(X), x ∈ X, and F converges to x} is a convergence structure

on X. It is also readily verified that, for topological spaces, the convergence space

notions of neighborhood, continuous function, and homeomorphism coincide with

the corresponding topological notions [Cho47, Bou49, Kel55].

2.3.2 Pretopological Spaces

Definition 2.3.1. [Cho47] A convergence space (X, ↓) is called a pretopological

space if and only if ↓ is a pretopology, i.e., for each x ∈ X, the collection of all

neighborhoods of x converges to x.

Proposition 2.3.2. Let f ∶X Ð→ Y , where X and Y are pretopological spaces, and

CHAPTER 2. CONVERGENCE SPACES AND DIFFERENTIAL CALCULI 17

let x0 ∈ X. Then f is continuous at x0 iff for every neighborhood V of f(x0), there

is a neighborhood U of x0 such that f(U) ⊆ V .

The category of pretopological spaces, PreTop, has the collection of all pretopo-

logical spaces for its objects, and the collection of all continuous functions between

pretopological spaces for its morphisms. Note that an arbitrary convergence struc-

ture ↓ on a set X induces a pretopological structure ⇓ on X in the obvious way:

given a filter F and a point x, let F ⇓ x iff the collection of all ↓-neighborhoods of

x is a sub-collection of F . This construction is idempotent: ⇓ coincides with ↓ iff ↓

is pretopological.

It is easily seen that the convergence structure of every topological space is

pretopological. Furthermore, the collection of all open sets of a topological space

X can be recovered from the convergence structure by letting a set be open iff it is

a neighborhood of each of its members. In short, equipping each topological space

with its convergence structure embeds Top as a full subcategory of PreTop. In

turn, PreTop is a full subcategory of Conv.

Moreover, Top is embedded as a full, reflective subcategory of PreTop, which

in turn is a full, reflective subcategory of Conv [BHL91, HLCS91, Hec03]. That

is, if A is the subcategory in question and B is the larger category, then there is a

functor F ∶ B Ð→ A such that for each object B of B, there is an ηB ∶ B Ð→ FB in

B such that, for each object A of A and each f ∶ B Ð→ A in B, there is a unique

f ∶ FB Ð→ A in A such that f = f ○ ηB. 5

5 An immediate corollary is that for all objects A and B of B and all arrows f ∶ B Ð→ A in B,
we have ηA ○ f = Ff ○ ηB .

CHAPTER 2. CONVERGENCE SPACES AND DIFFERENTIAL CALCULI 18

2.4 Discrete Structures as Convergence Spaces

In section 2.3 we showed how topological spaces are special cases of convergence

spaces. As the standard metric (and topological vector) spaces of analysis are all

specialized topological spaces, it is plain that the convergence space concept en-

compasses the categories of ordinary continuous mathematics. To demonstrate that

the convergence space concept also incorporates discrete structures, we will show

how directed graphs (“digraphs”) — discrete structures par excellence — are also

convergence spaces.

Formally, by digraph we mean an ordered pair (V,E) such that V is a set,

and E is a binary relation on V . For a technical reason to be discussed shortly, we

limit our attention to the category ReflDiGr of reflexive digraphs — digraphs

in which every vertex is adjacent to itself — and the edge-preserving maps between

pairs of them. Little generality is lost by stipulating self-loops. ReflDiGr can be

embedded, in several different ways, as a full subcategory of Conv. In this section,

we describe two of these embeddings.

Definition 2.4.1. The convergence structure on a reflexive digraph (V,E)

is that obtained by letting a proper filter F on V converge to a vertex x iff F = [y]

for some vertex y with an edge in E from x to y.

Note that, as the point filter [x] must converge to x in any convergence structure,

Definition 2.4.1 requires there be a edge from x to x. This is why we consider only

reflexive digraphs.

Definition 2.4.2. [BJIR07]A convergence space X is called postdiscrete if and

only if every convergent proper filter is a point filter.

The category PostDisc comprises the postdiscrete convergence spaces as objects

and the continuous functions between them as morphisms.

CHAPTER 2. CONVERGENCE SPACES AND DIFFERENTIAL CALCULI 19

Proposition 2.4.3. The postdiscrete pretopological spaces are precisely the discrete

topological spaces (i.e., topological spaces in which every singleton is open).

It is easily seen that reflexive digraphs with the convergence structures of Definition

2.4.1 are already postdiscrete spaces. Similarly, it is easily verified that if (V1,E1)

and (V2,E2) are reflexive digraphs, then a function f ∶ V1 Ð→ V2 is continuous

(with respect to the induced convergence structures on V1 and V2) iff it is a digraph

homomorphism; i.e., for all edges (x, y) in E1, the edge (f(x), f(y)) is present in E2.

Furthermore, given any reflexive digraph (V,E), the edge set E can be recovered

from the induced convergence structure on V by drawing an edge from x to y iff [y]

converges to x.

Proposition 2.4.4. The construction in Definition 2.4.1 is an isomorphism between

ReflDiGr and PostDisc. In turn, PostDisc is a full subcategory of Conv.

We note that PostDisc is a full, co-reflective subcategory of Conv. That is, there

is a functor F: Conv Ð→ PostDisc such that for each object B of Conv, there is an

ηB ∶ FB Ð→ B in B such that, for each object A of PostDisc and each f ∶ AÐ→ B

in Conv, there is a unique f̂ ∶ AÐ→ FB in PostDisc such that f = ηB ○ f̂ . 6

Alternatively, ReflDiGr can be embedded as a full subcategory of PreTop by

letting a filter F converge to a vertex x of a digraph (V,E) iff { y ∣ (x, y) ∈ E } is a

member of F [SSWF01, RS03, Ale37].

The edge set of a digraph can be recovered from the induced pretopology in exactly

the same way that it can be recovered from the induced postdiscrete structure on

the digraph. (Cf. specialization order [Ale37, GD71, GHK+80, Joh82].)

In general, the induced pretopology on a reflexive digraph is weaker than the induced

postdiscrete structure on the digraph.

6 An immediate corollary is that for all objects A and B of Conv and all arrows f ∶ A Ð→ B
in Conv, we have f ○ ηA = ηB ○ Ff . See [AM75], [Sch01], [AHS90], [Her68], or [Mac71].

CHAPTER 2. CONVERGENCE SPACES AND DIFFERENTIAL CALCULI 20

Proposition 2.4.5. For each reflexive digraph (V,E), the pretopological structure

on V induced by E coincides with the pretopological structure induced by the post-

discrete structure induced by E.

The reflexive digraphs whose induced pretopologies are topological are precisely

the preordered sets; i.e., those digraphs in which the underlying binary relation is

transitive as well as reflexive. [SSWF01, RS03].

The reflexive digraphs which are T0 spaces (topological spaces in which every non-

empty indiscrete subspace is a singleton) with respect to their induced pretopologies

are precisely the posets; i.e., those digraphs in which the underlying binary relation

is a partial order (cf. [Ale37]). The induced pretopology on a poset (V,E) is the

pretopology induced by the well-known Alexandroff topology on V [Ale37, GD71,

GHK+80, Joh82].

The following table summarizes the convergence space-related categories treated

so far:

Table 2.1: Conv-related categories

Conv the category of convergence spaces and continuous functions
PostDisc the category of postdiscrete spaces and continuous functions
PreTop the category of pretopological spaces and continuous functions
ReflDiGr the category of reflexive digraphs and digraph homomorphisms
Top the category of topological spaces and continuous functions

2.5 Function Spaces

Unlike Top and PreTop, Conv is a Cartesian closed category ([Mac71, AM75,

AHS90, Sch01, Kat65]). The relevant supporting definitions and propositions follow.

Definition 2.5.1. [Kat65] Let X and Y be convergence spaces. The function

space Y X is the set of all continuous functions from X to Y , equipped with the

CHAPTER 2. CONVERGENCE SPACES AND DIFFERENTIAL CALCULI 21

convergence structure ↓ defined as follows: for each H ∈ Φ(Y X) and each f0 ∈ Y X ,

let H ↓ f0 iff for each x0 ∈X and each F ↓ x0, {⋃f∈H f(F) ∣H ∈ H, F ∈ F } is a base

for a filter which converges to f0(x0) in Y .

Definition 2.5.1 is essentially the same as the definition of function graphs in [IK00].

This is not surprising as ReflDiGr is a Cartesian closed category (cf. [AHS90]).

Proposition 2.5.2. [Bin66, Bin75] Let X and Y be convergence spaces. Then the

evaluation function from Y X ×X to Y is continuous.

The following is a very useful consequence of Proposition 2.5.2 (cf. [Mac71, AM75,

AHS90]):

Corollary 2.5.3. Let X, Y , and Z be convergence spaces. Then the composition

function from ZY × Y X to ZX is continuous.

2.6 Translation Groups and Homogeneous Con-

vergence Spaces

Definition 2.6.1. An automorphism of a convergence space X is a homeomor-

phism f ∶X Ð→X.

Definition 2.6.2. A translation group on a convergence space X is a group T

of automorphisms of X such that, for each pair of points p and q of X, there is at

most one member of T which maps p to q. In general, we will denote this unique

member of T (if it exists) by (q − p).

Notation: The group operation (namely, composition) of a translation group T

on a convergence space X will be written additively, whether or not T is Abelian.

Furthermore, for all τ ∈ T and all x ∈X, we will write τ(x) as x+τ . In this notation,

CHAPTER 2. CONVERGENCE SPACES AND DIFFERENTIAL CALCULI 22

the requirement that the translation (q − p) (if it exists) maps p to q becomes the

familiar requirement that if (q − p) exists, then p + (q − p) = q

Definition 2.6.3. A full translation group on a convergence space X is a trans-

lation group on X which contains a translation (q − p) for each pair of points p and

q.

Definition 2.6.4. A convergence space X is homogeneous iff for each pair of

points p and q of X, there is an automorphism of X which maps p to q

Note that a convergence space which has a full translation group must be homoge-

neous. Moreover, a full translation group on a nonempty convergence space X must

have the same cardinality as X.

Proposition 2.6.5. [BJ]

i. Every convergence space X can be embedded as a subspace of a convergence

space HX which has a full translation group.

ii. X and HX have the same cardinality if and only if the cardinality of X is

either infinite or zero.

iii. The embedding of X into HX is onto HX if and only if X is empty.

iv. If X and Y are convergence spaces, then every continuous function f ∶X Ð→ Y

can be be extended to a continuous function Hf ∶HX Ð→HY .

v. If f is a homeomorphism, then so is Hf .

An immediate consequence of (ii) above is that, if X is a non-empty finite conver-

gence space with (or without) a full translation group, then HX cannot be homeo-

morphic to X. It is important to note that, in general, a continuous extension Hf

of f need not be unique.

CHAPTER 2. CONVERGENCE SPACES AND DIFFERENTIAL CALCULI 23

2.7 Differential Calculi on Convergence Spaces

In the classical differential calculus, differentials of a finite set of basic functions are

obtained ab initio; e.g., the identity function is its own differential. Differentials of

functions generated from the basic functions by generalized composition are obtained

via the chain rule: differentiation distributes over composition.7 Thus, the familiar

rule for differentiation of products follows from the chain rule once we know the

differential of the multiplication operation.

Of course, the chain rule is not the whole story in differential calculi. Many fa-

miliar results in advanced calculus are barely touched by its consequences. However,

such results are consequences of the details of both the convergence structures, the

algebraic structures, and the relationship between these structures on the particular

spaces under consideration. The functions chosen to serve as differentials in setting

up a particular differential calculus, together with the convergence structures on the

spaces involved in the calculus, jointly determine the additional properties of the

calculus. The chain rule, however, holds in all of them.

Definition 2.7.1. A differential calculus is a category D in which

i. every object of D is a triple X = (X,0, T), where X is a convergence space, 0

is a point of X (called the origin of X), and T is a full translation group on

X.

ii. every arrow in D from an object (X,0X , TX) to an object (Y,0Y , TY) is a

continuous function from X to Y which maps 0X to 0Y

iii. composition of arrows in D is function composition.

iv. for every object X = (X,0X , TX), the identity function on X is an arrow in D

from X to X
7The usefulness of Cartesian-closure for obtaining a robust chain-rule was pointed out in [Kri83].

CHAPTER 2. CONVERGENCE SPACES AND DIFFERENTIAL CALCULI 24

v. for each pair of objects X = (X,0X , TX) and Y = (Y,0Y , TY), the constant

function mapping every point of X to 0Y is an arrow in D from X to Y

The arrows of a differential calculus D are called D-differentials.

By Proposition 2.6.5, the requirement that each object have a full translation group

is not unduly restrictive.

2.8 Differentiability

Let a ∈ A ⊆X and let B ⊆ Y , where X = (X,0X , TX) and Y = (Y,0Y , TY) are objects

of a differential calculus D. Let f ∶ AÐ→ B be an arbitrary function.

Let L ∈ D(X ,Y), where D(X ,Y) is the set of all D-differentials from X to Y,

equipped with the subspace convergence structure inherited from the function space

Y X in Conv.

Definition 2.8.1. L is a differential of f at a iff

for every F ↓ a in A, there is some H ↓ L in D(X ,Y) such that

i. H ⊆ [L], and

ii. for every H ∈ H, there is some F ∈ F such that

for every point x ∈ F , there is at least one D-differential t ∈H such that

t(x − a) = f(x) − f(a)

With respect to the preceding definition, (f(a) − 0Y) ○ t ○ (0X − a) is called an

extrapolant of f through (a, f(a)) and (x, f(x)).

CHAPTER 2. CONVERGENCE SPACES AND DIFFERENTIAL CALCULI 25

Definition 2.8.2. A function from A to B is differentiable (respectively, uniquely

differentiable) at a point a iff it has at least one (respectively, precisely one) dif-

ferential at a.

A function from A to B is differentiable (respectively, uniquely differentiable)

iff it is differentiable (respectively, uniquely differentiable) at each point of A.

2.9 The Chain Rule

As previously mentioned, the chain rule plays a central role in our differential calculi.

In elementary analysis, for example, the product rule follows from the chain rule

after obtaining the differential of the multiplication operation. Expressed in terms

of differentials, the product rule for real-valued functions of a real variable reduces

to matrix multiplication (i.e., composition of linear functions):

Dx(mult ○ (f, g)) = (D(f,g)(x)mult) ○ (Dx(f, g))

= (D(f(x),g(x))mult) ○ (Dxf,Dxg)

= [g(x) f(x)]
⎡⎢⎢⎢⎢⎢⎢⎣

Dxf

Dxg

⎤⎥⎥⎥⎥⎥⎥⎦
= g(x)Dxf + f(x)Dxg

Returning to our more general setting, let a ∈ A ⊆X, let B ⊆ Y , and let C ⊆ Z, where

X = (X,0X , TX), Y = (Y,0Y , TY), and Z = (Z,0Z , TZ) are objects of a differential

calculus D. Let f ∶ A Ð→ B and g ∶ B Ð→ C be arbitrary functions. Finally, let

K ∶ X Ð→ Y and L ∶ Y Ð→ Z be D-differentials.

Theorem 2.9.1. (Chain Rule)

CHAPTER 2. CONVERGENCE SPACES AND DIFFERENTIAL CALCULI 26

Suppose that f is continuous at a. Also suppose that K is a differential of f at a,

and L is a differential of g at f(a).

Then L ○K is a differential of g ○ f at a.

Proof: Let F be a filter converging to a in X. Since K is a differential of f at a,

there is some G ↓ K in D(X ,Y) such that G ⊆ [K] and, for every G ∈ G, there is

some F1,G ∈ F such that for each point x ∈ F1,G there is some D-differential sG,x ∈ G

such that

sG,x(x − a) = f(x) − f(a) (2.1)

On the other hand, since f is continuous at a, we have f(F) ↓ f(a) in B. Since L

is a differential of g at f(a), there is some filter H ↓ L in D(Y,Z) such that H ⊆ [L]

and, for every H ∈ H, there is some NH ∈ f(F) such that for each point y ∈ NH ,

there is some D-differential tH,y ∈H such that

tH,y(y − f(a) = g(f(x)) − g(f(a)) (2.2)

Consider such a set NH . By definition, NH ∈ f(F), i.e. there is some F2,H ∈ F such

that

f(F2,H) ⊆ NH

By (2.2), for each point x ∈ F2,H , we have

tH,f(x)(f(x) − f(a)) = g(f(x)) − g(f(a)) (2.3)

Next, note that {{h2 ○h1 ∣h1 ∈ G,h2 ∈H } ∣G ∈ G,H ∈ H } is a basis for a filter J on

D(X ,Z), and that J ⊆ [L ○K].

By joint continuity of composition (Corollary 2.5.3), J ↓ L ○L in D(X ,Z).

CHAPTER 2. CONVERGENCE SPACES AND DIFFERENTIAL CALCULI 27

Let J be an arbitrary member of J . There exist G ∈ G and H ∈ H such that

{h2 ○ h1 ∣h1 ∈ G,h2 ∈H } ⊆ J

Let F = F1,G ∩ F2,H . Then F ∈ F . For each point x ∈ F , we have sG,x ∈ G and

tH,f(x) ∈H, and therefore tH,f(x) ○ sG,x ∈ J . Furthermore, by (2.1) and (2.3),

tH,f(x)(sG,x(x − a)) = tH,f(x)(f(x) − f(a)) = g(f(x)) − g(f(a)) (2.4)

Thus, (g(f(a)) − 0Z) ○ tH,f(x) ○ sG,x ○ (0X − a) is the required extrapolant of g ○ f

through (a, g(f(a)) and (x, g(f(x)).

Since the selection of x is arbitrary (once G and H have been chosen), L ○ K is

indeed a differential of g ○ f at a.

2.10 Differential Calculi With Non-homogeneous

Objects

In the preceding specification of differential calculi (see Definition 2.7.1), the con-

vergence spaces acting as carriers of objects of a differential calculus must come

equipped with full translation groups. We can generalize the concept of differential

calculus so that all convergence spaces may serve as carriers of objects.

Observation 2.10.1. Let T be a translation group on a convergence space X. For

each point x of X, let [x]T be the T - orbit of x, i.e. [x]T = {x + τ ∣ τ ∈ T }.

If X is nonempty, then the set of all T orbits partitions X into homogeneous sub-

spaces. For each T -orbit [x]T , the restrictions of the members of T to [x]T form a

full translation group T[x] on [x]T .

CHAPTER 2. CONVERGENCE SPACES AND DIFFERENTIAL CALCULI 28

Each T[x] is a quotient group of T .

Definition 2.10.2. A system of origins for a convergence space X with respect

to a translation group T is a set of representatives of the T -orbits, i.e., a subset O

of X containing precisely one member of each T -orbit.

For each point x of X, let 0x be the unique member of O belonging to the same

T -orbit as x.

Definition 2.10.3. Let f ∶ X Ð→ Y be a function between convergence spaces. Let

OX (OY , respectively) be a system of origins for X with respect to a translation

group S (for Y with respect to a translation group T , respectively).

i. f will be said to respect orbits iff, for each pair of points p and q of X, if p

and q lie in the same S-orbit, then f(p) and f(q) lie in the same T -orbit.

ii. f will be said to be preserve origins iff f(OX) ⊆ OY .

