17 research outputs found

    The Signal Data Explorer: A high performance Grid based signal search tool for use in distributed diagnostic applications

    Get PDF
    We describe a high performance Grid based signal search tool for distributed diagnostic applications developed in conjunction with Rolls-Royce plc for civil aero engine condition monitoring applications. With the introduction of advanced monitoring technology into engineering systems, healthcare, etc., the associated diagnostic processes are increasingly required to handle and consider vast amounts of data. An exemplar of such a diagnosis process was developed during the DAME project, which built a proof of concept demonstrator to assist in the enhanced diagnosis and prognosis of aero-engine conditions. In particular it has shown the utility of an interactive viewing and high performance distributed search tool (the Signal Data Explorer) in the aero-engine diagnostic process. The viewing and search techniques are equally applicable to other domains. The Signal Data Explorer and search services have been demonstrated on the Worldwide Universities Network to search distributed databases of electrocardiograph data

    Asymptotic normality of plug-in level set estimates

    Full text link
    We establish the asymptotic normality of the GG-measure of the symmetric difference between the level set and a plug-in-type estimator of it formed by replacing the density in the definition of the level set by a kernel density estimator. Our proof will highlight the efficacy of Poissonization methods in the treatment of large sample theory problems of this kind.Comment: Published in at http://dx.doi.org/10.1214/08-AAP569 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Anomaly Detections for Manufacturing Systems Based on Sensor Data—Insights into Two Challenging Real-World Production Settings

    Get PDF
    To build, run, and maintain reliable manufacturing machines, the condition of their components has to be continuously monitored. When following a fine-grained monitoring of these machines, challenges emerge pertaining to the (1) feeding procedure of large amounts of sensor data to downstream processing components and the (2) meaningful analysis of the produced data. Regarding the latter aspect, manifold purposes are addressed by practitioners and researchers. Two analyses of real-world datasets that were generated in production settings are discussed in this paper. More specifically, the analyses had the goals (1) to detect sensor data anomalies for further analyses of a pharma packaging scenario and (2) to predict unfavorable temperature values of a 3D printing machine environment. Based on the results of the analyses, it will be shown that a proper management of machines and their components in industrial manufacturing environments can be efficiently supported by the detection of anomalies. The latter shall help to support the technical evangelists of the production companies more properly

    Advanced mobile network monitoring and automated optimization methods

    Get PDF
    The operation of mobile networks is a complex task with the networks serving a large amount of subscribers with both voice and data services, containing extensive sets of elements, generating extensive amounts of measurement data and being controlled by a large amount of parameters. The objective of this thesis was to ease the operation of mobile networks by introducing advanced monitoring and automated optimization methods. In the monitoring domain the thesis introduced visualization and anomaly detection methods that were applied to detect intrusions, mal-functioning network elements and cluster network elements to do parameter optimization on network-element-cluster level. A key component in the monitoring methods was the Self-Organizing Map. In the automated optimization domain several rule-based Wideband CDMA radio access parameter optimization methods were introduced. The methods tackled automated optimization in areas such as admission control, handover control and mobile base station cell size setting. The results from test usage of the monitoring methods indicated good performance and simulations indicated that the automated optimization methods enable significant improvements in mobile network performance. The presented methods constitute promising feature candidates for the mobile network management system.reviewe

    Using Long-Short-Term-Memory Recurrent Neural Networks To Predict Aviation Engine Vibrations

    Get PDF
    This thesis examines building viable Recurrent Neural Networks (RNN) using Long Short Term Memory (LSTM) neurons to predict aircraft engine vibrations. The different networks are trained on a large database of flight data records obtained from an airline containing flights that suffered from excessive vibration. RNNs can provide a more generalizable and robust method for prediction over analytical calculations of engine vibration, as analytical calculations must be solved iteratively based on specific empirical engine parameters, and this database contains multiple types of engines. Further, LSTM RNNs provide a “memory” of the contribution of previous time series data which can further improve predictions of future vibration values. LSTM RNNs were used over traditional RNNs, as those suffer from vanishing/exploding gradients when trained with back propagation. The study managed to predict vibration values for 1, 5, 10, and 20 seconds in the future, with 2.84% 3.3%, 5.51% and 10.19% mean absolute error, respectively. These neural networks provide a promising means for the future development of warning systems so that suitable actions can be taken before the occurrence of excess vibration to avoid unfavorable situations during flight

    A method for electric load data verification and repair in home environment

    Get PDF
    Home energy management (HEM) and smart home have been popular among people; HEM collects and analyses the electric load data to make the power use safe, reliable, economical, efficient and environmentally friendly. Without the correct data, the correct decisions and plans would not be made, so the data quality is of the great importance. This paper focuses on the verification and repair of the electric load data in family environment. Due to the irregularity of modern people's life styles, this paper proposes a system of 'N + 1' framework to handle this properly. The system collects information of every appliance and the power bus to make them verify each other, so it can solve the stochastic uncertainty problem and verify if the data is correct or not to ensure the data quality. In the course of data upload, there are many factors like smart meter malfunctions, communication failures and so on which will cause some wrong data. To repair the wrong data, we proposes a method called LBboosting, which integrates two curve fitting methods. As the results show, the method has a better performance than up-to date methods

