53,081 research outputs found

    Earth orbital teleoperator visual system evaluation program

    Get PDF
    Visual system parameters and stereoptic television component geometries were evaluated for optimum viewing. The accuracy of operator range estimation using a Fresnell stereo television system with a three dimensional cursor was examined. An operator's ability to align three dimensional targets using vidicon tube and solid state television cameras as part of a Fresnell stereoptic system was evaluated. An operator's ability to discriminate between varied color samples viewed with a color television system was determined

    An assessment model and implementation of stereo image quality

    Get PDF
    In the past decade, many display hardware manufacturers have initiated research into the construction of stereo display devices. Currently, the use of such displays is limited to the computer-aided design; research, military and medical applications. However, it is anticipated that as display hardware becomes cheaper, gaming companies and desktop application software developers will realise the potential of using stereo to provide more realistic user experiences. To provide realistic stereo user experience it is necessary to utilise good quality stereo images in addition to suitable hardware. The growth of the Internet has resulted in an increase in the availability of stereo images. However, most have been captured using uncontrolled procedures and have questionable quality. The quality of stereo images is important since the viewing of poor quality stereo images can result in adverse viewing effects. A formal definition of stereo quality has not been achieved in current day research. This means that the factors which cause a stereo image to be perceived as poor quality have not been defined nor is a system available to detect its occurrence. This thesis attempts to address this problem by postulating a definition of stereo image quality based on detecting level of excess disparity levels, intensity differences and the occurrence of frame cancellation. An implementation system able to detect these identified factors is discussed and formulated. The developed system is utilised to test 14 stereo images of varying quality levels. The results of these tests are reported and are used to evaluated and refine the system. Using this image analysis, benchmarks for natural intensity difference in images, changes due to JPEG compression and comparisons with generated and ground truth disparity maps are formulated. Additionally, a

    Stereo viewing modulates three-dimensional shape processing during object recognition: a high-density ERP study

    Get PDF
    The role of stereo disparity in the recognition of 3-dimensional (3D) object shape remains an unresolved issue for theoretical models of the human visual system. We examined this issue using high-density (128 channel) recordings of event-related potentials (ERPs). A recognition memory task was used in which observers were trained to recognize a subset of complex, multipart, 3D novel objects under conditions of either (bi-) monocular or stereo viewing. In a subsequent test phase they discriminated previously trained targets from untrained distractor objects that shared either local parts, 3D spatial configuration, or neither dimension, across both previously seen and novel viewpoints. The behavioral data showed a stereo advantage for target recognition at untrained viewpoints. ERPs showed early differential amplitude modulations to shape similarity defined by local part structure and global 3D spatial configuration. This occurred initially during an N1 component around 145–190 ms poststimulus onset, and then subsequently during an N2/P3 component around 260–385 ms poststimulus onset. For mono viewing, amplitude modulation during the N1 was greatest between targets and distracters with different local parts for trained views only. For stereo viewing, amplitude modulation during the N2/P3 was greatest between targets and distracters with different global 3D spatial configurations and generalized across trained and untrained views. The results show that image classification is modulated by stereo information about the local part, and global 3D spatial configuration of object shape. The findings challenge current theoretical models that do not attribute functional significance to stereo input during the computation of 3D object shape

    Determination of depth-viewing volumes for stereo three-dimensional graphic displays

    Get PDF
    Real-world, 3-D, pictorial displays incorporating true depth cues via stereopsis techniques offer a potential means of displaying complex information in a natural way to prevent loss of situational awareness and provide increases in pilot/vehicle performance in advanced flight display concepts. Optimal use of stereopsis requires an understanding of the depth viewing volume available to the display designer. Suggested guidelines are presented for the depth viewing volume from an empirical determination of the effective region of stereopsis cueing (at several viewer-CRT screen distances) for a time multiplexed stereopsis display system. The results provide the display designer with information that will allow more effective placement of depth information to enable the full exploitation of stereopsis cueing. Increasing viewer-CRT screen distances provides increasing amounts of usable depth, but with decreasing fields-of-view. A stereopsis hardware system that permits an increased viewer-screen distance by incorporating larger screen sizes or collimation optics to maintain the field-of-view at required levels would provide a much larger stereo depth-viewing volume

    3D GeoWall Analysis System for Shuttle External Tank Foreign Object Debris Events