Definition 2.10.4. A generalized differential calculus is a category D in which

i. every object of D is a triple X = (X,T,O) such that X is a convergence space,

T is a translation group on X, and O is a system of origins for X with respect

to T .

ii. every arrow in D from an object (X,S,OX) to an object (Y,T,OY) is a con-

tinuous, orbit-respecting, origin-preserving function from X to Y .

iii. composition of arrows in D is function composition.

iv. for every object X = (X,T,O), the identity function on X is an arrow in D

from X to X

CHAPTER 2. CONVERGENCE SPACES AND DIFFERENTIAL CALCULI 29

v. for each pair of objects X = (X,S,OX) and Y = (Y,T,OY) and each ζ in OY ,

the constant function mapping every point of X to ζ is an arrow in D from X

to Y

A differential calculus, in the sense of Definition 2.7.1 is essentially a generalized

differential calculus in which the translation group of every object is a full translation

group.

At the opposite extreme, there are generalized differential calculi in which the trans-

lation group of every object is trivial (i.e., all orbits are singletons).

Example 2.10.5. CONV as a generalized differential calculus

The objects of the trivial generalized differential calculus are all convergence spaces,

equipped with trivial translation groups. The arrows from an object X to an object

Y are all continuous functions from X to Y . (Since all orbits are singletons, every

function is orbit-respecting and origin-preserving.)

Now, let a ∈ X and let b ∈ Y , where X = (X,S,OX) and Y = (Y,T,OY) are objects

of a generalized differential calculus D. Let f ∶ A Ð→ B be an arbitrary function.

Let L ∈ D(X ,Y), where, again, D(X ,Y) is the set of all arrows in D from X to Y,

equipped with the subspace convergence structure inherited from the function space

Y X in Conv.

Definition 2.10.6. L is a differential of f at a iff

for every F ↓ a in X, there is some H ↓ L in D(X ,Y) such that

i. H ⊆ [{L}], and

ii. for every H ∈ H, there is some F ∈ F such that

for every point x ∈ F , there is at least one function t ∈H such that

t(x + (0x − a)) = f(x) + (0f(x) − f(a))

CHAPTER 2. CONVERGENCE SPACES AND DIFFERENTIAL CALCULI 30

Differentiability and unique differentiability are defined precisely as in Definition

2.8.2, though, of course, with respect to the immediately preceding definition of

differential.

2.11 The Chain Rule for Generalized Differential

Calculi

Let a ∈X, , where X = (X,R,OX), Y = (Y,S,OY), and Z = (Z,T,OZ) are objects of

a generalized differential calculus D. Let f ∶ X Ð→ Y and g ∶ Y Ð→ Z be arbitrary

functions. Let K ∶ X Ð→ Y and L ∶ Y Ð→ Z be arrows of D.

Theorem 2.11.1. (Chain Rule)

Suppose that f is continuous at a. Also suppose that K is a differential of f at a,

and L is a differential of g at f(a).

Then L ○K is a differential of g ○ f at a.

Proof: The proof is like that for Theorem 2.9.1, mutatis mutandis.

Chapter 3

Examples of Differential Calculi

3.1 Classical Differential Calculi

Let R be the real line, equipped with its usual Euclidean topology, and let N be the

set of all natural numbers.

3.1.1 The classical differential calculus of real variables

The carriers of the objects of this differential calculus are the sets Rn (n ∈ N),

equipped with their respective Euclidean topologies, with their respective zero vec-

tors as origins, and with their usual translation groups, which are full as required of

a differential calculus (cf. Definition 2.7.1).

The arrows of this calculus are just the R-linear functions. This comports with

the remaining requirements for a differential calculus: the R-linear functions are

continuous with respect to the convergence structures induced by the Euclidean

topologies (cf. §2.3.1), compositions of R-linear functions are also R-linear, and the

identity map and all zero-constant maps are also R-linear functions.

31

CHAPTER 3. EXAMPLES OF DIFFERENTIAL CALCULI 32

In this calculus, our choice of arrows guarantees unique differentiability, and a func-

tion f has a differential at a point p (according to Definition 2.8.1) iff f is differen-

tiable (under the classical definition) at p.

3.1.2 The directional calculus of real variables

The objects of this calculus are the sets Rn (n ∈ N), with their respective zero

vectors as origins, and with their usual translation groups. Here, R1 is equipped

with the Euclidean topology, but for n > 1, the convergence structure imposed on

Rn is stronger than the Euclidean product structure of the previous example.

In the directional calculus of real variables, a filter F will be said to converge to a

point p iff there is some unit vector q such that {p + αq ∣α ∈ R, ∣α∣ < ε} ∈ F for every

real number ε > 0.

The differentials of this calculus are the R-homogeneous functions of degree one. (A

function f between modules over a ring R is said to be R-homogeneous of degree n

iff

f(αx) = αnf(x)

for all scalars α and all vectors x.)

In this calculus, differentiability and unique differentiability are again equivalent,

but a function f has a differential at a point p iff f has directional derivatives in all

directions at p.

3.1.3 The classical affine differential calculus of real vari-

ables

The objects of this generalized differential calculus (cf. Definition 2.10.4) are the

Euclidean spaces, equipped with trivial translation groups. The arrows from Rm to

CHAPTER 3. EXAMPLES OF DIFFERENTIAL CALCULI 33

Rn are all R-affine functions from Rm to Rn.

As in the classical linear differential calculus, a function f has a differential at a

point p iff f is differentiable (in the usual sense) at p.

Let Apf be the differential of f at p in the classical affine differential calculus of

real variables. That is, Ap(f) is the affine function which best approximates f in

arbitrarily small neighhborhoods of p.

Then the differential of f at p in the classical linear differential calculus is the

unique linear function which can be obtained from Apf by composing it on both

sides with translations (in the usual sense), i.e., the function which maps each point

q to f(p) + (Apf)(q − p)

3.2 Differential Calculi on Digraphs

We specify here several different, pairwise nonequivalent differential calculi on reflex-

ive digraphs. Specialized to reflexive digraphs, our general definition of a differential

calculus (cf. Definition 2.7.1) becomes:

Definition 3.2.1. A differential calculus on reflexive digraphs is a category

D in which

i. every object of D is a triple X = (X,0, T) such that X is a reflexive digraph,

0 is a vertex of X (called the origin of X), and T is a group of digraph

homomorphisms (functions which preserve directed edges) which acts regularly1

on the vertices of X. T is called the translation group of X .

ii. each arrow from an object (X,0X , TX) to an object (Y,0Y , TY) is an origin-

preserving digraph homomorphism from X to Y .

1that is, for any two x, y in X there exists precisely one τ in T such that τ(x) = y.

CHAPTER 3. EXAMPLES OF DIFFERENTIAL CALCULI 34

iii. composition of arrows is function composition

iv. for every object X = (X,0X , TX), the identity function on X is an arrow in D

from X to X

v. for each pair of objects X and Y, the constant function mapping every vertex

of X to the origin of Y is an arrow in D from X to Y.

The arrows of a differential calculus D are called D-differentials.

In this setting, the differences in the calculi to be defined must appear among the

functions chosen as D-differentials.

Note that having self-loops at each vertex (reflexivity) ensures that every con-

stant function between vertex sets is a digraph homomorphism. Of course, the con-

vergence structures induced on digraphs (cf. Definition 2.4.1), which guarantee that

the continuous functions between digraphs are just ordinary graph homomorphisms,

already require self-loops.

When only one differential calculus D is involved, we will refer to a D-differential

simply as a differential.

For each vertex v of X, where X = (X,0, T) is an object of a differential calculus,

let τv be the unique member of T mapping the origin to v. Note that, since X has

at least one vertex (namely, the origin), the mapping v ↦ τv is a bijection between

X and T .

Observation 3.2.2. Let X = (X,0, T) be an object of a differential calculus. Then

1. τ0 is the identity map on X

2. for each vertex v of X, τv(0) = v

3. for each vertex v of X, τv−1 = τ−v, where −v = τv−1(0)

CHAPTER 3. EXAMPLES OF DIFFERENTIAL CALCULI 35

4. for all vertices u and v of X, τv ○ τu = τu+v, where u + v = τv(u)

Equivalently, therefore, by identifying the carrier of the translation group of an

object with the set of vertices of the underlying digraph, we could define a differential

calculus on reflexive digraphs as a concrete category D in which

1. every object of D is a set X, equipped with both a group structure (written

additively), and a reflexive binary relation on X, such that, for each a in X,

right translation by a preserves the binary relation.

2. each D-morphism from an object X to an object Y is a digraph homorphism

from X to Y which maps the origin of X to the origin of Y , where, by the origin

of an object, we mean the identity element of the object’s group operation.

3. for every object X, the identity function on X is a D-morphism from X to X.

4. for each pair of objects X and Y , the constant function mapping every member

of X to the origin of Y is a D-morphism from X to Y .

We will shift back and forth between these two viewpoints as is convenient. In par-

ticular, if a and x are vertices of the underlying digraph of an object of a differential

calculus on reflexive digraphs, we will almost always write τa−1(x) as x − a.

Note that, although (by analogy with the usual translation groups of Euclidean

spaces) we use additive notation for the group operation, the translation group need

not be Abelian.

Example 3.2.3. The calculus of complete finite Boolean digraphs

Let B be a set consisting of two members, say F and T , which we will identify with

0 and 1, respectively.

CHAPTER 3. EXAMPLES OF DIFFERENTIAL CALCULI 36

The objects of the calculus of complete finite Boolean digraphs are the complete finite

digraphs Bn whose vertices are all bit strings of length n; i.e., all the bit vectors of

Bn.

The group generated by the flips h1, h2, . . . , hn is taken as the translation group of

Bn, where (as one would expect) hk(b⃗) is obtained from bit vector b⃗ by changing the

kth bit of b⃗ (and leaving every other bit unchanged).

For each m and n, define the differentials from Bm to Bn to be all origin-preserving

functions from Bm to Bn.

We will return to this example in the sequel.

3.2.1 Graph differentials

Notation:

IfX and Y are digraphs, let Hom(X,Y) be the exponential digraph [Hel79, Rib83]

whose vertices are the digraph homomorphisms from X to Y . By definition, the edge

(L,M) is present in Hom(X,Y) iff, for each edge (u, v) of X, the edge (L(u),M(v))

is present in Y .

Note that if either X or Y is reflexive, then so is Hom(X,Y).

Notation: If X = (X,0X , TX) and Y = (Y,0Y , TY) are objects of a differential

calculus D on reflexive digraphs, let D(X ,Y) be the full subdigraph of Hom(X,Y)

whose vertices are the D-differentials from X to Y.

Proposition 3.2.4. Let (K1,K2) be an edge of Hom(X,Y) and let (L1, L2) be an

edge of Hom(Y,Z), where X, Y , and Z are digraphs.

Then (L1 ○K1, L2 ○K2) is an edge of Hom(X,Z).

Proof : It is not hard to see that the category of digraphs and digraph homomor-

CHAPTER 3. EXAMPLES OF DIFFERENTIAL CALCULI 37

phisms is Cartesian closed, and that exponential digraphs are exponential objects in

this category [Hel79, Shr88]. The proposition to be proved is an immediate corollary

[Mac71].

For a direct proof, let (u, v) be an arbitrary edge of X. Since (K1,K2) is an edge of

Hom(X,Y), (K1(u),K2(v)) is an edge of Y . But (L1, L2) is an edge of Hom(Y,Z),

so (L1(K1(u)), L2(K2(v))) is an edge of Z.

But the edge (u, v) was arbitrary, so (L1 ○K1, L2 ○K2) is an edge of Hom(X,Z)

Corollary 3.2.5. Let (K1,K2) and (L1, L2) be edges of D(X ,Y) and D(Y ,Z),

respectively, where X , Y, and Z are objects of a differential calculus D on reflexive

digraphs.

Then (L1 ○K1, L2 ○K2) is an edge of D(X ,Z)

In the following, let A and B be full subdigraphs of X and Y , respectively where

X = (X,0X , TX) and Y = (Y,0Y , TY) are objects of a differential calculus D on

digraphs. Let a be a vertex of A, and f be an arbitrary function from the vertex set

of A to the vertex set of B.

Let L ∶ X Ð→ Y be a differential.

Definition 3.2.6. We say that L is a graph differential of f at a iff for every

vertex x of A such that there is an edge from a to x, there is a differential M ∶ X Ð→ Y

such that

1. the edge (L,M) is present in D(X,Y), and

2. M(x − a) = f(x) − f(a)

Explanation: Condition (2) in Definition 3.2.6 can be rewritten as

M(τa−1(x)) = τf(a)−1(f(x))

CHAPTER 3. EXAMPLES OF DIFFERENTIAL CALCULI 38

or, equivalently, as

τf(a)(M(τa−1(x))) = f(x)

Furthermore, since differentials preserve origins,

τf(a)(M(τa−1(a))) = τf(a)(M(0X)) = τf(a)(0Y) = f(a)

In other words, τf(a) ○M ○ τa−1 is a translated differential extrapolant of f ∣{a,x}.

Definition 3.2.7. A function from A to B is graph-differentiable (respectively,

uniquely graph-differentiable) at a vertex a iff it has at least one (respectively,

precisely one) graph differential at a.

Lemma 3.2.8. If f ∶ A Ð→ B is graph-differentiable at a vertex a, then f takes all

out-edges of a in A to out-edges of f(a) in B.

Proof : Let X = (X,0X , TX) and Y = (Y,0Y , TY) be objects of a differential calculus

on reflexive digraphs. Suppose that L ∶ X Ð→ Y is a graph differential of f ∶ AÐ→ B

at a.

Let x be a vertex such that the edge (a, x) is present in A. Then

1. there exists a differential M as in Definition 3.2.6, and

2. since τa ∶X Ð→X is a digraph isomorphism, the edge

(0X , x − a) = (τa−1(a), τa−1(x))

is present in X.

Since M ∶ X Ð→ Y is a graph differential of f at a, and therefore is an origin-

preserving digraph homomorphism, the edge

CHAPTER 3. EXAMPLES OF DIFFERENTIAL CALCULI 39

(τf(a)−1(f(a)), τf(a)−1(f(x))) = (0Y , f(x) − f(a)) = (M(0X),M(x − a))

is present in Y . Since τf(a) ∶ Y Ð→ Y is a digraph isomorphism, the edge

(f(a), f(x))

is present in Y , and therefore in the full subdigraph B.

Definition 3.2.9. A function from A to B is graph-differentiable (respectively,

uniquely graph-differentiable) iff it is graph-differentiable (respectively, uniquely

graph-differentiable) at each vertex of A.

In the following, let X = (X,0X , TX), Y = (Y,0Y , TY), and Z = (Z,0Z , TZ) be ob-

jects of a differential calculus D on reflexive digraphs, and let A, B, and C be full

subdigraphs of X, Y , and Z, respectively.

Theorem 3.2.10. (Chain Rule for Graph Differentials)

Let K ∶ X Ð→ Y be a graph-differential of f ∶ A Ð→ B at a, and let L ∶ Y Ð→ Z

be a graph-differential of g ∶ B Ð→ C at f(a).

Then L ○K is a graph-differential of g ○ f at a.

Proof: Let x be a vertex such that the edge (a, x) is present in A. Then there is

a differential M1 ∶X Ð→ Y such that

1. the edge (K,M1) is present in D(X,Y), and

2. M1(x − a) = f(x) − f(a)

By Lemma 3.2.8, the edge (f(a), f(x)) is present in B, and, therefore, there is a

differential M2 ∶ Y Ð→ Z such that

1. the edge (L,M2) is present in D(Y,Z), and

CHAPTER 3. EXAMPLES OF DIFFERENTIAL CALCULI 40

2. M2(f(x) − f(a)) = f(f(x)) − g(f(a))

By Corollary 3.2.5, the edge

(L ○K,M2 ○M1)

is present in D(X,Z). Furthermore,

M2(M1(x − a))) =M2(f(x) − f(a)) = g(f(x)) − g(f(a))

Of course, we need not provide a chain rule specifically for graph differentials, nor

for the other types of differentials on digraphs to be specified later in this section.

The general chain rule (cf. Theorem 2.9.1) covers all these cases.

Example 3.2.11. Let B be the calculus of complete finite Boolean digraphs (Exam-

ple 3.2.3). It is easily verified that, for each m and n, Hom(Bm,Bn) is a complete

digraph. Since B(Bm,Bn) is a full subdigraph of Hom(Bm,Bn), B(Bm,Bn) is also

a complete digraph.

But Bn is also a complete digraph. Therefore, in the category B, every differential

from Bm to Bn is a graph differential of every function from Bm to Bn at every

point of Bm.

3.2.2 Discrete differentials

Again, let A and B be full subdigraphs of X and Y , respectively where X =

(X,0X , TX) and Y = (Y,0Y , TY) are objects of a differential calculus on digraphs.

Let a be a vertex of A, and f be an arbitrary function from the vertex set of A to

the vertex set of B.

Let L ∶ X Ð→ Y be a differential.

CHAPTER 3. EXAMPLES OF DIFFERENTIAL CALCULI 41

Definition 3.2.12. We say that L is a discrete differential of f at a iff for every

vertex x of A such that there is an edge from a to x,

L(x − a) = f(x) − f(a) (3.1)

Observation 3.2.13. If L is a discrete differential of f at a, then L is a graph-

differential of f at a.

Proof : If X and Y are reflexive digraphs, then so is the exponential digraph

Hom(X,Y).

Definition 3.2.14. A function from A to B is discretely differentiable (respec-

tively, uniquely discretely differentiable) at a vertex a iff it has at least one

(respectively, precisely one) discrete differential at a.

Observation 3.2.15. If f ∶ A Ð→ B is discretely differentiable at a vertex a, then

f takes all out-edges of a in A to out-edges of f(a) in B.

Proof : Immediate from Observation 3.2.13 and Lemma 3.2.8.

Definition 3.2.16. A function from A to B is discretely differentiable (re-

spectively, uniquely discretely differentiable) iff it is discretely differentiable

(respectively, uniquely discretely differentiable) at each vertex of A.

In the following, let X = (X,0X , TX), Y = (Y,0Y , TY), and Z = (Z,0Z , TZ) be ob-

jects of a differential calculus on reflexive digraphs, and let A, B, and C be full

subdigraphs of X, Y , and Z, respectively.

Theorem 3.2.17. (Chain Rule for Discrete Differentials)

Let K ∶X Ð→ Y be a discrete differential of f ∶ AÐ→ B at a, and let L ∶ Y Ð→ Z

be a discrete differential of g ∶ B Ð→ C at f(a).

Then L ○K is a discrete differential of g ○ f at a.

CHAPTER 3. EXAMPLES OF DIFFERENTIAL CALCULI 42

proof: Let x be a vertex of A such that there is an edge from a to x. Then

L(K(x − a))) = L(f(x) − f(a)) = g(f(x)) − g(f(a))

Example 3.2.18. In the calculus of complete finite Boolean digraphs (Example

3.2.3), every differential from Bm to Bn is a graph differential of every function

from Bm to Bn at every vertex of Bm (Example 3.2.11).

On the other hand, it is not hard to verify that, in this calculus, every function from

Bm to Bn has a unique discrete differential at every vertex.

To illustrate this, we exhibit the discrete differentials of the unary Boolean operators,

and the discrete differentials of the binary Boolean connectives, in Tables 3.1 and

3.2, respectively.