    Nature-Inspired Topology Optimization of Recurrent Neural Networks

    Get PDF
    Hand-crafting effective and efficient structures for recurrent neural networks (RNNs) is a difficult, expensive, and time-consuming process. To address this challenge, this work presents three nature-inspired (NI) algorithms for neural architecture search (NAS), introducing the subfield of nature-inspired neural architecture search (NI-NAS). These algorithms, based on ant colony optimization (ACO), progress from memory cell structure optimization, to bounded discrete-space architecture optimization, and finally to unbounded continuous-space architecture optimization. These methods were applied to real-world data sets representing challenging engineering problems, such as data from a coal-fired power plant, wind-turbine power generators, and aircraft flight data recorder (FDR) data. Initial work utilized ACO to select optimal connections inside recurrent long short-term memory (LSTM) cell structures. Viewing each LSTM cell as a graph, ants would choose potential input and output connections based on the pheromones previously laid down over those connections as done in a standard ACO search. However, this approach did not optimize the overall network of the RNN, particularly its synaptic parameters. I addressed this issue by introducing the Ant-based Neural Topology Search (ANTS) algorithm to directly optimize the entire RNN topology. ANTS utilizes a discrete-space superstructure representing a completely connected RNN where each node is connected to every other node, forming an extremely dense mesh of edges and recurrent edges. ANTS can select from a library of modern RNN memory cells. ACO agents (ants), in this thesis, build RNNs from the superstructure determined by pheromones laid out on the superstructure\u27s connections. Backpropagation is then used to train the generated RNNs in an asynchronous parallel computing design to accelerate the optimization process. The pheromone update depends on the evaluation of the tested RNN against a population of best performing RNNs. Several variations of the core algorithm was investigated to test several designed heuristics for ANTS and evaluate their efficacy in the formation of sparser synaptic connectivity patterns. This was done primarily by formulating different functions that drive the underlying pheromone simulation process as well as by introducing ant agents with 3 specialized roles (inspired by real-world ants) to construct the RNN structure. This characterization of the agents enables ants to focus on specific structure building roles. ``Communal intelligence\u27\u27 was also incorporated, where the best set of weights was across locally-trained RNN candidates for weight initialization, reducing the number of backpropagation epochs required to train each candidate RNN and speeding up the overall search process. However, the growth of the superstructure increased by an order of magnitude, as more input and deeper structures are utilized, proving to be one limitation of the proposed procedure. The limitation of ANTS motivated the development of the continuous ANTS algorithm (CANTS), which works with a continuous search space for any fixed network topology. In this process, ants moving within a (temporally-arranged) set of continuous/real-valued planes based on proximity and density of pheromone placements. The motion of the ants over these continuous planes, in a sense, more closely mimicks how actual ants move in the real world. Ants traverse a 3-dimensional space from the inputs to the outputs and across time lags. This continuous search space frees the ant agents from the limitations imposed by ANTS\u27 discrete massively connected superstructure, making the structural options unbounded when mapping the movements of ants through the 3D continuous space to a neural architecture graph. In addition, CANTS has fewer hyperparameters to tune than ANTS, which had five potential heuristic components that each had their own unique set of hyperparameters, as well as requiring the user to define the maximum recurrent depth, number of layers and nodes within each layer. CANTS only requires specifying the number ants and their pheromone sensing radius. The three applied strategies yielded three important successes. Applying ACO on optimizing LSTMs yielded a 1.34\% performance enhancement and more than 55% sparser structures (which is useful for speeding up inference). ANTS outperformed the NAS benchmark, NEAT, and the NAS state-of-the-art algorithm, EXAMM. CANTS showed competitive results to EXAMM and competed with ANTS while offering sparser structures, offering a promising path forward for optimizing (temporal) neural models with nature-inspired metaheuristics based the metaphor of ants

    Automated data inspection in jet engines

    Get PDF
    Rolls Royce accumulate a large amount of sensor data throughout the testing and deployment of their engines. The availability of this rich source of data offers exciting opportunities to automate the monitoring and testing of the engines. In this thesis we have developed statistical models to make meaningful insights from engine test data. We have built a classification model to identify different types of engine running in Pass-Off tests. The labels can be used for post-analysis and highlight problematic engine tests. The model has been applied to two different types of engines, in which it gives close to perfect classification accuracy. We have also created an unsupervised approach when there are no defined classes of engine running. These models have been incorporated into Rolls Royce systems. Early warnings for potential issues can enable relatively cheap maintenance to be performed and reduce the risk of irreparable engine damage. We have therefore developed an outlier detection model to identify abnormal temperature behaviour. The capabilities of the model are shown theoretically and tested on experimental and real data. Lastly, in a test decisions are made by engineers to ensure the engine complies with certain standards. To support the engineers we have developed a predictive model to identify segments of the engine test that should be retested. The model is tested against the current decision making of the engineers, and gives good predictive performance. The model highlights the possibility of automating the decision making process within a test

    A systems engineering approach to servitisation system modelling and reliability assessment

    Get PDF
    Companies are changing their business model in order to improve their long term competitiveness. Once where they provided only products, they are now providing a service with that product resulting in a reduced cost of ownership. Such a business case benefits both customer and service supplier only if the availability of the product, and hence the service, is optimised. For highly integrated product and service offerings this means it is necessary to assess the reliability monitoring service which underpins service availability. Reliability monitoring service assessment requires examination of not only product monitoring capability but also the effectiveness of the maintenance response prompted by the detection of fault conditions. In order to address these seemingly dissimilar aspects of the reliability monitoring service, a methodology is proposed which defines core aspects of both the product and service organisation. These core aspects provide a basis from which models of both the product and service organisation can be produced. The models themselves though not functionally representative, portray the primary components of each type of system, the ownership of these system components and how they are interfaced. These system attributes are then examined to establish system risk to reliability by inspection, evaluation of the model or by reference to model source documentation. The result is a methodology that can be applied to such large scale, highly integrated systems at either an early stage of development or in latter development stages. The methodology will identify weaknesses in each system type, indicating areas which should be considered for system redesign and will also help inform the analyst of whether or not the reliability monitoring service as a whole meets the requirements of the proposed business case
    corecore