Function Differential at 0 Differential at 1
constant with value 0 constant with value 0 constant with value 0
constant with value 1 constant with value 0 constant with value 0

identity identity identity
¬ identity identity

Table 3.1: Unary Boolean operators and their discrete differentials in the calculus
of complete finite Boolean digraphs

3.2.3 Convergence of filters of differentials

Definition 3.2.19. Let X = (X,0X , TX) and Y = (Y,0Y , TY) be objects of a differ-

ential calculus D on reflexive digraphs, let L be a member of D(X ,Y), and let F be

a filter on D(X ,Y).

CHAPTER 3. EXAMPLES OF DIFFERENTIAL CALCULI 43

Function Differential at
(0,0) (0,1) (1,0) (1,1)

const0 const0 const0 const0 const0

const1 const0 const0 const0 const0

proj1 proj1 proj1 proj1 proj1
proj2 proj2 proj2 proj2 proj2

¬ ○ proj1 proj1 proj1 proj1 proj1
¬ ○ proj2 proj2 proj2 proj2 proj2

∧ ∧ /Ð→ /←Ð ∨
∨ ∨ /←Ð /Ð→ ∧

NAND ∧ /Ð→ /←Ð ∨
NOR ∨ /←Ð /Ð→ ∧
←Ð /←Ð ∨ ∧ /Ð→
Ð→ /Ð→ ∧ ∨ /←Ð
/←Ð /←Ð ∨ ∧ /Ð→
/Ð→ /Ð→ ∧ ∨ /←Ð
←→ XOR XOR XOR XOR

XOR XOR XOR XOR XOR

Table 3.2: Boolean connectives and their discrete differentials in the calculus of
complete finite Boolean digraphs

1. We will say that F strongly converges to L iff for each edge (u, v) of X,

there exist Fu,v ∈ F and a vertex wu,v of Y such that

(a) the edge (L(u),wu,v) is present in Y , and

(b) every member of Fu,v maps v to wu,v.

2. We will say that F weakly converges to L iff for each vertex u of X, there

is some Fu ∈ F such that for each M in Fu and each vertex v such that the

edge (u, v) is present in X, the edge

(L(u),M(v))

is present in Y .

Observation 3.2.20. Let X and Y be as above, let L be a member of D(X ,Y), and

let F be a filter on D(X ,Y).

CHAPTER 3. EXAMPLES OF DIFFERENTIAL CALCULI 44

If F converges strongly to L and every vertex of X has finite outdegree, then F

converges weakly to L

Proof:

Suppose that F converges strongly to L, and every vertex of X has finite outde-

gree.

Let u be a vertex of X. Then for each v such that the edge (u, v) is present in X,

there exist Fu,v and wu,v as in the definition of strong convergence.

Let

Fu =⋂{Fu,v ∣ the edge (u, v) is present in X }

Since F is a filter, and u has finite outdegree,

Fu is a member of F

Let M be a member of Fu, and let V be a vertex such that the edge (u, v) is present

in X. Since M belongs to Fu,v,

1. the edge (L(u),wu,v) is present in Y , and

2. M(v) = wu,v

In short, the edge

(L(u),M(v))

is present in Y .

Observation 3.2.21. Let X = (X,0X , TX) and Y = (Y,0Y , TY) be objects of a

differential calculus. Let L and M be vertices of D(X ,Y) such that the edge (L,M)

is present. Let [M] be the point filter at M , i.e.

[M] = {F ⊆ D(X ,Y) ∣M ∈ F }

CHAPTER 3. EXAMPLES OF DIFFERENTIAL CALCULI 45

Then [M] strongly converges to L.

Proof :

Let (u, v) be an arbitrary edge of X. Let Fu,v be the singleton {M }, and let

wu,v =M(v).

The preceding observation has a partial converse.

Observation 3.2.22. Let X = (X,0X , TX) and Y = (Y,0Y , TY) be as above. Let L

be a member of D(X ,Y). Let g ∶ X Ð→ Y be a graph homomorphism. Let F be a

filter on D(X ,Y).

If F strongly converges to L, and X is finite, then

F = [M]

for some M such that (L,M) is an edge of D(X,Y).

Proof: Suppose that X is finite, and let F be a filter which strongly converges to

L.

For each edge (u, v) of X, there exist Fu,v in F and a vertex wu,v of Y as in the

definition of strong convergence.

Let

F =⋂{Fu,v ∣ (u, v) is an edge of X }

Since each Fu,v belongs to the filter F , and the edge set of X is finite, F also belongs

to F .

Let u be an arbitrary vertex of X. Since X is reflexive, it has a loop at u, and

therefore

1. the edge (L(u),wu,u) is present in Y , and

CHAPTER 3. EXAMPLES OF DIFFERENTIAL CALCULI 46

2. every member of F maps u to wu,u.

All members of F agree at u. But u is arbitrary, and F is independent of u. There-

fore, all members of F agree everywhere, i.e., F has at most one member. But F is

nonempty, and therefore must be a singleton {M }. Furthermore, for every vertex

u of X,

1. the edge (L(u),wu,u) is present in Y , and

2. M maps u to wu,u.

That is to say, the edge (L,M) is present in D(X,Y).

Observation 3.2.23. Let X = (X,0X , TX) and Y = (Y,0Y , TY) be objects of a

differential calculus. Let L be a vertex of D(X ,Y).

Let N(L) be the outward graph neighborhood of L in D(X,Y), i.e.

N(L) = {M ∣ the edge (L,M) is present in D(X,Y) }

Let F0 be an arbitrary nonempty subset of N(L), and let [F0] be the principal filter

at F0, i.e.

[F0] = {F ⊆D(X ,Y) ∣F0 ⊆ F }

Then [F0] weakly converges to L.

Proof : Let u be an arbitrary vertex of X.

Let M be an arbitrary member of F0, and let v be an arbitrary vertex such that the

edge

(u, v)

CHAPTER 3. EXAMPLES OF DIFFERENTIAL CALCULI 47

is present in X. Since F0 ⊆ N(L), the edge

(L,M)

is present in ∣mathcalD(X,Y), and therefore the edge

(L(u),M(v))

is present in Y

This too has a partial converse:

Observation 3.2.24. Let N(L) be the outward graph neighborhood of L in D(X,Y).

If F weakly converges to L, and X is finite, then

N(L) ∈ F

Proof: Suppose that X is finite.

For each vertex u of X, there is some Fu ∈ F as in the definition of weak convergence.

Let

F =⋂{Fu ∣u is a vertex of X }

Since each Fu belongs to the filter F , and the vertex set of X is finite, F also belongs

to F .

Let K ∈ F . Then for each edge (u, v) of X, K belongs to Fu, and therefore the edge

(L(u),K(v))

is present in Y

CHAPTER 3. EXAMPLES OF DIFFERENTIAL CALCULI 48

In short, the edge

(L,K)

is present in D(X,Y). But K was an arbitrary member of F . In other words,

F ⊆ N(L)

Since F is a member of F , and F is a filter, N(L) also belongs to F

Notation It is readily verified that if F and G are filters on D(X ,Y) and D(Y,Z)

respectively, where X , Y , and Z are objects of a differential calculus D on reflexive

digraphs, then

{{ g ○ f ∣ g ∈ G, f ∈ F } ∣G ∈ G, F ∈ F }

is a base for a filter on D(X ,Z). Denote this filter by G ⋅F

Lemma 3.2.25. Let K and L be members of D(X ,Y) and D(Y,Z) respectively,

where X = (X,0X , TX), Y = (Y,0Y , TY), and Z = (Z,0Z , TZ) are objects of a differ-

ential calculus.

1. If F strongly converges to K, and G strongly converges to L, then G ⋅F strongly

converges to L ○K.

2. If F weakly converges to K, and G weakly converges to L, then G ⋅ F weakly

converges to L ○K.

Proof :

1. Suppose that F strongly converges to L and G strongly converges to M .

Let (u, v) be an edge of X. Then there exist F in F and a vertex w of Y such

that

(a) the edge (K(u),w) is present in Y , and

CHAPTER 3. EXAMPLES OF DIFFERENTIAL CALCULI 49

(b) every member of F maps v to w.

In turn, since (K(u),w) is an edge of Y , there exist G in G and a vertex z of

Z such that

(a) the edge (L(K(u)), z) is present in Z, and

(b) every member of G maps w to z.

Let GF = { g ○ f ∣ g ∈ G,f ∈ F }. Then GF belongs to G ⋅F , and every member

of GF maps v to z.

2. Suppose that F weakly converges to K and G weakly converges to L.

Let u be a vertex of X. Then there is some F in F such that for each M in F

and each vertex v such that the edge (u, v) is present in X,

the edge (K(u),M(v)) is present in Y .

In turn, there is some G in G such that for each N in G and each vertex w

such that the edge (K(u),w) is present in Y ,

the edge (L(K(u)),N(w)) is present in Z.

Let GF = { g ○ f ∣ g ∈ G,f ∈ F }. Then GF is a member of G ⋅F . Furthermore,

for each N ○M in GF (N ∈ G, M ∈ F), and each vertex v such that the edge

(u, v) is present in X, the edge (K(u),M(v)) is present in Y , and therefore

the edge (L(K(u)),N(M(v)) is present in Z.

3.2.4 Postdiscrete differentials

Let A and B be full subdigraphs of X and Y , respectively where X = (X,0X , TX)

and Y = (Y,0Y , TY) are objects of a differential calculus D on digraphs. Let a be a

CHAPTER 3. EXAMPLES OF DIFFERENTIAL CALCULI 50

vertex of A, and f be an arbitrary function from the vertex set of A to the vertex

set of B.

Let L be a member of D(X ,Y).

Definition 3.2.26. We say that L is a postdiscrete differential of f at a iff for

every vertex x of A such that there is an edge from a to x, there is a filter H strongly

converging to L in D(X ,Y) such that

1. L belongs to every member of H, and

2. for every H ∈ H, there is at least one M in H such that

M(x − a) = f(x) − f(a)

Observation 3.2.27.

1. If L is a discrete differential of f at a, then L is a postdiscrete differential of

f at a.

2. If L is a postdiscrete differential of f at a, and X is finite, then L is a discrete

differential of f at a.

Proof :

1. Suppose that L is a discrete differential of f at a. Let x be a vertex of A such

that the edge (a, x) is present. Then

L(x − a) = f(x) − f(a)

Since both X and Y are reflexive, so is Hom(X,Y). In particular, Hom(X,Y)

has a loop at L, and therefore [L] strongly converges to L. Furthermore, L

belongs to every member of [L].

CHAPTER 3. EXAMPLES OF DIFFERENTIAL CALCULI 51

2. Suppose that X is finite, and L is a postdiscrete differential of f at a.

Let x be a vertex of A such that there is an edge from a to x. Then there is

some filter H as in Definition 3.2.26.

By the partial converse to Observation 3.2.21, H must be the principal filter

[M] at some M such that there is an edge from L to M in Hom(X,Y).

But, since H was chosen as in the definition of postdiscrete differentials, every

member of H must contain L. As [L] is the only such principal filter, we have

H = [L]

That is, {L} is a member of H. But H was chosen as in the definition of

postdiscrete differentials, and thus

L(x − a) = f(x) − f(a)

so L is a discrete differential of f at a.

Example 3.2.28. Returning to Example 3.2.3, the preceding observation tells us

that, in the calculus of complete finite Boolean digraphs, every function from Bm to

Bn has a unique postdiscrete differential at each vertex, namely, its discrete differ-

ential at that vertex.

Definition 3.2.29. A function from A to B is postdiscretely differentiable

(respectively, uniquely postdiscretely differentiable) at a vertex a iff it has at

least one (respectively, precisely one) postdiscrete differential at a.

Lemma 3.2.30. If f ∶ A Ð→ B is postdiscretely differentiable at a vertex a, then f

takes all out-edges of a in A to out-edges of f(a) in B.

CHAPTER 3. EXAMPLES OF DIFFERENTIAL CALCULI 52

Proof :

We prove this lemma for the special case in which a and f(a) are the origins

of X and Y, respectively. A general proof can be obtained from the proof of the

special case by applying τa−1 and τf(a) to the vertices of X and the vertices of Y ,

respectively, exactly as in the proof of Lemma 3.2.8.

Suppose that L ∶ X Ð→ Y is a postdiscrete differential of f ∶ A Ð→ B at 0X , and

suppose that f maps 0X to 0Y .

Let x be a vertex of A such that the edge (0X , x) is present. Then there is some

filter H as in Definition 3.2.26.

Each H in H contains some MH such that

MH(x) = f(x)

Furthermore, H strongly converges to L, and the edge (0X , x) is present in A (and

therefore in X). Therefore, there exist H in H and a vertex w of Y such that

1. the edge (f(0X),w) = (0Y ,w) = (L(0X),w) is present in Y , and

2. every member of H maps x to w.

and therefore

f(x) =MH(x) = w

Definition 3.2.31. A function from A to B is postdiscretely differentiable

(respectively, uniquely postdiscretely differentiable) iff it is postdiscretely dif-

ferentiable (respectively, uniquely postdiscretely differentiable) at each vertex of A.

CHAPTER 3. EXAMPLES OF DIFFERENTIAL CALCULI 53

As before, let X = (X,0X , TX), Y = (Y,0Y , TY), and Z = (Z,0Z , TZ) be objects of a

differential calculus on reflexive digraphs, and let A, B, and C be full subdigraphs

of X, Y , and Z, respectively.

Theorem 3.2.32. (Chain Rule for Postdiscrete Differentials)

Let K ∶ X Ð→ Y be a postdiscrete differential of f ∶ A Ð→ B at a, and let

L ∶ Y Ð→ Z be a postdiscrete differential of g ∶ B Ð→ C at f(a).

Then L ○K is a postdiscrete differential of g ○ f at a.

Proof :

Let x be a vertex of A such that the edge (a, x) is present. Then there is some

filter F strongly converging to K in D(X ,Y) such that

1. K belongs to every member of F , and

2. for every F ∈ F , there is at least one M in F such that

M(x − a) = f(x) − f(a)

By lemma 3.2.30, the edge (f(a), f(x)) is present in B, and therefore there is some

G strongly converging to L in D(Y ,Z) such that

1. L belongs to every member of G, and

2. for every G ∈ G, there is at least one N in G such that

N(f(x) − f(a)) = g(f(x)) − g(f(a))

By Lemma 3.2.25, G ⋅F strongly converges to L ○K. Furthermore,

CHAPTER 3. EXAMPLES OF DIFFERENTIAL CALCULI 54

1. L ○K belongs to every member of G ⋅F , and

2. for every G ○F in G ⋅F (G ∈ G, F ∈ F), there exist at least one M in F and at

least one N in G such that

(a) M(x − a) = f(x) − f(a), and

(b) N(M(x − a)) = N(f(x) − f(a)) = g(f(x)) − g(f(a))

In short, N ○M is a postdiscrete differential of g ○ f at a.

3.2.5 Pretopological differentials

Let A and B be full subdigraphs of X and Y , respectively, where X = (X,0X , TX)

and Y = (Y,0Y , TY) are objects of a differential calculus on digraphs. Let a be a

vertex of A, and f be an arbitrary function from the vertex set of A to the vertex

set of B.

Let L be a member of D(X ,Y).

Definition 3.2.33. We say that L is a pretopological differential of f at a iff

for every vertex x of A such that there is an edge from a to x, there is some H

weakly converging to L in D(X ,Y) such that

i. L belongs to every member of H, and

ii. for every H ∈ H, there is at least one M in H such that

M(x − a) = f(x) − f(a)

Observation 3.2.34.

1. If L is a graph differential of f at a, then L is a pretopological differential of

f at a.

CHAPTER 3. EXAMPLES OF DIFFERENTIAL CALCULI 55

2. If L is a pretopological differential of f at a, and X is finite, then L is a graph

differential of f at a.

Proof :

1. Suppose that L is a graph differential of f at a.

Let x be a vertex of A such that there is an edge from a to x. Then there is

some M as in Definition 3.2.6.

Let H = N(M), i.e. let H be the outward graph neighborhood of L in D(X,Y).

By the partial converse to Observation 3.2.23, the point filter [M] weakly

converges to L in D(X,Y), and thus L is a pretopological differential of f at

a.

2. Conversely, suppose that L is a pretopological differential of f at a, and X is

finite.

Let x be a vertex of A such that there is an edge from a to x. Then there is

some H as in Definition 3.2.33.

Again, let N(L) be the outward neightborhood of L in D(X,Y). By the

partial converse to Observation obs:NbhdWeak, N(L) is a member of H

Therefore, there is at least one M in N(L) such that

M(x − a) = f(x) − f(a)

i.e. L is a graph differential of f at a.

Example 3.2.35. Returning again to Example 3.2.3, the preceding observation,

together with Example 3.2.11, tells us that, in the calculus of complete finite Boolean

digraphs, every differential from Bm to Bn is a pretopological differential of every

function from Bm to Bn at each vertex of Bm.

CHAPTER 3. EXAMPLES OF DIFFERENTIAL CALCULI 56

Definition 3.2.36. A function from A to B is pretopologically differentiable

(respectively, uniquely pretopologically differentiable) at a vertex a iff it has

at least one (respectively, precisely one) pretopological differential at a.

Lemma 3.2.37. If f ∶ A Ð→ B is pretopologically differentiable at a vertex a, then

f takes all out-edges of a in A to out-edges of f(a) in B.

Proof : As in the proof of Lemma 3.2.30, we prove this lemma for the special case

in which a and f(a) are the origins of X and Y, respectively. Again, a general proof

can be obtained by applying τa−1 and τf(a) to the vertices of X and the vertices of

Y , respectively.

Suppose that L ∶ X Ð→ Y is a pretopological differential of f ∶ AÐ→ B at the origin

of X, and suppose that f maps 0X to 0Y .

Let x be a vertex of A such that the edge (0, x) is present. Then there is some filter

H as in Definition 3.2.33.

There is some M in H such that

M(x) = f(x)

Since H weakly converges to L, there exists H in H such that for each M in H and

each vertex v such that the edge (0, v) is present in X, the edge

(f(0X),M(v)) = (0Y ,M(v)) = (L(0X),M(v))

is present in Y .

In particular, the edge (0X , x) is present in A, and therefore in X, so the edge

f(0X , f(x)) = (0Y , f(x)) = (0Y ,M(x))

CHAPTER 3. EXAMPLES OF DIFFERENTIAL CALCULI 57

is present in Y , and therefore in the full subdigraph B.

Definition 3.2.38. A function from A to B is pretopologically differentiable

(respectively, pretopologically differentiable) iff it is pretopologically differen-

tiable (respectively, uniquely pretopologically differentiable) at each vertex of A.

Again, let X = (X,0X , TX), Y = (Y,0Y , TY), and Z = (Z,0Z , TZ) be objects of a

differential calculus on reflexive digraphs, and let A, B, and C be full subdigraphs

of X, Y , and Z, respectively.

Theorem 3.2.39. (Chain Rule for Pretopological Differentials)

Let K ∶ X Ð→ Y be a pretopological differential of f ∶ A Ð→ B at a, and let

L ∶ Y Ð→ Z be a pretopological differential of g ∶ B Ð→ C at f(a).

Then L ○K is a pretopological differential of g ○ f at a.

Proof : The proof is exactly the same as the proof of Theorem 3.2.32, except that

weak convergence is used instead of strong convergence, and Lemma 3.2.37 is used

instead of Lemma 3.2.30.

3.2.6 Differential calculi With Kronecker products

Definition 3.2.40. A differential calculus D on reflexive digraphs (cf. Definition

3.2.1) will be said to have Kronecker products iff the following three additional

axioms hold:

vi. for each natural number n, if X1 = (X1,01, T1), X2 = (X2,02, T2), . . ., Xn =

(Xn,0n, Tn) are objects of D, then so is

X1 ×X2 × . . . ×Xn = (X1 ×X2 × . . . ×Xn, (01,02, . . . ,0n), T1 ⊕ T2 ⊕ . . .⊕ Tn)

CHAPTER 3. EXAMPLES OF DIFFERENTIAL CALCULI 58

where X1 ×X2 × . . . ×Xn is the categorical product (i.e., cross product) of the

digraphs X1, X2, . . ., Xn [Wei62, HW67, IK00], and each member of T1⊕T2⊕

. . .⊕ Tn is an automorphism on X1 ×X2 × . . .×Xn obtained by componentwise

application:

(h1 × h2 × . . . × hn)(x1, x2, . . . xn) = (h1(x1), h2(x2), . . . , hn(xn))

(Side remark: Since the digraphs in question are reflexive, their cross product

coincides with their weak product.)

vii. for each natural number n, if X1 = (X1,01, T1), X2 = (X2,02, T2), . . ., Xn =

(Xn,0n, Tn) are objects of D, then the projection function πj ∶ X1 ×X2 × . . . ×

Xn Ð→ Xj mapping each tuple to its jth component is a D-differential from

X1 ×X2 × . . . ×Xn to Xj (j = 1,2, . . . , n).

viii. for each natural number n, if X = (X,0, T), Y1 = (Y1,01, T1), Y2 = (Y2,02, T2),

. . ., Yn = (Yn,0n, Tn) are objects of D, and fi ∶ X Ð→ Yi are D-differentials

(i = 1,2, . . . , n), then the parametric function

(f1, f2, . . . , fn) ∶ X Ð→ Y1 × Y2 × . . . × Yn

given by

(f1, f2, . . . , fn)(x) = (f1(x), f2(x), . . . , fn(x))

is also a D-differential.

Observation 3.2.41. Let D be a differential calculus on reflexive digraphs which

has Kronecker products. Then

1. the category D has finite products, and

CHAPTER 3. EXAMPLES OF DIFFERENTIAL CALCULI 59

2. the forgetful functor from D to the category of reflexive digraphs and digraph

homomorphisms preserves finite products.

Example 3.2.42. The calculus of complete finite Boolean digraphs (Example 3.2.3)

has Kronecker products.

In the following, let X = (X,0X , TX) and Yi = (Yi,0i, Ti) (i = 1,2, . . . , n) be objects

of a differential calculus with Kronecker products, and let A, B1, B2, . . ., Bn be full

subdigraphs of X, Y1, Y2, . . ., Yn, respectively.

In the following, assume that D has Kronecker products, and let X and Yi (i =

1,2, . . . n) be as before.

Observation 3.2.43. D(X ,Y1×Y2×. . .×Yn) =D(X,Y1)×D(X,Y2)×. . .×D(X,Yn)

Lemma 3.2.44. Let F1, F2, . . ., Fn be filters on D(X ,Y1), D(X ,Y2), . . ., D(X ,Yn),

respectively. Let Li be a member of D(X ,Yi) (i = 1,2, . . . , n).

Then {F1×F2×. . .×Fn ∣Fi ∈ Fi (i = 1,2, . . . , n) } is a base for a filter F on D(X ,Y1)×

D(X ,Y2) × . . . ×D(X ,Yn). Moreover,

1. If Fi strongly converges to Li (i = 1,2, . . . , n), then F strongly converges to

(L1, L2, . . . , Ln) in D(X ,Y1 × Y2 × . . . × Yn).

2. If Fi weakly converges to Li (i = 1,2, . . . , n), then F weakly converges to

(L1, L2, . . . , Ln) in D(X ,Y1 × Y2 × . . . × Yn).

Proof : Define F as in the statement of the theorem.

1. Suppose that Fi strongly converges to Li in D(X ,Yi) (i = 1,2, . . . , n). Let

(u, v) be an edge of X.

CHAPTER 3. EXAMPLES OF DIFFERENTIAL CALCULI 60

Let L ∶ X Ð→ Y = (L1, L(2), . . . L(n)). Then L is a member of D(X,Y1 × Y2 ×

×Yn.

For i = 1,2, . . . , n, there exist Fi in Fi and vertices w1,w2 . . .wn of Y1, Y2, . . . Yn

respectively such that, for 1 = 1,2, . . . n,

(a) the edge (Li(u),wi) is present in Yi, and

(b) every member of Fi maps v to wi.

Let F = F1 × F2 × . . . Fn. Then F belongs to F . Furthermore,

(a) the edge (L1(u), L2(u), . . . Ln(u)), (w1,w2, . . .wn)) is present in Y1 × Y2 ×

. . . × Yn, and

(b) every member of F maps v to (w1,w2, . . .wn).

In short, F strongly converges to (L1, L2, . . . Ln).

2. Suppose that Fi weakly converges to Li in D(X ,Yi) (i = 1,2, . . . , n). Let u be

a vertex of X.

For i = 1,2, . . . n, there exists Fi ∈ Fi such that for each M in Fi and each

vertex v such that the edge (u, v) is present in X, the edge

(Li(u),M(v))

is present in Yi.

Let F = F1 × F2 × . . . × Fn. Then F belongs to F . Furthermore, for each

(M1,M2, . . . ,Mn) in F and each vertex v such that the edge (u, v) is present

in X, the edge

((L1(u), L2(u), . . . Ln(u)), (M1(v),M2(v), . . .Mn(v)))

CHAPTER 3. EXAMPLES OF DIFFERENTIAL CALCULI 61

is present in Y1 × Y2 × . . . × Yn

In short, F weakly converges to (L1, L2, . . . Ln).

Theorem 3.2.45. Let X = (X,0X , TX), Y1 = (Y1,01, T1), Y2 = (Y2,02, T2), . . . ,

Yn = (Yn,0n, Tn) be objects of a differential calculus D which has Kronecker products.

Let Li ∶ X Ð→ Yi be D-differentials (i = 1,2, . . . , n).

Let A, B1, B2, . . ., Bn be full subdigraphs of X, Y1, Y2, . . ., Yn, respectively. Let

fi ∶ AÐ→ Bi be functions (i = 1,2, . . . , n). Let a be a vertex of A.

1. If L1, L2, . . . , Ln are discrete differentials of f1, f2, . . . ,, fn respectively at a,

then

(L1, L2, . . . , Ln) ∶X Ð→ Y1 × Y2 × . . . × Yn

is a discrete differential of

(f1, f2, . . . , fn) ∶ AÐ→ B1 ×B2 × . . . ×Bn

at a.

2. If L1, L2, . . . , Ln are graph differentials of f1, f2, . . . ,, fn respectively at a,

then (L1, L2, . . . , Ln) is a graph differential of (f1, f2, . . . , fn) at a.

3. If L1, L2, . . . , Ln are postdiscrete differentials of f1, f2, . . . ,, fn respectively

at a, then (L1, L2, . . . , Ln) is a postdiscrete differential of (f1, f2, . . . , fn) at a.

4. If L1, L2, . . . , Ln are pretopological differentials of f1, f2, . . . ,, fn respectively

at a, then (L1, L2, . . . , Ln) is a pretopological differential of (f1, f2, . . . , fn) at

a.

Proof : Let X , Y1, Y2, . . . , Yn, L1, L2, . . . , Ln, A, B1, B2, . . ., Bn, f1, f2, . . . ,, fn,

and a be as in the statement of the theorem.

CHAPTER 3. EXAMPLES OF DIFFERENTIAL CALCULI 62

1. Suppose that L1, L2, . . . , Ln are discrete differentials of f1, f2, . . . ,, fn, re-

spectively, at a. Let x be a vertex of A such that there is an edge from a to

x.

Then

Li(τa−1(x)) = Li(x − a) = fi(x) − fi(a) = τfi(a)−1(fi(x)) (i = 1,2, . . . , n)

and hence

(L1, L2, . . . , Ln)(x − a)

= (L1(x − a), L2(x − a), . . . , Ln(x − a))

= (L1(τa−1(x)), L2(τa−1(x)), . . . , Ln(τa−1(x)))

= (τf1(a)
−1(f1(x)), τf2(a)

−1(f2(x)), . . . , τfn(a)
−1(fn(x)))

= (τf1(a)
−1 × τf2(a) × . . . × τfn(a)

−1)(f1(x), f2(x), . . . , fn(x))

= τ(f1(a),f2(a),...,fn(a))
−1(f1(x), f2(x), . . . , fn(x))

= (f1(x), f2(x), . . . , fn(x)) − (f1(a), f2(a), . . . , fn(a))

= (f1, f2, . . . , fn)(x) − (f1, f2, . . . , fn)(a)

In short, (L1, L2, . . . , Ln) is a discrete differential of (f1, f2, . . . , fn) at a.

2. Suppose that L1, L2, . . . ,, Ln are graph differentials of f1, f2, . . . ,, fn, re-

spectively, at a. Let x be a vertex of A such that there is an edge from a to

x.

Then there exist differentials M1, M2, . . ., Mn such that, for (i = 1,2, . . . , n),

(a) the edge Li,Mi is present in D(X ,Yi), and

(b) Mi(τa−1(x)) =Mi(x − a) = fi(x) − fi(a) = τfi(a)−1(fi(x))

Equivalently,

CHAPTER 3. EXAMPLES OF DIFFERENTIAL CALCULI 63

(a) the edge ((L1, L2, . . . , Ln),M1,M2, . . . ,Mn) is present in D(,Y1×Y2× . . .×

Yn), and

(b)

(M1,M2, . . . ,Mn)(x − a)

= (M1(x − a),M2(x − a), . . . ,Mn(x − a))

= (M1(τa−1(x)),M2(τa−1(x)), . . . ,Mn(τa−1(x)))

= (τf1(a)−1(f1(x)), τf2(a)−1(f2(x)), . . . , τfn(a)−1(fn(x)))

= (τf1(a)−1 × τf2(a)−1 × . . . × τfn(a)−1)(f1(x), f2(x), . . . , fn(x))

= τ(f1(a),f2(a),...,fn(a))
−1(f1(x), f2(x), . . . , fn(x))

= (f1(x), f2(x), . . . , fn(x)) − (f1(a), f2(a), . . . , fn(a))

= (f1, f2, . . . , fn)(x) − (f1, f2, . . . , fn)(a)

In short, (L1, L2, . . . , Ln) is a graph differential of (f1, f2, . . . , fn) at a.

3. Suppose that L1, L2, . . . , Ln are postdiscrete differentials of f1, f2, . . . ,, fn,

respectively, at a. Let x be a vertex of A such that there is an edge from a to

x.

There are filters H1, H2, . . . Hn strongly converging to L1, L2, . . . , Ln respec-

tively such that, for i = 1,2, . . . n,

(a) Li belongs to every member of Hi, and

(b) for every H ∈ Hi, there is at least one M in H such that

M(x − a) = fi(x) − fi(a)

Let H be the filter generated by all H1 ×H2 × . . . ×Hn such that Hi belongs

to Hi (i = 1,2, . . . n). Then (L1, L2, . . . Ln) belongs to every member of H.

Furthermore, by Lemma 3.2.44, H strongly converges to L1, L2, . . . , Ln.

CHAPTER 3. EXAMPLES OF DIFFERENTIAL CALCULI 64

Finally, let H be an arbitrary member of H. There exist H1, H2, . . . Hn in H1,

H2, . . . Hn respectively such that

H1 ×H2 × . . . ×Hn ⊆H

There exist M1, M2, . . . Mn in H1, H2, . . . Hn respectively such that, for

i = 1,2, . . . n,

Mi(x − a) = fi(x) − fi(a)

Then (M1,M2, . . .Mn) is a member of H such that

(M1,M2, . . .Mn)(x − a) = (f1, f2, . . . , fn)(x) − (f1, f2, . . . , fn)(a)

In short, (M1,M2, . . .Mn) is a postdiscrete differential of (f1, f2, . . . , fn) at a.

4. For the case of pretopological differentials, modify the proof for postdiscrete

differentials by replacing strong convergence by weak convergence.

3.3 Differential calculus on hybrid structures

3.3.1 Differentiating a function from 3R to K−
3

K−
3 is the complete directed graph on 3 vertices, but with one edge from one vertex

to another removed. It is universal for all the pretopological convergence spaces

in the sense that every pretopological space embeds in some Cartesian power of it

(see Bordaud [Bor76]). The space 3R is our designation for the set of real numbers

equipped with Euclidean filter structure at each real number r, and in addition at

r, all filters containing the filters generated by the open intervals whose right end

point is r, and all filters containing the filters generated by the open intervals whose

CHAPTER 3. EXAMPLES OF DIFFERENTIAL CALCULI 65

left end point is r. Take all functions from 3R to K−
3 that are piecewise constant at

0 for differentials. Then g ∶ 3R Ð→ K−
3 is a differential of f ∶ 3R Ð→ K−

3 at r iff f

is constant on an open interval whose right end point is r and constant on an open

interval whose left end point is r.

Chapter 4

Dynamical Systems as Instances

of the Differential Scheme

Now that convergence spaces and differential calculi based upon them have been

covered in some detail, we can formally present example instances of the differential

scheme.

4.1 Discrete Dynamical Systems

4.1.1 Classical Computation

Recall the standard reduction of a Turing Machine (TM) to an equivalent semi-Thue

system [Dav82], which yields a set of productions describing transitions between the

instantaneous descriptions of the TM. Assuming such a reduction has been made

for a given TM, we show how to obtain a (1d,1r)-CA, i.e., a one-dimensional, radius

1 cellular automaton, equivalent to the original TM.

The differential scheme representing the CA has the following components:

66

CHAPTER 4. DYNAMICAL SYSTEMS IN THE DIFFERENTIAL SCHEME 67

1. Comp = Z (the set of CA cells indexed by integers corresponds to a two-way

infinite tape)

2. Time = N (discrete time steps starting from 0)

3. L = original TM tape alphabet

⋃ { [q, a] ∣ q a TM internal state, a a TM alphabet symbol}

(see below for the explanation of this local state space, shared by all elements

of the computation space)

4. the differentials are just the CA update rules corresponding the to TM pro-

gram; an update rule is just a finite function, and all finite functions can be

specified via differentials in the appropriate differential calculus.

Suppose the semi-Thue system corresponding to the given TM includes the right-

moving transition µqabν Ô⇒ µa′q′bν between successive instantaneous descriptions

of the TM. The global state of the CA corresponds to an instantaneous description

of the TM, except that precisely one of the new symbols [q, a] is used to indicate the

cell corresponding to the TM square under scan as well as that squares’s value and

the current TM internal state. Thus, the equivalent step of the CA’s computation is

⋯µ[q, a]bν⋯ Ô⇒ ⋯µa′[q′, b]ν⋯. The remaining TM transition types are emulated

similarly. Note that only the CA cell “under scan” and perhaps its left or right

neighbor can be affected in a single step. It is thus clear that only 1-dimensional

cellular automata of radius 1 need be considered for full computational generality.

A computation (as defined in §1.2) of this instance of the differential scheme is

a map:

u ∶ TimeÐ→ GlSt

i.e.,

CHAPTER 4. DYNAMICAL SYSTEMS IN THE DIFFERENTIAL SCHEME 68

u ∶ NÐ→ Πx∈ZL

which, in this case, clearly traces the progression of global configurations of our

(1d,1r)-CA, which, in turn, clearly tracks the progression of instantaneous descrip-

tions of the original TM.

4.2 Continuous Dynamical Systems

We consider continuous dynamical systems described by systems of ordinary differ-

ential equations (ODEs). Such systems progress from the simplest ones consisting

of a single ODE, to finite systems of ODEs, to systems of infinitely many ODEs.

The following examples show how to interpret such continuous dynamical systems

as instances of the differential scheme.

4.2.1 A Simple ODE

Consider the single autonomous ODE:

dx

dt
= f(x) (4.1)

As an ODE over the real domain, a solution to (4.1) is a function

u ∶ TimeÐ→ R

such that

du

dt
∣
t0

= f(u(t0)), for all t0 ∈ R

CHAPTER 4. DYNAMICAL SYSTEMS IN THE DIFFERENTIAL SCHEME 69

In differential form, we have:

Dt0u = λ∆.[f(u(t0))](∆)

= [f(u(t0))]

As an instance of the differential scheme, we have:

1. Comp = {x} (a singleton set)

2. L = {R}

3. Time = R

4. differentials are the linear operators on R, of classical analysis; we have estab-

lished that these form an instance of our generalized definition of a differential

calculus in §3.1.1

Thus, a solution is just a computation:

u ∶ TimeÐ→ GlSt = Πx∈{x}L

which is, in this case:

u ∶ RÐ→ R

4.2.2 A Finite System of ODEs

Consider the finite system of autonomous ODEs:

dxi
dt

= fi(x1, . . . , xn), i = 1, . . . , n (4.2)

CHAPTER 4. DYNAMICAL SYSTEMS IN THE DIFFERENTIAL SCHEME 70

A solution to (4.2) is a function

u ∶ TimeÐ→ Rn

(via t ↦ [u1(t), . . . , un(t)]T ; i.e., we view elements of Rn as column vectors) such

that

dui
dt

∣
t0

= fi(u1(t0), . . . , un(t0)), for all t0 ∈ R

Expressed in differential form:

Dt0ui = λ∆.[fi([u1(t), . . . , un(t)]T)](∆)

Dt0u = λ∆.[f([u1(t), . . . , un(t)]T)](∆)

= [f([u1(t), . . . , un(t)]T)]

As an instance of the differential scheme, we have:

1. Comp = {x1, . . . , xn}, with the convergence structure (to be defined) of Kn,

the complete graph on n vertices

2. L = {R} (R is the local state space for each each xi; i.e., xi ∶ TimeÐ→ R)

3. Time = R

4. the differentials are linear operators RÐ→ Rn

Chapter 5

Quantum Computation

The miracle of the appropriateness of the language of mathematics for

the formulation of the laws of physics is a wonderful gift which we neither

understand nor deserve.

- EUGENE WIGNER, Richard Courant Lecture, New York University

(1959)

Informally, quantum computation is computation based on quantum mechanics.

Since all actual computation is physical, and all physical interactions are ultimately

quantum mechanical, this informal definition must be sharpened to distinguish quan-

tum computation from “classical” computation. Quantum computations proceed

by “quantum interactions,” interactions of individual quantum-level objects, micro-

scopic entities such as individual electrons and photons. In quantum theory, the

“classical interactions” we observe in the macroscopic world are accounted for as

limiting cases of interactions of vast numbers of quantum-level objects, treated sta-

tistically.1 Classical interactions do not share some rather bizarre-seeming properties

enjoyed by quantum interactions. The essential idea behind quantum computing is

to exploit those properties peculiar to quantum interactions for computational pur-

1This is a version of Bohr’s famous “Correspondence Principle.”[Boh13, Boh76]

71

CHAPTER 5. QUANTUM COMPUTATION 72

poses.2

In a quantum computer, the current state of a computation would be the state of

some quantum system, an ensemble of quantum-level entities, which state would be

updated by quantum-level interactions. In contrast, the current state of a compu-

tation in a “classical” computer can be updated only through classical interactions.

The standard abstract model of computation via Turing machines [Dav82] assumes

only classical interactions, as do programs for modern general purpose digital com-

puters.3

Broad interest in quantum computing is widely credited to an influential paper of

Feynmann [Fey82]4, who reasoned that a quantum computer would be more efficient

in simulating quantum systems than a classical computer. His rationale, essentially,

was that one of those bizarre quantum features — superposition5— provides a kind

of parallelism to quantum computers that is denied their classical counterparts.

Moreover, the same principle makes a quantum computer capable of simulating

larger and larger quantum systems without the exponential blow-up in resource

requirements that a classical computer appears to demand.

We caution that quantum computing as discussed herein is mostly theoretical.

Constructing actual quantum computers has proven highly problematic, largely due

to the difficulty of finding quantum systems that are both suitable for maintaining

the evolving state of a quantum computation and that can be effectively isolated from

2Useful sources for quantum computing include the texts [Hir04], [KSV02], [NC00], [Gru99]
and [Pit99], and their references, particularly the bibliography of [NC00]. Many rele-
vant articles are downloadable from the arXiv.org e-Print archive for quantum physics at
http://www.arxiv.org/archive/quant-ph.

3Of course, modern computer hardware is based on semiconductor technology, and semicon-
ductivity is a quantum-level phenomenon. However, here the state of a computation is viewed
macroscopically, and updated accordingly; one cannot write programs that take direct advantage
of the quantum-level interactions occuring inside the transistors of current digital computers.

4The last few paragraphs of the Introduction to Manin’s [Man80] are cited by Kitaev, Shen and
M.N. Vyalyi [KSV02] as bearing first mention of the prospects for quantum computing; see [Man99]
for a translation of this excerpt. Benioff [Ben80, Ben82] also considered quantum mechanical
computation; this work grew out of a line of research on the physics of computation originating
with Landauer [Lan61] and continuing with the work of Bennett [Ben73, Ben89] and others.

5See below for definition.

CHAPTER 5. QUANTUM COMPUTATION 73

the environment. In the literature, undesirable interaction with the environment has

been styled the “decoherence problem.”

Perhaps the quantum computational result of the greatest potential impact, to

date, was Shor’s discovery of an efficient (O(n3)) quantum algorithm for factoring

numbers and finding discrete logarithms [Sho94]. Shor’s algorithms could have enor-

mous practical impact on cryptography.6 For example, the popular RSA public-key

cryptosystem depends upon the infeasibility of factoring large numbers for its secu-

rity — efficient large number factorization would render RSA encryption nugatory.7

Other well-known cryptosystems, e.g., the ElGamal public key cryptosystem, rely

on the infeasibility of solving the discrete logarithm problem.8

Quantum mechanics, and so quantum computing, is a highly formalized theory,

founded on the theory of Hilbert spaces and the operators that live there. In typical

physical situations, the relevant Hilbert spaces are infinite-dimensional, whose treat-

ment requires much of the armamentarium of functional analysis.9 For the quan-

tum computing algorithms treated in the literature, however, only finite-dimensional

Hilbert spaces need be considered, which simplifies matters considerably.

6The well-known work of Bennett and Brassard [BB84] on “quantum key distribution” is a
fascinating application of quantum-level phenomena to cryptography, but we do not consider it a
milestone in quantum computation per se because its effectiveness actually requires the decoherence
normally assumed absent in theoretical discussions of quantum algorithms. Because such quantum
cryptosystems do not rely on the stability and isolation of an evolving quantum system, which is of
the essence for quantum computation in general, significant progress has been made in constructing
working quantum cryptoystems, up to claims of imminent commercialization.

7It should be pointed out that, to date, actual quantum computers constructed to factor numbers
can handle only very small numbers, while breaking the RSA cryptosystem would require factoring
numbers on the order of hundreds of decimal digits.

8See [TW02] for details of the ElGamal and RSA cryptosystems.
9See the last chapter of [Kre89] for applications of functional analysis to quantum mechanics in

the infinite-dimensional case.

CHAPTER 5. QUANTUM COMPUTATION 74

Mathematical Background, Notations and Conventions

We assume basic finite-dimensional vector space theory is familiar,10 though some

review is given below mainly to fix the Dirac “bra-ket” notation used in the literature

of quantum physics and quantum computing.

• Let the natural numbers, integers, rationals, reals and complex numbers be

denoted by N, Z, Q, R and C, respectively.

• Let B = {0,1} be the set of Boolean values.

• For α ∈ C, let α∗ denote the conjugate of α; i.e., if α = x+yi (x, y ∈ R, i =
√
−1),

then α∗ = x − yi.

• Let V be a vector space over C. If V has finite dimension n > 0, then V is

isomorphic to Cn, for which we write V ≅ Cn.

• A vector in V is denoted by a ket, ∣v⟩, where v is some convenient label.11

For n-dimensional V , a ket ∣v⟩ is represented by a column vector whose n

entries are the coordinates of ∣v⟩ with respect to some fixed basis of V .

• Linear combinations of vectors like α1∣v1⟩+α2∣v2⟩ may be written ∣α1v1+α2v2⟩.

• An inner product on V is a function V × V Ð→ C that maps each pair of

vectors (∣v⟩, ∣w⟩) to a complex number, written ⟨v∣w⟩, such that:

1. (linearity) For all ∣v⟩, ∣w1⟩, ∣w2⟩ ∈ V and α ∈ C, we have

⟨v∣w1 + αw2⟩ = ⟨v∣w1⟩ + α⟨v∣w2⟩

2. (conjugacy) For all ∣v⟩, ∣w⟩ ∈ V , we have ⟨w∣v⟩ = ⟨v∣w⟩∗

10See [Lan04] or [Axl97] for the necessary background.
11We use 0 to denote the zero vector, however, to avoid possible confusion with ∣0⟩, often found

in the literature as denoting a (non-zero) basis element.

CHAPTER 5. QUANTUM COMPUTATION 75

3. (positivity) For all ∣v⟩ ∈ V, ∣v⟩ ≠ 0, we have ⟨v∣v⟩ > 0

Note that 1 and 2 together imply that ⟨v1 + αv2,w⟩ = ⟨v1,w⟩ + α∗⟨v2,w⟩,12

condition 2 implies that ⟨v, v⟩ ∈ R, so the inequality ⟨v∣v⟩ > 0 in condition 3

makes sense, and 1 and 3 imply that ⟨v, v⟩ = 0 if and only if v = 0.

• If V is equipped with an inner product it is called a complex inner product

space. A finite-dimensional complex inner product space is called a Hilbert

space.13

Let H denote a Hilbert space (of unspecified finite dimension), and Hn denote

n-dimensional Hilbert space. Thus, Hn ≅ Cn.

• We say vectors ∣v⟩, ∣w⟩ ∈H are orthogonal if and only if ⟨v∣w⟩ = 0.

• The length of a vector ∣v⟩ ∈H, denoted by ∥∣v⟩∥, is defined to be the positive

square root of ⟨v∣v⟩.14 We call ∣v⟩ a unit vector if and only if ∥∣v⟩∥ = 1.

• An orthonormal basis for Hn is a basis {∣u1⟩, . . . , ∣un⟩} such that ⟨ui∣uj⟩ = 1

if i = j, and ⟨ui∣uj⟩ = 0 if i ≠ j. Every Hilbert space has an orthonormal basis.

• For ∣v⟩ ∈H, the linear functional H Ð→ C via ∣w⟩↦ ⟨v∣w⟩ is denoted by a bra,

⟨v∣. Thus, ⟨v∣w⟩ (a bra-ket) is shorthand for the function application ⟨v∣∣w⟩.

With respect to some fixed orthonormal basis of H ≅ Cn, say {∣u1⟩, . . . , ∣un⟩},

a bra is represented by a row vector whose n entries are the conjugates of the

corresponding entries of the column vector representing ∣v⟩ in the same basis.

For example, if ∣v⟩ = ∣∑n
i=1αiui⟩ and ∣w⟩ = ∣∑n

i=1 βiui⟩, then ⟨v∣w⟩ = ∑n
i=1α

∗
i βi,

the usual inner product in Cn.

12This property is called conjugate-linearity, or anti-linearity.
13An infinite-dimensional complex inner product space must also be analytically complete with

respect to the metric induced by its inner product in order to be designated a Hilbert space. A
good, concise source for the basic theory of Hilbert spaces, both finite- and infinite-dimensional, is
[Ger85].

14The metric induced by the inner product is just d(∣v⟩, ∣w⟩) = ∥∣v⟩ − ∣w⟩∥.

CHAPTER 5. QUANTUM COMPUTATION 76

• The adjoint of a linear operator T ∶ H Ð→ H is the unique linear operator

T ∗ such that ⟨v∣Tw⟩ = ⟨T ∗v∣w⟩. T is said to be self-adjoint if T ∗ = T . It is

unitary if it is invertible and T −1 = T ∗.

Note that, if T is unitary, then ⟨Tv∣Tw⟩ = ⟨T ∗Tv∣w⟩ = ⟨T −1Tv∣w⟩ = ⟨v∣w⟩;

i.e., T preserves inner products (and therefore lengths). The composition of

unitary operators is unitary, but the composition of self-adjoint operators is

not self-adjoint unless the operators commute.15

5.1 Quantum Mechanics and Quantum Systems

A discussion of the physical conceptual background to quantum mechanics would

take us too far afield.16 We cover just enough quantum mechanics to establish models

of quantum computation. However, the following example should help motivate the

formal theory of quantum mechanics, as well as provide a glimpse of the “quantum

weirdness” the theory must encapsulate.

Suppose a stream of photons with random polarization orientations is shot at a

vertically polarized filter. Half the photons are observed to pass through the filter,

though this cannot mean that half the photons were vertically oriented to begin

with. It is as though half the photons “chose” to align themselves vertically when

confronted with the filter. The photons passing through the filter are now vertically

oriented, and if a second vertical filter is placed behind the first one, all of the

photons that passed through the first vertical filter are observed to pass through the

second. If a horizontal filter is placed behind a vertical filter, none of the photons

passing through the vertical filter would pass through the horizontal filter. With

respect to the set of orientations R = {vertical,horizontal}, once a photon “chooses”

15For unitary U1 and U2, we have (U1U2)
∗ = U∗

2U
∗

1 = U−1
2 U−1

1 = (U1U2)
−1, but for self-adjoint S

and T , (ST)∗ = T ∗S∗ = TS .
16See [Boh89], [Mes99] and [Per95] for this; [AK03] is a charming non-technical source.

CHAPTER 5. QUANTUM COMPUTATION 77

an orientation, its “choice” seems permanent.

However, if a filter oriented diagonally at 45○ from the vertical were placed behind

a vertical filter, half the (now vertically polarized) photons passing through the

vertical filter would pass through the diagonal filter as well. Somehow, it seems

that when another choice is offered from the distinct orthogonal orientation set D =

{45○,135○}, the previous choice of orientation isn’t so permanent. Such experiments

challenge the common notion that objects have “intrinsic state,” and underscore the

non-intuitiveness of quantum physics.

5.1.1 Hilbert Space Formalization

An n-level quantum system is an ensemble of quantum-level objects for which n

distinct states can be observed. That is, as the result of an observation (or mea-

surement) of the system, n different outcomes are possible.

In the standard Hilbert space formalism of quantum mechanics, n-level quantum

systems are identified with n-dimensional Hilbert space, Hn. The states of an n-level

quantum system are represented by unit vectors of Hn, collectively called the state

space. An observation of the system yields a state. Observations are always made

with respect to a given orthonormal basis, and the set of states it is possible to

observe are the elements of the basis with respect to which the observation is made.

That is, the choice of orthonormal basis for Hn determines which states may be

observed. Symbolically, if the orthonormal basis B = {∣x1⟩, . . . , ∣xn⟩} is chosen, then

an observation with respect to B yields one of the basis states ∣xi⟩.

In general, the state of an n-level quantum system that is not being observed

may be any unit vector of Hn; i.e., the state may be a linear combination, or

CHAPTER 5. QUANTUM COMPUTATION 78

superposition, of basis states:

α1∣x1⟩ +⋯ + αn∣xn⟩

The complex coefficients αi of the basis states are called amplitudes. Because

states are unit vectors, we have ∑n
1 ∣αi∣2 = 1.17 The square of the absolute value of an

amplitude is interpreted as the probability that, upon observation, the corresponding

basis state will be the state observed; symbolically, ∣αi∣2 = Pr(∣xi⟩). The mapping

Ψ(xi) = αi is called the wave function with respect to basis {∣x1⟩, . . . , ∣xn⟩}.18

In the example preceding this section, we may take either set of orientations R

or D as a basis for H2. A photon observed with a vertical filter may only be seen

to have a vertical orientation in the R basis (if it passes through the filter) or an

implied horizontal orientation (if it doesn’t). Similarly, the photon may only be seen

to have a 45○ or 135○ orientation when measured with respect to the D basis (say

using a 45○ filter).

We won’t delve further into the subject of quantum measurement, except to

mention that observations of a quantum system involve classical interactions of some

kind and “force” the state of the system to a basis element. However, the state of

an n-level quantum system may evolve when it is not being observed. Operations

which change the state of the system without observation (and therefore, in general,

map superpositions to superpositions) are represented by unitary operators on Hn.

Thus, if ∣v⟩ ∈ Hn is the current state of the system and U ∶ Hn Ð→ Hn is a unitary

operator, the next state of the system may be U ∣v⟩. A system may evolve through

the action of any number of unitary operators.

Observations with respect to a basis B = {∣x1⟩, . . . , ∣xn⟩} are represented by self-

17Clearly, there are uncountably many superposition states, but only n observable states, for
n > 1.

18It is the finite-dimensional analog to the wave function ψ appearing in Schrödinger’s equation:
ih̵∂ψ

∂t
= Hψ. Here, H represents the Hamiltonian operator appropriate to the physical situation

and h̵ = h/2π, where h is Planck’s constant: 6.62608 × 10−34Js.

CHAPTER 5. QUANTUM COMPUTATION 79

adjoint operators on the space for which B is a basis.

5.1.2 Compound Quantum Systems

Let Hn with basis {∣x1⟩, . . . , ∣xn⟩} represent some n-level quantum system and Hm

with basis {∣y1⟩, . . . , ∣ym⟩} represent some m-level quantum system. The state space

for the compound system comprising Hn and Hm is given by the tensor product

of Hn and Hm, denoted Hn ⊗Hm.

The tensor product Hn⊗Hm is the Hilbert space generated by the basis elements

∣xi⟩⊗ ∣yj⟩, where i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. As is convenient, we may abbre-

viate ∣xi⟩⊗ ∣yj⟩ by writing ∣xi⟩∣yj⟩ or ∣xiyj⟩. The function ⊗ ∶ Hn ×Hm Ð→ Hn ⊗Hm

is bilinear (linear in both arguments), so, for arbitrary ∣v⟩ = ∣∑n
i=1αixi⟩ ∈ Hn and

∣w⟩ = ∣∑m
j=1 βiyj⟩ ∈Hm, we have:

∣v⟩⊗ ∣w⟩ =
n

∑
i=1

m

∑
j=1

αiβj ∣xiyj⟩

The states of a compound system are its unit vectors, as always, so ∣v⟩⊗ ∣w⟩ above

is a state of Hn ⊗Hm if and only if ∑n
i=1∑m

j=1 ∣αiβj ∣2 = 1. Note that

dim(Hn ⊗Hm) = dim(Hn) ⋅ dim(Hm).

In fact, it is easily shown that Hn ⊗Hm ≅Hn⋅m. This stands in contrast to the case

of direct sums, for which

dim(Hn ⊕Hm) = dim(Hn) + dim(Hm).

Let ∣x⟩ = ∑n
i=1∑m

j=1 γij ∣xiyj⟩ be a state of Hn⊗Hm. We say ∣x⟩ is decomposable

if it can be expressed as ∣v⟩ ⊗ ∣w⟩ for some states ∣v⟩ ∈ Hn and ∣w⟩ ∈ Hm. A non-

decomposable state is called an entangled state. Decomposability means there are

CHAPTER 5. QUANTUM COMPUTATION 80

complex α1, . . . , αn and β1, . . . , βm such that ∑n
i=1 ∣αi∣2 = ∑m

j=1 ∣βj ∣2 = 1 and

n

∑
i=1

m

∑
j=1

γij ∣xiyj⟩ = (
n

∑
i=1

αi∣xi⟩)(
m

∑
j=1

βj ∣yj⟩)

5.1.3 Examples of Quantum Systems

Example 5.1.1. A 2-level Quantum System

We are concerned with states in H2, represented with respect to an orthonormal basis

{∣0⟩, ∣1⟩}. Let W be the following unitary evolution operator:

W (∣0⟩) = 1√
2
∣0⟩ + 1√

2
∣1⟩

W (∣1⟩) = 1√
2
∣0⟩ − 1√

2
∣1⟩

Applied to initial state ∣0⟩, the evolution operator yields the state W (∣0⟩):

1√
2
∣0⟩ + 1√

2
∣1⟩,

a superposition for which Pr(0) = Pr(1) = 1
2 . If we update W (∣0⟩) with another

application of W , we get W 2(∣0⟩):

1√
2
(1√

2
∣0⟩ + 1√

2
∣1⟩) + 1√

2
(1√

2
∣0⟩ − 1√

2
∣1⟩)

= (1

2
∣0⟩ + 1

2
∣1⟩) + (1

2
∣0⟩ − 1

2
∣1⟩)

= ∣0⟩,

with Pr(0) = 1 and Pr(1) = 0. Similarly, W 2(∣1⟩) = ∣1⟩. Thus, W 2 is the identity

operator on H2, so W acts as a “square root” of the identity on H2. In matrix

CHAPTER 5. QUANTUM COMPUTATION 81

notation, we have

W =
⎛
⎜⎜
⎝

1√
2

1√
2

1√
2

− 1√
2

⎞
⎟⎟
⎠

This matrix is called a Walsh-Hadamard matrix.

Note the constructive interference of the amplitudes of ∣0⟩ and the destructive in-

terference of the coefficients of ∣1⟩ as W operates on W (∣0⟩). Quantum systems

permit destructive interference because the amplitudes are complex-valued. In classi-

cal probabilistic systems, the probability coefficients analogous to quantum probability

amplitudes must be non-negative real numbers, making destructive interference im-

possible.

Example 5.1.2. A Compound Quantum System

Consider the compound quantum system H2 ⊗H2, with orthonormal basis

{∣00⟩, ∣01⟩, ∣10⟩, ∣11⟩}

and the following update operator:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

We see that M(∣00⟩) = ∣00⟩, M(∣01⟩) = ∣01⟩, M(∣10⟩) = ∣11⟩ and M(∣11⟩) = ∣10⟩.

5.2 Standard Models of Quantum Computation

The machinery of classical computation operates on standard units of information

called bits, where the value of a bit is either 0 or 1. In quantum computation, the

CHAPTER 5. QUANTUM COMPUTATION 82

qubit [Deu85] is the standard unit of information. A qubit is simply a state in

a 2-level quantum system, that is, in H2. It is conventional to use {∣0⟩, ∣1⟩} as the

orthonormal basis of H2. Generally, a state is a superposition of ∣0⟩ and ∣1⟩. Systems

of n qubits are modeled by H2⊗⋯⊗H2 (n H2 factors) or, equivalently, by H2n , and

are called n-bit quantum registers.

5.2.1 Quantum Turing Machines

Deutsch [Deu85] was the first to define a quantum analog of the Turing machine

(abbreviation: TM) model of classical compuation. We assume the standard Turing

machine model is familiar.19. Let Q be the set of states, A the tape alphabet and δ

the transition function of a Turing machine, so δ is a partial map:

δ ∶ Q ×A⇀ Q ×A × {−1,0,1} (5.1)

with the usual interpretation: if the machine is in state q ∈ Q scanning a tape cell

containing alphabet symbol a ∈ A, then δ(q, a) = (q′, a′, d) provides the next state

q′, the new symbol a′ is printed in that cell, and the new position of the tape head

relative to its previous position (i.e., if p is the position of the tape head, then p+ d

is its next position). As usual, the computation halts if δ(q, a) is undefined.

A probabilistic Turing machine (PTM) is a TM for with an altered transi-

tion function

δ ∶ Q ×A ×Q ×A × {−1,0,1}Ð→ [0,1] (5.2)

where [0,1] is the unit interval in R. We interpret the new transition function

as follows: δ(q, a, q′, a′, d) is the probability that, when the machine is in state q

scanning a cell with symbol a, it will switch to state q′, print a′ in that cell, and

19See [Dav82] for a model using Post-style quadruples, and [Pap94] for a model employing the
more common Turing-style quintuples

CHAPTER 5. QUANTUM COMPUTATION 83

adjust the head position according to d. For the probability interpretation to make

sense, it is required that ∑(q′,a′,d)∈Q×A×{−1,0,1} δ(q, a, q′, a′, d) = 1.

A Quantum Turing Machine (QTM) is similar to a probabilistic TM, except,

instead of a transition function like (5.2), we have a transition function

δ ∶ Q ×A ×Q ×A × {−1,0,1}Ð→ C (5.3)

where ∑(q2,a2,d) ∣δ(q1, a1, q2, a2, d)∣2 = 1. We assume that δ(⋅, ⋅, ⋅) = x+ yi with x, y ∈ Q

to avoid “real” problems. As with a PTM, at any step of a computation of a QTM

Q, a finite number of tape configurations (“basis configurations”) are possible; over

all possible Q computations, the number of basis configurations is clearly countably

infinite. In general, a configuration of Q at a particular time step is a superposition

α1∣c1⟩ +⋯ + αn∣cn⟩

where the ∣ci⟩ are the possible basis configurations at that step and ∑n
i=1 ∣αi∣2 =

1.20 Let Mδ be the evolution operator on (infinite-dimensional) configuration space

determined by δ. Then Mδ must be unitary.

It has been shown [Deu85] that QTMs and ordinary TMs compute the same

set of functions. The promise of quantum computation has always been that some

functions not efficiently (i.e., polynomial time) computable by any TM may be

efficiently computed by a QTM.

20Note that there would be uncountably many general configurations if the αi were allowed
to have arbitrary elements of R for their real and imaginary parts — this is the “real” problem
mentioned earlier. By insisting these parts be rational, we avoid this problem. Wherever amplitudes
with irrational real or imaginary parts are shown, assume a rational approximation is used instead.

CHAPTER 5. QUANTUM COMPUTATION 84

5.2.2 Quantum Circuits

As one might guess from the above, QTMs are rather unwieldy devices for the

specification of quantum computations. Instead, quantum circuits, the quantum

analog to classical Boolean circuits, are used. Quantum circuits are composed of

quantum gates, which serve a purpose analogous to ordinary Boolean logic gates.

However, whereas ordinary gates are Boolean functions f ∶ Bn Ð→ B carrying fixed-

length sequences of bits to bits, a quantum gate is a unitary operator F ∶⊗n
i=1H2 Ð→

⊗n
i=1H2 mapping quantum registers (fixed-length sequences of qubits) to quantum

registers. As unitary maps, all quantum gates are reversible, which certainly isn’t

the case classically.21

Example 5.2.1. The Quantum NOT Gate

This is a unary operator M¬ ∶H2 Ð→H2, for which M¬(∣0⟩) = ∣1⟩ and M¬(∣1⟩) = ∣0⟩.

Clearly,

M¬ =
⎛
⎜⎜
⎝

0 1

1 0

⎞
⎟⎟
⎠

inverts the basis vectors. For general superpositions α1∣0⟩+α2∣1⟩, we have M¬(α1∣0⟩+

α2∣1⟩) = α2∣0⟩ + α1∣1⟩.

Example 5.2.2. The Quantum
√

NOT Gate

Let

M√
¬ =

⎛
⎜⎜
⎝

1+i
2

1−i
2

1−i
2

1+i
2

⎞
⎟⎟
⎠

Note that (M√
¬)2 =M¬, so M√

¬ acts as a “square root of NOT” on H2.

Example 5.2.3. The “Controlled NOT” Quantum System

This is a binary quantum gate, that is, a unitary Mcnot ∶ H2 ⊗ H2 Ð→ H2 ⊗ H2

(equivalently, a unitary Mcnot ∶ H4 Ð→ H4), which, when presented with a pair of

21For example, consider the classical two-input AND gate: three different combinations of inputs
yield the 0 output.

CHAPTER 5. QUANTUM COMPUTATION 85

qubits, acts as the quantum NOT gate on the second qubit if the first qubit is ∣1⟩

and as the identity operator on the second qubit if the first qubit is ∣0⟩. That is,

Mcnot(∣00⟩) = ∣00⟩, Mcnot(∣01⟩) = ∣01⟩, Mcnot(∣10⟩) = ∣11⟩ and Mcnot(∣11⟩) = ∣10⟩. But

this is precisely the action of the unary operator

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

of Example 5.1.2.

We have not specified the physical implementation of any quantum gates, nor

how to combine such gates into quantum circuits for the implementation of quantum

algorithms. For mathematical purposes, we simply assume this can be done. In

practice, a quantum computation implemented with a quantum circuit proceeds in

“Prepare-Evolve-Observe” lock-step:

1. Preparing a sequence of qubits (quantum register) with some initial value.

2. Evolving the system via various unitary operations, i.e., sending the qubits

through various quantum gates.

3. Observing the qubits, thereby projecting any superposition the final state may

represent into one of the possible basis elements.22

Of course, the basis element “chosen” when a superposition is measured depends

probabilistically on the amplitudes of that superposition at the moment of obser-

vation. Hence, the output observed most frequently from a given quantum circuit,

when the computation is repeated many times with the same initial qubit values,

should reflect the basis element whose final amplitude has the highest absolute value.

22Also referred to as “collapsing the wave function.”

Chapter 6

Quantization of Cellular Automata

Besides the well-known models of quantum computation reviewed in Chapter 5,

another quantum computational model, the quantum cellular automata (QCA),

has been defined by Watrous [Wat95]. Because each instance of the differential

scheme is a kind of generalized cellular automata, we investigate and generalize this

model.

6.1 The Watrous QCA Construction

According to [Wat95], a one-dimensional quantum cellular automaton M is a

quadruple (Q, δ, k,A), where Q is a finite set of states that includes a distinguished

state called the quiescent state (denoted by ε), δ is a local transition function, k is

an integer denoting the acceptance cell, and A ⊆ Q is a set of accepting states. M is

taken to have a two-way infinite sequence of cells indexed by the integers, Z. (Think

of a 2-way infinite quantum bit register.) The neighborhood of a given cell is that

cell together with the cells immediately to its left and right; i.e., neighborhoods are

assumed to have radius 1.

In an instance M of Watrous’s one-dimensional, radius-1 quantum cellular au-

86

CHAPTER 6. QUANTIZATION OF CELLULAR AUTOMATA 87

tomaton ((1d,1r)-QCA) model, a configuration is a map

a ∶ ZÐ→ Q

where, ∀n ∈ Z, a(n) is the state of the cell indexed by n. Importantly, it is assumed

that, for any configuration a, there are only finitely many integers n for which

a(n) ≠ ε, the quiescent state. In the sequel, we refer to this restriction as the

assumption of finite support. Assuming finite support, the set C = C(M) of all

configurations of (1d,1r)-QCA M is countable.

The local transition function δ is a map

δ ∶ Q4 Ð→ C

describing the evolution of M . If three consecutive cells of M are in states q1, q2

and q3, respectively, at time step t, then

δ(q1, q2, q3, q)

gives the (complex) probability amplitude with which a cell containing state q2 (with

left and right neighbor cells containing states q1 and q3, respectively) will update

to state q at time t + 1. All cells update simultaneously according to δ. Thus, in

the usual quantum computational fashion, any given configuration transforms into

a superposition of possible successor configurations, each with its own amplitude.

The significance of the quiescent state in the Watrous model is that every local

transition function must observe the following restriction:

δ(ε, ε, ε, q) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if q = ε

0 otherwise

CHAPTER 6. QUANTIZATION OF CELLULAR AUTOMATA 88

That is, a cell in the quiescent state whose left and right neighbors are also in the

quiescent state, will update to the quiescent state with probability 1.

A configuration of M = (Q, δ, k,A) where the cell indexed by k contains a state in

A is called an accepting configuration. Given M and some initial configuration a, the

question is: with what probability will we observe M in an accepting configuration

after some number of (unobserved) evolution steps according to δ?

The Hilbert space containing the quantum states of M is

`2(C) = {x ∶ C Ð→ C ∣ ∑
c∈C

x(c)∗x(c) <∞}

which means that each superposition of M is identified with some x ∈ `2(C), where

x(c) ∈ C, and ∣x(c)∣2 is the probability of observing configuration c from superposi-

tion x. As discussed in Chapter 5, it must be the case that ∑c∈C ∣x(c)∣2 = 1.

The local transition function δ must ensure that any superposition, produced at

any step starting from any valid initial configuration (i.e., from a configuration with

finite support), must be such that the sum of the squares of that superposition’s

amplitudes is 1. This will be so if and only if the global time-evolution operator of

M uniquely determined by δ is unitary.

It is difficult to determine whether or not a given local transition function yields

a unitary global time-evolution. In fact, much of [Wat95] is devoted to specifying

a restricted class of (1d,1r)-QCA called partitioned QCA and then proving that

the question of unitarity for this smaller class can be relatively easily decided.

Watrous’s partitioned QCA is based on the partitioned cellular automata

defined in Morita and Harao [MH89]. These automata yield a state transition by

dividing each cell of a (1d,1r)-CCA into left, middle and right subcomponents and

updates the 3-component state of each cell by functionally updating as a single unit

the triple of values consisting of the values of the right subcomponent of the left-

CHAPTER 6. QUANTIZATION OF CELLULAR AUTOMATA 89

Figure 6.1: Partitioned 1-dimensional QCA [Wat95]

neighbor cell, the middle subcomponent of the middle cell and the left-subcomponent

of the right-neighbor cell. The resulting dependency of a new global state, or con-

figuration, of a partitioned (1d,1r)-QCA on an immediately preceding configuration

was diagrammatically depicted by Watrous in Figure 6.1.

If we begin with a configuration of the cellular automaton that has finite sup-

port, i.e. where the state of each cell is quiescent for all but finitely many cells, then

every configuration in the sequence of configurations generated by the update rule

has finite support. This is sufficient for computational purposes and simplifies the

approach to the corresponding quantum state space and the state update opera-

tions on it, but substantially restricts the expressive power of the specifications that

quantum cellular automata can satisfy and is not completely in the spirit of cellular

automata — completely random initial states are not supported, for example.

6.2 The Utility of Finite Support

The set C of configurations with finite support is countably infinite. We can identify

the configuration space with the classical states with finite support of a 2-way infinite

classical bit register where the bits of the register are indexed by the integers and

by convention, the bit value of 0 is taken to be quiescent.

CHAPTER 6. QUANTIZATION OF CELLULAR AUTOMATA 90

Suppose, for now, that we had a unitary operator U on the Hilbert space contain-

ing the quantum states of a 3-bit quantum register that respects the quiescent state;

i.e., U maps the quantum state ∣000⟩ to ∣000⟩. Suppose we applied U simultaneously

and independently to each contiguous block of 3 cells indexed by the integers 3n,

3n+ 1 and 3n+ 2. The resulting operation Û is guaranteed unitary since U respects

the quiescent state. That claim follows since the action of Û on the quantum state

representing any finitely supported configuration is the same as the action of some

finite tensor power of U on that quantum state, the power depending on the state.

But every finite tensor power of U is unitary. Hence Û is norm preserving. To see

that Û is surjective, consider any finitely supported configuration c and an interval

of the register’s bits indexed from 3m to 3n − 1, m < n, sufficiently long for the

configuration to assign the quiescent state to all bits outside the interval. To each

element c of the configuration space we associate the vector ∣c⟩ of the quantum state

space, where ∣c⟩(c′) = 1 if c = c′ and ∣c⟩(c′) = 0 otherwise. The collection of vectors

{ ∣c⟩ ∣ c ∈ C } is a complete orthonormal sequence. It is thus sufficient to show that

each ∣c⟩ has a preimage with respect to Û . This is clear since U preserves quiescent

3-cell blocks and the intervals of c containing the support of c have a preimage with

respect to a sufficiently high, but finite, tensor powers of U .

The state update rule for a partitioned (1d,1r)-QCA is the composition of two

unitary operators: the first permutes the qubits of the 2-way infinite quantum reg-

ister in the manner described above in the diagram, and the second is an operator

of the form we denoted by Û .

We will show how to construct quantum cellular automata based on Watrous’s

formalism, but without that formalism’s quiescent states, by using shift-invariant

Lebesgue measure on Cantor space. Although QCA’s with quiescent states are

strictly sufficient for computational purposes, removing quiescent states as a require-

ment allows global QCA states with infinite support that allows the state space of

CHAPTER 6. QUANTIZATION OF CELLULAR AUTOMATA 91

the QCA to be identified with the class of interpretations of logic-based formalism

in a formal methods approach to proving the correctness of QCAs with respect to

formal specifications.

6.3 Eliminating the Quiescent State

If there is no quiescent state available with respect to suitable state-update rules,

then the configuration space becomes uncountably infinite. Let Z be the set of

integers. The configuration space is given by

C = { c ∶ ZÐ→ {0,1}}

which we can identify with the direct product

∏
k∈Z

{0,1}

Intuitively, the configuration space is the set of all configurations of a 2-way infinite

bit register. It is important to realize that the free complex vector space on C

is not separable since C is uncountable [Ger85], and is therefore unsuitable as a

Hilbert space containing the quantum states of our infinite register. Regarding

the configuration space itself, there is no reason to give any sort of priority to

any component of this direct product. Obviously there is no uniform probability

distribution on the configuration space, but if we ask what the probability is of

drawing “at random” a configuration with a specified finite set of j components

having bit value 0 and k components having bit value 1 with, say, a probability

distribution on {0,1} with Pr({0}) = p and Pr({1}) = 1 − p, then the probability

is pj(1 − p)k. The separable Hilbert space L2(C) will produce the correct statistics

for the results of observations of bit values of the qubits. To set up L2(C) requires

CHAPTER 6. QUANTIZATION OF CELLULAR AUTOMATA 92

measurable subsets of the configuration space and measurable functions mapping

the configurations to complex numbers.

We begin with the Cantor topology on C: each standard basic open set of this

topology on the configuration space is determined by a configuration and a finite set

of components, i.e., a finite set of integers. Let F be a finite set of integers and let

c be a configuration. The standard basic open set determined by F and c is the set

of configurations

{ c′ ∣ c(i) = c′(i),∀i ∈ F }

i.e., the set of configurations that agree with c on F . The open sets of this topology

are arbitrary unions (including the empty union) of the standard basic open sets.

The collection of standard basic opens sets gives no priority to any component over

any other. No subjective weighting of the components is involved. The collection

of Borel sets generated by the Cantor topology consists of the smallest collection of

sets of configurations that contains every open set and is closed under complements

relative to C and countable union. Let Bc,F be the standard basic open set deter-

mined by c and F . There is a standard approach to constructing Lebesgue measure

on our set of configurations that we are following.[CR, Fan71] We assign measure

2−n to each standard open set Bc,F where n is the size of F . Once this assignment is

made, the measure of each Borel set is uniquely determined. The measure assigned

to the Borel sets is said to be incomplete: arbitrary subsets of sets with measure 0,

which need not be Borel, do not have an assigned measure. This poses difficulties for

integrating multi-variable functions defined on direct products of the configuration

space. To complete the measure we include all subsets of Borel sets with measure 0

and assign them measure 0 as well. It turns out that, by the Carathéodory extension

theorem, the measure of each set in the collection of sets, the Lebesgue measurable

sets, that are unions of Borel sets and the newly added measure 0 sets and that

is closed under relative complement and countable union must be the same as the

CHAPTER 6. QUANTIZATION OF CELLULAR AUTOMATA 93

measure of the Borel set if it is to extend the measure on the Borel sets. The mea-

sure of a Lebesgue measurable set S is denoted by µ(S). The Lebesgue measurable

functions mapping configurations to complex numbers are those functions for which

every preimage of a Borel set of complex numbers (relative to the standard Euclidean

topology on the set of complex numbers) is a measurable set of configurations. The

considerations concerning the construction of the Lebesgue measure are important

for the unitary operations appropriate for the state transitions of quantum cellular

automata that we will consider below. Once the Lebesgue measure and Lebesgue

measurable functions are in place, the Lebesgue integral of any Lebesgue measurable

function over any measurable set of configurations E, denoted as usual by

∫
E
f dµ

can then be defined. We do not need the details [Fan71] of the construction of the

Lebesgue integral, but we will need several crucial properties of the integral as we

proceed that we will explicitly mention. Intuitively, two functions that agree on all

inputs except on a set of measure 0 are measure-theoretically indistinguishable. The

next step is to set up an equivalence relation on the measurable functions: f and g

are equivalent if, and only if,

∫
C
∣f − g∣dµ = 0

This equivalence relation is a congruence on the set of Lebesgue integrable functions

with respect to addition, multiplication and composition. This means, operationally,

that when we add, multiply or compose functions, we are manipulating their equiv-

alence classes without worry. This is important to an isomorphism we will consider

below. Also, we now have enough to define the Hilbert space of interest. L2(C) is

the Hilbert space consisting of the equivalence classes defined by the equivalence of

CHAPTER 6. QUANTIZATION OF CELLULAR AUTOMATA 94

measure-theoretically indistinguishable measurable functions that satisfy

∫
C
∣f ∣2 dµ <∞

The inner product ⟨f ∣g⟩ on L2(C) is defined in the well-known way:

⟨f ∣g⟩ = ∫
C
f∗g dµ

L2(C) is isomorphic to L2([0,1]). We call the functions whose equivalence classes

are in L2(C) square summable. A configuration c is dyadic iff c(i) = 0 for all but

finitely many i, or c(i) = 1 for all but finitely many i. The Borel set of dyadic

configurations is countable, and so has measure 0. Therefore, the values of a square

summable function on the dyadic configurations can be ignored, as well as the dyadic

configurations themselves. That is, call two Borel sets of configurations equivalent

iff their intersections with the non-dyadic configurations are equal. Re-index the

components of the configurations in any way in 1-to-1 correspondence with the

nonnegative integers, and map each configuration c to

∑
k∈ω

c(k)2−k

which we can denote by η(c). Dyadic configurations map to dyadic rationals; i.e.,

integer multiples of 2−k for some k. Again, the dyadic rationals can be ignored.

Given a Borel set of configurations E, and a Lebesgue measurable function f on C,

∫
E
f dµ = ∫

η(E)
f̂ dµ′

where µ′ is the standard Lebesgue measure on the unit interval, and f̂(η(c)) = f(c).

In particular, L2(C) is separable and the familiar complete orthonormal sequences in

L2([0,1]) transfer. The probability that a configuration is a member of a particular

CHAPTER 6. QUANTIZATION OF CELLULAR AUTOMATA 95

measurable set E is just the measure of E.

6.3.1 Decompositions in terms of tensor products

Consider the following claim:

L2(C) = L2(C ↾ F × C ↾ (Z − F)) = L2(C ↾ F)⊗L2(C ↾ (Z − F))

If, instead of L2, we had Free, then this claim would be a category-theoretic theorem

about tensor construction in the category of complex vector spaces. Does the claim

hold for L2(C)? For any two disjoint sets sets S1 and S2 of integers,

C ↾ (S1 ∪ S2) = C ↾ S1 × C ↾ S2

More generally, does

L2(C ↾ (S1 ∪ S2)) = L2(C ↾ S1 × C ↾ S2) = L2(C ↾ S1)⊗L2(C ↾ S2)

hold, as it would if L2 were replaced with Free? The answer is yes and should

be explicitly seen. It first needs to be realized that Lebesgue measure, Lebesgue

measurable functions and Lebesgue integrals are defined straightforwardly on finite

sets equipped with uniform distributions, but there is a slight mathematical surprise

if one hasn’t previously considered L2(C) over finite sets. Note that every subset of

a finite set is Borel if every singleton is, as is the case with the discrete topology.

It follows that we don’t need to restrict consideration to configurations over infinite

sets.

Example 6.3.1. Using the Lebesgue integral defined on a uniformly dis-

tributed finite set

Consider the configuration space {0,1} representing the classical values 0 and 1 of

CHAPTER 6. QUANTIZATION OF CELLULAR AUTOMATA 96

a single bit. Let each of the two elements of the configuration space be assigned

measure 1
2 . The members of L2({0,1}) are singleton equivalence classes, so we

need only consider functions from {0,1} to the complex numbers C. Consider the

function x where x(0) =
√

2 and x(1) = 0. The norm of x is (
√

2)2 times the measure

of {0} plus 0 times the measure of {1}. The norm is therefore 1. Thus, ∣0⟩ = x

and similar considerations apply to ∣1⟩. Generally then, the norm of a∣0⟩ + b∣1⟩ is

∣a∣2 + ∣b∣2.

6.3.2 Factoring L2 spaces

A Hamel basis of a vector space is a linearly independent set of vectors that spans,

with finite linear combinations, the entire space. It follows using Zorn’s Lemma

that every vector space has a Hamel basis.[Ger85] Choose Hamel bases for L2(C ↾

Si), i = 1,2. Since these spaces are separable, it follows that there are complete

orthonormal sequences of vectors in each. Choose such a sequence Qi, i = 1,2, in

each. It also follows by the construction of the tensor product space that the set of

all pairwise tensor products of u1 and u2 such that ui is in the chosen Hamel basis

of L2(C ↾ Si), i = 1,2, is a Hamel basis for L2(C ↾ S1) ⊗ L2(C ↾ S2). [Ger85]. No

special properties of the L2 construction are involved. It follows from the definition

of the inner product on the tensor product space that the countable collection R

of tensor products of vectors ∣p⟩ in Q1 and ∣q⟩ in Q2 are pairwise orthogonal. For

completeness it suffices to note that every element of the chosen Hamel basis of the

tensor product space is given by a convergent (generally infinite) linear combination

of vectors in R, and this follows from the identity

(∑
i

ai∣pi⟩)⊗ (∑
j

bj ∣qj⟩) =∑
i,j

aibj(∣pi⟩⊗ ∣qj⟩)

CHAPTER 6. QUANTIZATION OF CELLULAR AUTOMATA 97

for all square summable sequences {ai }i, { bj }j . The identity follows from the

completeness of Q1 and Q2 , and the definition of inner product and its continuity on

the tensor product space. (The identity of course holds for finite linear combinations;

there is only something to prove in the case of countably infinite linear combinations.)

A problem with näıve infinitary tensor products

It is tempting to define and establish

L2(C) ≅ (L2({0,1}))⊗∗

where the right-hand side is a countably infinite tensor product. The problem is

that sequences such as

{ ∣0⟩⊗n ∣n ∈ ω }

don’t converge. ∣0⟩⊗n is the function that maps the zero state of the classical n

bit register to the square root of 2n and all other states of the register to 0. The

sequence of functions does not converge.

Cellular unitary operators

We consider unitary operators on L2(C). Partition the integers into intervals

I(n) = {nk, . . . , nk + k − 1}

of length k. Now choose a fixed n and consider all standard Cantor topology basis

sets Bc,I(n),∀c ∈ C. To each Bc,I(n) there corresponds a subspace of L2(C) given by

χBc,I(n)L
2(C), the subspace of pointwise products of the elements of L2(C) multiplied

by the characteristic function of Bc,I(n). These subspaces are all isomorphic to each

CHAPTER 6. QUANTIZATION OF CELLULAR AUTOMATA 98

other. Moreover there are exactly 2k of them for each fixed n and L2(C) splits into

their orthogonal direct sum. Consider a unitary operator U on the finite dimensional

space L2({0, . . . ,2k − 1}). Factor L2(C) as

L2(C ↾ {0, . . . ,2k − 1})⊗L2(C ↾ (Z − {0, . . . ,2k − 1}))

Let operator U ′ be the Kronecker product of U with the identity operator on the

right-hand factor. Now replace n by n′ and repeat the construction obtaining, say,

operator V ′. The direct sum decomposition corresponding to n′ is isomorphic to

the direct sum decomposition corresponding to n and, up to isomorphism between

these two direct sum decompositions, U ′ and V ′ are the same. We seek unitary

operators on L2(C) that are same up to isomorphism on all such orthogonal direct

sum decompositions, for all n. Specifically, for radius 1 QCA with k = 3.

Let U1 be a unitary operation on L2(0, . . . ,7). Consider U ′
1 as above. We have

the isomorphism

L2(C) ≅ L2(C ↾ (Z − {0, . . . ,7}))

and so there is an operation U ′
2 on L2(C ↾ (Z − {0, . . . ,7})) isomorphic to U ′

1. Let

U ′
2 be the Kronecker product of U1 and U ′

1. Choose an integer n and repeat the

construction for L2(C ↾ (Z− {3n, . . . ,3n+ 6})) to obtain U ′
3, etc. A cellular unitary

operator is a unitary operator W = limn→∞U ′
n. If we let k = 1 and begin with the

Hadamard operator on L2({0,1}), then the limit is not defined, for example, but

the limit is of course defined and unitary if we begin with the identity operator or

any permutation of the computational basis of L2({0,1}). Similar considerations

apply when k = 3.

CHAPTER 6. QUANTIZATION OF CELLULAR AUTOMATA 99

6.4 Specification Logic

In classical computation, there are formal verification methods based on specification

logic.[Sho00] Formulas in specification logic take the form

{Φ}C{Ψ}

where {Φ} and {Ψ} are formulas expressed in some underlying logic (usually first-

order predicate calculus) and C is a command, i.e., a program or fragment of a

program. Formal semantics are given by the notion that the state map defined by

C maps a computation state about which {Φ} is true to a state about which {Ψ}

is true; i.e.,

⟦C⟧{Φ} ⊆ {Ψ}

where ⟦C⟧ is the usual semantic map on computation states defined by the command

C. The analogous specification formulas for quantum computation can be taken to

be

{Tr(ρPA
Φ) ≥ p}U{Tr(ρPA

Ψ) ≥ q}

where A is an observable, PA
∆ = χ∆(A), χ∆ is the characteristic function of effective

Borel set ∆, and U is a unitary evolution operator.

6.5 Effective Borel Sets

Let P (α,x1, . . . , xn) be a computable (1, n)-ary relation, where the xi are nonneg-

ative integers and α is a function mapping nonnegative integers to nonnegative

integers. Computable means that, with an oracle for computing α, we need only

use the oracle to compute some finite sequence α(0), . . . , α(k) in order to effectively

CHAPTER 6. QUANTIZATION OF CELLULAR AUTOMATA 100

decide whether or not P (α,x1, . . . , xn) is true. Consider the formula

∀x1∃x2⋯QxnP (α,x1, . . . , xn)

where Q is either ∀ or ∃, as appropriate, in the alternating quantifier prefix in

the above expression. In the conventional notation widely used in mathematical

logic [Sho00], the sets of all α satisfying formulas such as the above are the (1,0)-ary

arithmetic relations when interpreted on the natural numbers or any other effectively

presented countably infinite set such as the integers. These sets are all Borel and

the set of their characteristic functions are the Borel sets of configurations we have

been discussing. In a set-theoretic sense these constitute a countable subcollection of

the uncountably many distinct Borel sets of configurations we have been implicitly

considering, but they include all Borel sets of configurations that can be explicitly

defined via the apparatus of formal number theory.

Chapter 7

Conclusion and Future Prospects

Semantics is a strange kind of applied mathematics; it seeks profound

definitions rather than difficult theorems.

- JOHN C. REYNOLDS (1980)

In the foregoing, we have established the generality of the differential scheme and the

flexibility of the differential calculi at its heart, in particular. A “profound definition”

was certainly being sought, and has hopefully been achieved, in the formulation of

the differential scheme.

7.1 What We Have Done

We have completed the formalization of the differential scheme as envisioned in

[Bla00], presenting novel uses for convergence spaces along the way and detailing

the properties of convergence spaces that lend themselves to their new application

to the differential scheme.

From the formal definition, we have provided specific and meaningful examples of

differential calculi, including the continuous differential calculus of classical analysis

101

CHAPTER 7. CONCLUSION AND FUTURE PROSPECTS 102

as well as differential calculi on discrete structures (reflexive digraphs).

In keeping with the motivation behind the differential scheme, we have provided

specific examples of dynamical systems as instances of the differential scheme, in-

cluding classical (Turing) computation, via classical cellular automata.

Lastly, we have shown how to extend Watrous’s quantum cellular automata

model, overcoming its restriction to configurations with finite support, via probabil-

ity measures on appropriate L2 spaces.

7.2 Future Work

Further development of our line of investigation could proceed along two general

paths. One path would be to enlarge the stock of compelling examples that fit into

the differential scheme. Along this path, if a particularly compelling example turns

out to not fit into the scheme, the opportunity to conservatively extend the current

definition beckons.1 Another path is to seek theorems about our generalized dynam-

ical systems that would apply to the broad set of continuous and/or discrete systems

already accounted for in the theory (by rough analogy, like the category theoretic

solution of recursive domain equations in programming language semantics).

7.2.1 Further Examples

Significant prospects include quantum computation and higher-order computation.

1Our existing machinery is tuned to mesh neatly with, e.g., the standard differentials of analysis;
extensions of this machinery should not expand the set of differentiable functions in these cases.

CHAPTER 7. CONCLUSION AND FUTURE PROSPECTS 103

Quantum Computation

We have shown that classical computation fits neatly into the differential scheme in

§4.1.1. The case of quantum computation is currently unresolved. It may be that

the differential scheme, as defined herein, already subsumes quantum computation.

The main issue, as is typical with quantum computation, is establishing the unitarity

of the differentials falling out of any natural differential calculi. It is not clear that

this can be done under the current differential scheme.

Higher Order Computation

Many applications of filter spaces, including the convergence space-equivalent filter

spaces of Hyland [Hyl79], were made in the context of research on higher-order

computation. This is a natural area in which to apply our generalized dynamical

systems approach.

7.2.2 Further Theorems

Besides classical Turing machines (TMs), the differential scheme accommodates

weaker classes of abstract automata, for example, deterministic finite automata

(DFAs). The evolution of the global state of different classes of automata are de-

termined by differentials of different types. There should be differential equations

whose solutions provide the appropriate state evolution. What might these look

like? A TM would require a partial differential equation, as both time and the cell

space change. A DFA would only require an ordinary differential equation. What

else may be said remains to be investigated.

Bibliography

[AHS90] J. Adámek, H. Herrlich, and G. E. Strecker. Abstract and Concrete Cat-

egories. Wiley Interscience, 1990.

[AK03] J. Al-Khalili. Quantum: A Guide for the Perplexed. Weidenfeld & Nicol-

son, 2003.

[Ale37] P. S. Alexandrov. Discrete Räume. Math. Sb. (New Series), 2

(44)(3):501–519, 1937.

[All84] J. Allen. Towards a general theory of action and time. Art. Intell.,

23:123–154, 1984.

[AM75] M. A. Arbib and E. Manes. Arrows, Structures, and Functors: The

categorical imperative. Academic Press, 1975.

[Are46] R. F. Arens. A topology for spaces of transformations. Annals of Math-

ematics, 47:480–495, 1946.

[AS68] W. I. Averbukh and O. G. Smolyanov. The various definitions of the

derivative in linear topological spaces. Russian Math. Surveys, 23(4):67–

113, 1968.

[Axl97] S. Axler. Linear Algebra Done Right. Undergraduate Texts in Mathe-

matics. Springer, 2nd edition, 1997.

[Bar93] M. Barnsley. Fractals Everywhere. Academic Press, 2nd edition, 1993.

104

BIBLIOGRAPHY 105

[BB84] C.H. Bennett and G. Brassard. Quantum cryptography: Public key dis-

tribution and coin tossing. In Proceedings of IEEE International Con-

ference on Computers, Systems and Signal Processing, pages 175–179,

Bangalore, India, December 1984. IEEE Press.

[Ben73] C.H. Bennett. Logical reversibility of computation. IBM Journal of

Research and Development, 17:525–532, 1973.

[Ben80] P.A. Benioff. The computer as a physical system: A microscopic quantum

mechanical hamiltonian model of computers as represented by turing

machines. Journal of Statistical Physics, 22(5):531–591, 1980.

[Ben82] P.A. Benioff. Quantum mechanical hamiltonian models of discrete pro-

cesses that erase their own histories: application to turing machines.

International Journal of Theoretical Physics, 21:177–202, 1982.

[Ben89] C.H. Bennett. Time/space trade-offs for reversible computation. SIAM

Journal of Computing, 18:766–776, 1989.

[BHL91] H. L. Bentley, H. Herrlich, and R. Lowen. Improving constructions in

topology. In H. Herrlich and H.-E. Porst, editors, Category Theory at

Work, pages 3–20. Heldermann Verlag, 1991.

[Bin66] E. Binz. Ein Differenzierbarkeitsbegriff limitieren Vektorraäume. Com-

ment. Math. Helv., 41:137–156, 1966.

[Bin75] E. Binz. Continuous Convergence on C(X). Number 469 in Lecture Notes

in Mathematics. Springer-Verlag, 1975.

[BJ] H. A. Blair and D. W. Jakel. Reflexive digraphs as pretopological spaces

and as other convergence spaces. in preparation.

[BJIR07] H.A. Blair, D.W. Jakel, R.J. Irwin, and A. Rivera. Elementary differential

calculus on discrete and hybrid structures. In Sergei N. Artëmov and

BIBLIOGRAPHY 106

Anil Nerode, editors, LFCS, volume 4514 of Lecture Notes in Computer

Science, pages 41–53. Springer, 2007.

[BK66] E. Binz and E. Keller. Functionenräume in der Kategorie der

Limesräume. Ann. Acad. Sci. Fenn. (Ser. A. I.), pages 1–21, 1966.

[Bla00] H. A. Blair. The differential scheme for models of computation. Electr.

Notes Theor. Comput. Sci., 40, 2000.

[Boh13] N. Bohr. On the constitution of atoms and molecules. Philosophical

Magazine, 26:1–25, 476–502, 857–75, 1913.

[Boh51] D. Bohm. Quantum Theory. Prentice-Hall, 1951.

[Boh76] N. Bohr. The correspondence principle. In J.R. Nielsen, editor, Niels

Bohr Collected Works, volume 3. North-Holland, 1976.

[Boh89] D. Bohm. Quantum Theory. Dover, 1989. republication of [Boh51].

[Bor76] G. Bordaud. Some cartesian closed categories of convergence spaces. In

Convergence Spaces: Proc. Conf. Mannheim 1975, number 540 in Lecture

Notes in Mathematics, pages 93–108. Springer-Verlag, 1976.

[Bou49] N. Bourbaki. Topologie Générale. Actualités Sci. Ind., 858 (1940), 916

(1942), 1029 (1947), 1045 (1948), 1084 (1949).

[Car37] H. Cartan. Théorie des filtres. C. R. Acad. Paris, 205:595–598, 1937.

[C̆ec66] E. C̆ech. Topological Spaces. Interscience, revised edition, 1966.

[Cho47] C. Choquet. Convergences. Ann. Univ. Grenoble, 23:55–112, 1947.

[CR] D. Cenzer and J. Remmel. Effectively closed sets. to

appear in ASL Lecture Notes in Logic; draft available at

http://www.math.ufl.edu/˜cenzer/research html/list.html.

BIBLIOGRAPHY 107

[Dav58] M. Davis. Computability and Unsolvability. McGraw-Hill, 1958.

[Dav82] M. Davis. Computability and Unsolvability. Dover, 1982. Republication

of [Dav58].

[Dav90] E. Davis. Representations of Commonsense Knowledge. Morgan Kauf-

man, 1990.

[Deu85] D. Deutsch. Quantum theory, the church-turing principle and the uni-

versal quantum computer. Proceedings of the Royal Society of London A,

400:97–117, 1985.

[Fan71] G. Fano. Mathematical Methods for Quantum Mechanics. McGraw-Hill,

1971.

[FB66] A. Frölicher and W. Bucher. Calculus in Vector Spaces without Norm.

Number 30 in Lecture Notes in Mathematics. Springer-Verlag, 1966.

[Fey82] R.P. Feynmann. Simulating physics with computers. International Jour-

nal of Theoretical Physics, 21:467–488, 1982.

[Fox45] R. H. Fox. On topologies for function spaces. Bull. Amer. Math. Soc.,

51:429–432, 1945.

[Gal03] A. P. Galton. A generalized topological view of motion in discrete space.

Theoretical Computer Science, 305:111–134, 2003.

[GD71] A. Grothendieck and J. A. Dieudonné. Eléments de Géométrie Algébrique

I. Springer-Verlag, 1971.

[Ger85] R. Geroch. Mathematical Physics. University of Chicago, 1985.

[GHK+80] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and

D. S. Scott. A Compendium of Continuous Lattices. Springer-Verlag,

1980.

BIBLIOGRAPHY 108

[Gru99] J. Gruska. Quantum Computing. McGraw-Hill, 1999.

[Hec03] R. Heckmann. A non-topological view of dcpo’s as convergence spaces.

Theoretical Computer Science, 305:159–186, 2003.

[Hel79] P. Hell. An introduction to the category of graphs. In F. Harary, editor,

Topics in Graph Theory, pages 120–136. New York Academy of Sciences,

1979. (Annals of the New York Academy of Sciences 328 (June 20,1979)).

[Her68] H. Herrlich. Topologische Reflexionen und Coreflexionen. Number 78 in

Lecture Notes in Mathematics. Springer-Verlag, 1968.

[Hir04] M. Hirvensalo. Quantum Computing. Natural Computing. Spring-Verlag,

2nd edition, 2004.

[HLCS91] H. Herrlich, E. Lowen-Colebunders, and F. Schwarz. Improving Top:

PrTop and PsTop. In H. Herrlich and H.-E. Porst, editors, Category

Theory at Work, pages 21–34. Heldermann Verlag, 1991.

[HS74] M. Hirsch and S. Smale. Differential Equations, Dynamical Systems, and

Linear Algebra. Number 60 in Pure and Applied Mathematics. Academic

Press, 1974.

[HW67] F. Harary and G. W. Wilcox. Boolean operations on graphs. Math.

Scand., pages 41–51, 1967.

[HW91] J. Hubbard and B. West. Differential Equations, A Dynamical Systems

Approach Part I. Number 5 in Texts in Applied Mathematics. Springer-

Verlag, 1991.

[HW95] J. Hubbard and B. West. Differential Equations, A Dynamical Systems

Approach: Higher-dimensional Systems. Number 18 in Texts in Applied

Mathematics. Springer-Verlag, 1995.

BIBLIOGRAPHY 109

[Hyl79] J. M. E. Hyland. Filter spaces and continuous functionals. Annals of

Mathematical Logic, 16:101–143, 1979.

[IK00] W. Imrich and S. Klavz̆ar. Product Graphs. John Wiley & Sons, 2000.

[Joh82] P. T. Johnstone. Stone Spaces. Cambridge University Press, 1982.

[Kat65] M. Katĕtov. On continuity structures and spaces of mappings. Comm.

Math. Univ. Carol., 6(2):257–279, 1965.

[Kel55] J. L. Kelley. General Topology. Van Nostrand Reinhold, 1955.

[Kel74] E. Keller. Differential Calculus in Locally Convex Spaces. Number 417

in Lecture Notes in Mathematics. Springer-Verlag, 1974.

[Ken64] D. C. Kent. Convergence functions and their related topologies. Funda-

menta Mathematicae, 54:125–133, 1964.

[KKM90] E. Khalimsky, R. Kopperman, and P. R. Meyer. Computer graphics

and connected topologies on finite ordered sets. Topology Appl., 36:1–17,

1990.

[Kov89] V. A. Kovalevsky. Finite topology as applied to image analysis. Computer

Vision Graphics Image Processing, 46:141–161, 1989.

[KR89] T. Y. Kong and A. Rosenfeld. Digital topology: introduction and survey.

Computer Vision Graphics Image Processing, 48:357–393, 1989.

[Kre89] E. Kreyszig. Introductory Functional Analysis with Applications. Wiley,

1989.

[Kri83] A. Kriegl. Eine kartesische abgeschlossene Kategorie glatter Abbildun-

gen zwischen beleibigen lokalkonvexen Vektoräumen. Monatshefte für

Mathematik, 95:287–309, 1983.

BIBLIOGRAPHY 110

[KSV02] A.Yu. Kitaev, A.H. Shen, and M.N. Vyalyi. Classical and Quantum

Computation, volume 47 of Graduate Studies in Mathematics. American

Mathematical Society, 2002.

[Lan61] R. Landauer. Irreversibility and heat generation in the computing pro-

cess. IBM Journal of Research and Development, 5:183–191, 1961.

[Lan04] S. Lang. Linear Algebra. Springer, 3rd edition, 2004.

[Mac71] S. MacLane. Categories for the Working Mathematician. Number 5 in

Graduate Texts in Mathematics. Springer-Verlag, 1971.

[Man80] Yu. Manin. Computable and Uncomputable. Sovetskoye Radio, 1980. (In

Russian).

[Man99] Yu. Manin. Classical computing, quantum computing, and shor’s factor-

ing algorithm, 1999. arXive e-print quant-ph/9903008.

[Mar63] G. Marinescu. Espaces Vectoriels Pseudo Topologique et le Théorie de

Distributions. Deutsche Verlag d. Wiss., 1963.

[Mes99] A. Messiah. Quantum Mechanics. Dover, 1999.

[MH89] K. Morita and M. Harao. Computation universality of one-dimensional

reversible (injective) cellular automata. Trans. of the IEICE, E

72(6):758–762, 1989.

[Mic38] A. D. Michal. Differential calculus in linear topological spaces. Proc.

Nat. Acad. Sci., 24(8):340–342, 1938.

[NC00] M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum

Information. Cambridge University Press, 2000.

[Pap94] C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

BIBLIOGRAPHY 111

[Per95] A. Peres. Quantum Mechanics: Concepts and Methods. Kluwer, 1995.

[Pit99] A.O. Pittenger. An Introduction to Quantum Computing Algorithms.

Progress in Computer Science and Applied Logic. Birkhäuser, 1999.

[RCC92] D. A. Randell, Z. Cui, and A. G. Cohn. A spatial logic based on re-

gions and connection. In B. Nebel, C. Rich, and W. Swartout, editors,

Principles of Knowledge Representation and Reasoning: Proceedings 3rd

International Conference (KR ’92), pages 165–176. Morgan Kaufman,

1992.

[Rib83] P. Ribenboim. Algebraic structures on graphs. Algebra Universalis,

16(1):105–123, 1983.

[RS03] C. M. Reidys and P. F. Stadler. Combinatorial landscapes. Technical

report, Santa Fe Institute, 2003.

[Sch01] L. Schröder. Categories: a free tour. In J. Kozlowski and A. Melton,

editors, Categorical Perspectives, pages 1–27. Birkhäuser, 2001.

[Sho94] P.W. Shor. Algorithms for quantum computation: discrete log and factor-

ing. In Proceedings of the 35th Annual IEEE Symposium on Foundations

of Computer Science, pages 20–22. IEEE Press, December 1994.

[Sho00] J. Shoenfield. Mathematical Logic. ASL, 2000. originally published by

Addison-Wesley, 1967.

[Shr88] J. Shrimpton. Cartesian closed categories of directed graphs. Master’s

thesis, University College of North Wales, 1988. U. C. N. W. Maths

Preprint 88.5.

[Smy95] M. B. Smythe. Semi-metrics, closure spaces and digital topology. Theo-

retical Computer Science, 151:257–276, 1995.

BIBLIOGRAPHY 112

[SSWF01] B. M. R. Stadler, P. F. Stadler, G. P. Wagner, and W. Fontana. The

topology of the possible: formal spaces underlying patterns of evolution-

ary change. Journal of Theoretical Biology, 213(2):241–274, 2001.

[Sto97] O. Stock, editor. Spatial and Temporal Reasoning. Kluwer Academic

Publishers, 1997.

[Tof77] T. Toffoli. Computation and construction universality of reversible cel-

lular automata. J. Comput. Sys. Sci., 15:213, 1977.

[TW02] W. Trappe and L.C. Washington. Introduction to Cryptography with

Coding Theory. Prentice Hall, 2002.

[vN66] J. von Neumann. Theory of Self-Reproducing Automata. University of

Illinois, 1966. edited and completed by A.W. Burks.

[Wat95] J. Watrous. On one-dimensional quantum cellular automata. In Proceed-

ings of the 36th Annual IEEE Symposium on Foundations of Computer

Science, pages 528–537. IEEE Press, October 1995.

[Wei62] P. M. Weichsel. The Kronecker product of graphs. Proc. Amer. Math.

Soc., 13:47–52, 1962.

[Wil70] S. Willard. General Topology. Addison-Wesley, 1970.

Curriculum Vitae

Robert J. Irwin

212 Redfield Avenue

Fayetteville, NY 13066

rjirwin@syr.edu

Education

SYRACUSE UNIVERSITY, Syracuse, NY

Ph.D. Candidate in Computer Science

Thesis Title: The Differential Scheme and Quantum Computation

Thesis Advisor: Howard A. Blair

M.S. in Computer Science, 1992

ANTIOCH COLLEGE, Yellow Springs, OH

B.S. in Mathematics, 1973

Higher Education Employment

SYRACUSE UNIVERSITY, Syracuse, NY

7/2011 Taught Cyber Security teacher training workshop for Project Advance.

1/10 - present Teaching Assistant . Teach Scripting Languages, Mobile App De-

velopment and Introduction to Programming in C courses.

Summ. ’01,’02 Adjunct Instructor . Taught UNIX and Internet course.

113

CURRICULUM VITAE 114

1/97 - 5/97 Adjunct Instructor . Taught Introduction to Programming in C

course.

6/96 - 12/96 Research Assistant . Research in Complexity of Higher Order Func-

tions supported by a grant from the National Science Foundation (CCR-9522987;

principal investigator: James S. Royer).

8/95 - 5/96 Teaching Associate . Taught undergraduate C and graduate C/C++

courses; co-taught and organized year-long graduate Logic Seminar.

6/94 - 8/95 Teaching Assistant . Taught C and C++ courses; developed extensive

formal materials for same: lecture notes, lab exercise book, coding standards, etc.

8/92 - 5/93 Teaching Assistant . Assisted instructors of two graduate and three

undergraduate CS courses.

1/10 – 5/10 LEMOYNE COLLEGE, Syracuse, NY

Adjunct Faculty . Taught Introduction to Algorithm Analysis and Data Struc-

tures, Programming in Visual Basic, and Object-Oriented Software Design courses.

8/07 – 7/08 HAMILTON COLLEGE, Clinton, NY

Visiting Faculty , Computer Science Department. Taught Computer Archi-

tecture, Computer Organization and Assembly Programming, Applied Theory (com-

putability theory), and Virtual Worlds (animations and gaming with Alice).

9/02 – 8/07 SUNY OSWEGO, Oswego, NY

Assistant Professor , Computer Science Department. Taught Cryptology,

Computer Organization, Introduction to Computer Programming, and Tools for Com-

puting (computer literacy course), etc.

PACE UNIVERSITY, New York, NY

CURRICULUM VITAE 115

1/91 – 8/91 Adj. Assistant Professor , Computer Science Department. Taught

Computer Organization I and graduate Computer Architecture courses.

9/83 - 6/85 Lecturer , Computer Science Department. Taught undergraduate (As-

sembler Language Programming, Computer Programming II, Computer Organization

I, Data Structures & Algorithms I, Data Base Design) and graduate (Programming

Language Implementation, Operating Systems) courses.

Other Employment

1/97 - 7/99 TEXTWISE, LLC., Syracuse, NY

Research Engineer . Development of Natural Language Processing (NLP) sys-

tems for venture-capitalized R&D firm; wrote key semantic information extrac-

tion software, with generic application potential, for DoD-funded NLP systems

CHESS and KNOW-IT (the latter cited in 1998 DoD Tibbetts Award to TextWise);

trained/supervised other engineers and served as resident optimization expert; ad-

vised company on project management issues and product application strategy;

performed make-or-buy analyses; prepared grant proposals and presentations; wrote

technical and end user-oriented documentation.

6/85 - 12/90 APPLIED INTELLIGENCE SYSTEMS, INC., New York, NY

Director, Software Engineering . Founding member of start-up AI software

and consulting firm; co-developed a proprietary, portable expert system (ES) shell

and associated utilities, an intelligent data entry system generator, several custom

expert systems (including one of the first life underwriting ES’s) and an intra-day

futures trading system; chief programmer; supervised/trained engineering staff; pre-

pared/delivered proposals and presentations; documented systems internally and

externally; trained clients in use of proprietary software.

CURRICULUM VITAE 116

7/78 - 7/83 MERRILL LYNCH, New York, NY

Project Manager . Supervised development and maintenance of multi-tasking

software linking IBM mainframes running incompatible operating systems; super-

vised systems support of multi-region CICS system and associated message-switching

software.

Programmer/Analyst , then Senior Prog./Analyst . Analysis, design and im-

plementation of software systems for stock option transactions; wrote extensive util-

ities package for DG Eclipse minicomputers, greatly improving on that provided by

vendor.

Areas of Interest

Computability & Complexity Theory, Dynamical Systems, Quantum Computation,

Cryptology, Virtual Worlds, Artificial Intelligence (Natural Language Processing,

Expert Systems), Programming Languages, History of Mathematics and Computer

Science

Course and Program Development

LEMOYNE COLLEGE

CSC 272 – Object-Oriented Software Design

HAMILTON COLLEGE

CPSCI 320 – Computer Architecture (added hands-on digital electronics lab com-

ponent)

SUNY OSWEGO

CSC 333 – Privacy, Security and Cryptology (general education, for non-majors)

CURRICULUM VITAE 117

CSC/MAT 332 - Cryptology

CSC 322 – Systems Programming (for new Software Engineering program)

SYRACUSE UNIVERSITY

CIS 700 – Logic Seminar (graduate)

CIS 504 - Programming in C and C++ (graduate)

CIS 400/600 – Mobile Application Development (graduate/undergraduate)

CIS 300 – Scripting Languages (undergraduate)

CIS 296 - Programming in C (undergraduate)

Honors & Awards

SUNY Oswego Faculty Enhancement Program Grant , 2003; for develop-

ment of Cryptology course

NSF Research Assistantship, June 1996 - December 1996; for research in Com-

plexity of Higher Order Functions; principal investigator: James. S. Royer; grant

CCR-9522987

Outstanding Teaching Assistant Award , 1996.

Teaching Associateship, August 1995 - May 1996; higher-level teaching assis-

tantship sponsored by Graduate School/EECS Future Professoriate Project.

“Curriculum Development” Assistantships , Summers of 1994 and 1995; for

creating extensive formal course materials for CIS 504 and CIS 296, respectively.

Syracuse University Full Tuition Scholarships, August 1991 - December

1996; to accompany fellowships, assistantships and associateships over this time

period.

CURRICULUM VITAE 118

Syracuse all-University Fellowship, August 1991 - May 1994; University-wide

competitive fellowship.

Publications

Robert J. Irwin and Howard A. Blair. Quantum cellular automata without quiescent

states. Proceedings of SPIE Quantum Information and Computation IX Conference,

Orlando, FL, April 28, 2011.

Howard A. Blair, David W. Jakel, Robert J. Irwin, and Angel Rivera. Elementary

Differential Calculus on Discrete and Hybrid Structures. In Sergei N. Artemov and

Anil Nerode, editors, Logical Foundations of Computer Science, Lecture Notes in

Computer Science 4514, 41-53, Springer, 2007.

Robert J. Irwin, James S. Royer, and Bruce M. Kapron. On characterizations of

the basic feasible functionals, Part II. (submitted to Theoretical Computer Science)

Robert J. Irwin, James S. Royer, and Bruce M. Kapron. On characterizations of the

basic feasible functionals, Part I. Journal of Functional Programming, 11(1):117-153,

January 2001.

Robert J. Irwin, James S. Royer, and Bruce M. Kapron. Separating notions of

higher-type polynomial-time. Proceedings of Second International Workshop on Im-

plicit Computational Complexity, Santa Barbara, CA, June 29-30, 2000.

W. Paik, E.D. Liddy, E. Allen, E. Brown, A. Farris, R. Irwin, J.H. Liddy, and

I. Niles. Applying link analysis to automatically extracted information from texts

using KNOW-IT, Proceedings of the AAAI Symposium on Artificial Intelligence and

Link Analysis, 1998.

CURRICULUM VITAE 119

Work in Progress

Howard A. Blair, Robert J. Irwin, David W. Jakel, and Angel Rivera. Differential

calculus on directed graphs. (to be submitted)

Invited Reviews

Review of Models of Computation: Exploring the Power of Computing (Prentice

Hall, 1998), SIGACT NEWS. (to be submitted)

Review of Derivation and Computation: Taking the Curry-Howard correspondence

seriously (Cambridge, 2000), SIGACT NEWS, June 2008

Review of Coding Theory and Cryptography: The Essentials (Marcel Dekker, 2000),

SIGACT NEWS, December 2003

Review of Set Theory for Computing (Springer, 2001). SIGACT NEWS, September

2003

Review of The Mind and the Machine: Philosophical Aspects of Artificial Intelligence

(Wiley, 1984). IEEE Software, May 1987.

Review of Effective Design of CODASYL Data Base (Macmillan, 1985). IEEE

Software, September 1985.

Presentations

Robert J. Irwin. Invited lectures at Capital Normal University, Beijing, China,

Spring 2009:

1. Essentials of Quantum Cryptography

2. Computer Science Education in the United States: graduate and undergraduate

CURRICULUM VITAE 120

Robert J. Irwin. Toward a Model of Classical and Quantum Hybrid Computation,

Dept. of Elec. Engineering and Computer Science Colloquium Lecture, Syracuse

University, April 29, 2005.

Robert J. Irwin. America’s Unluckiest Logician, QUEST 2005, SUNY Oswego, April

20, 2005.

Robert J. Irwin. Early Computability Theory, Canadian Mathematical Society Win-

ter Meeting, Montreal, December 12, 2004.

Robert J. Irwin. Calculus on Discrete and Hybrid Data Structures, QUEST 2004,

SUNY Oswego, April 21, 2004.

H. Blair, R. Irwin, D. Jakel, J. Remmel, A. Rivera. Toward a Theory of Hetero-

geneous Computation, Computer Science Colloquium, University of Massachusetts,

Boston, April 30, 2003.

Robert J. Irwin. Quantum Cryptography, QUEST 2003, SUNY Oswego, April 23,

2003.

R. Irwin, B. Kapron, J. Royer. On Characterizations of the Basic Feasible Func-

tionals, Part I. 14th Annual Mathematical Foundations of Programming Semantics

Workshop, May 1998.

Selected Systems Developed

KNOWledge base Information Tool (KNOW-IT), 1998-1999, at TextWise Labs un-

der contract with DARPA; developed the core information extraction component.

Chronological information Extraction SyStem (CHESS), 1997-1998, at TextWise

Labs under contract with DARPA; developed the core information extraction com-

CURRICULUM VITAE 121

ponent (precursor system to KNOW-IT).

Front-End Generator (FEG), 1987-1988, at Applied Intelligence Systems under con-

tract with John Hancock; an early object-oriented RAD system, incorporating a

scripting language and expert system shell capabilities; developed the central inter-

preter and co-developed the object/script compiler and most other components.

Decision Master, 1985-1986, at Applied Intelligence Systems; an expert system shell

(not related to FEG) incorporating a variety of rule induction techniques, optimized

for high-volume non-interactive applications; co-developed with Joseph S. Ruben-

feld.

College/University Service

SUNY OSWEGO

Scholarly and Creative Activities Committee

Provost’s Advisory Committee on Academic Quality

Science Planning Committee subcommittee on “Curriculum and New Interdisci-

plinary Initiatives”

Computer Science Department Ad Hoc ABET Accreditation Committee

CSTEP Mentor (for minority students in technical fields)

Computer Science Department Curriculum Committee

First-Year Advisor

Computer Science Department Laboratory Committee

SYRACUSE UNIVERSITY

Senate Affirmative Action Grievance Committee

CURRICULUM VITAE 122

EECS Tenure and Promotion Committee

Graduate Student Representative to Dean

Community Service

Meal on Wheels volunteer

Fayetteville-Manlius Astronomical Society (assist public observations)

Fayetteville Elementary Science Club volunteer

Affiliations

Association for Computing Machinery (ACM)

ACM Special Interest Group on Algorithms and Computation Theory (SIGACT)

Mathematical Association of America (MAA)

	The Differential Scheme and Quantum Computation
	Recommended Citation

	tmp.1317993556.pdf.bLZNI