    Get PDF
    An analytical, advanced imaging method has been developed for the initial monitoring and identification of foam debris and similar anomalies that occur post-launch in reference to the space shuttle s external tank (ET). Remote sensing technologies have been used to perform image enhancement and analysis on high-resolution, true-color images collected with the DCS 760 Kodak digital camera located in the right umbilical well of the space shuttle. Improvements to the camera, using filters, have added sharpness/definition to the image sets; however, image review/analysis of the ET has been limited by the fact that the images acquired by umbilical cameras during launch are two-dimensional, and are usually nonreferenceable between frames due to rotation translation of the ET as it falls away from the space shuttle. Use of stereo pairs of these images can enable strong visual indicators that can immediately portray depth perception of damaged areas or movement of fragments between frames is not perceivable in two-dimensional images. A stereoscopic image visualization system has been developed to allow 3D depth perception of stereo-aligned image pairs taken from in-flight umbilical and handheld digital shuttle cameras. This new system has been developed to augment and optimize existing 2D monitoring capabilities. Using this system, candidate sequential image pairs are identified for transformation into stereo viewing pairs. Image orientation is corrected using control points (similar points) between frames to place the two images in proper X-Y viewing perspective. The images are then imported into the WallView stereo viewing software package. The collected control points are used to generate a transformation equation that is used to re-project one image and effectively co-register it to the other image. The co-registered, oriented image pairs are imported into a WallView image set and are used as a 3D stereo analysis slide show. Multiple sequential image pairs can be used to allow forensic review of temporal phenomena between pairs. The observer, while wearing linear polarized glasses, is able to review image pairs in passive 3D stereo

    Intention recognition for gaze controlled robotic minimally invasive laser ablation

    Get PDF
    Eye tracking technology has shown promising results for allowing hands-free control of robotically-mounted cameras and tools. However existing systems present only limited capabilities in allowing the full range of camera motions in a safe, intuitive manner. This paper introduces a framework for the recognition of surgeon intention, allowing activation and control of the camera through natural gaze behaviour. The system is resistant to noise such as blinking, while allowing the surgeon to look away safely at any time. Furthermore, this paper presents a novel approach to control the translation of the camera along its optical axis using a combination of eye tracking and stereo reconstruction. Combining eye tracking and stereo reconstruction allows the system to determine which point in 3D space the user is fixating, enabling a translation of the camera to achieve the optimal viewing distance. In addition, the eye tracking information is used to perform automatic laser targeting for laser ablation. The desired target point of the laser, mounted on a separate robotic arm, is determined with the eye tracking thus removing the need to manually adjust the laser's target point before starting each new ablation. The calibration methodology used to obtain millimetre precision for the laser targeting without the aid of visual servoing is described. Finally, a user study validating the system is presented, showing clear improvement with median task times under half of those of a manually controlled robotic system

    Correction techniques for depth errors with stereo three-dimensional graphic displays

    Get PDF
    Three-dimensional (3-D), 'real-world' pictorial displays that incorporate 'true' depth cues via stereopsis techniques have proved effective for displaying complex information in a natural way to enhance situational awareness and to improve pilot/vehicle performance. In such displays, the display designer must map the depths in the real world to the depths available with the stereo display system. However, empirical data have shown that the human subject does not perceive the information at exactly the depth at which it is mathematically placed. Head movements can also seriously distort the depth information that is embedded in stereo 3-D displays because the transformations used in mapping the visual scene to the depth-viewing volume (DVV) depend intrinsically on the viewer location. The goal of this research was to provide two correction techniques; the first technique corrects the original visual scene to the DVV mapping based on human perception errors, and the second (which is based on head-positioning sensor input data) corrects for errors induced by head movements. Empirical data are presented to validate both correction techniques. A combination of the two correction techniques effectively eliminates the distortions of depth information embedded in stereo 3-D displays

    Efficient Depth Estimation Using Sparse Stereo-Vision with Other Perception Techniques

    Get PDF
    The stereo vision system is one of the popular computer vision techniques. The idea here is to use the parallax error to our advantage. A single scene is recorded from two different viewing angles, and depth is estimated from the measure of parallax error. This technique is more than a century old and has proven useful in many applications. This field has made a lot of researchers and mathematicians to devise novel algorithms for the accurate output of the stereo systems. This system is particularly useful in the field of robotics. It provides them with the 3D understanding of the scene by giving them estimated object depths. This chapter, along with a complete overview of the stereo system, talks about the efficient estimation of the depth of the object. It stresses on the fact that if coupled with other perception techniques, stereo depth estimation can be made a lot more efficient than the current techniques. The idea revolves around the fact that stereo depth estimation is not necessary for all the pixels of the image. This fact opens room for more complex and accurate depth estimation techniques for the fewer regions of interest in the image scene. Further details about this idea are discussed in the subtopics that follow

    Satellite Test Assistant Robot (STAR)

    Get PDF
    A three-year, three-phase program to demonstrate the applicability of telerobotic technology to the testing of satellites and other spacecraft has been initiated. Specifically, the objectives are to design, fabricate, and install into the JPL 25-ft. Space Simulator (SS) a system that will provide the capability to view test articles from all directions in both the visible and infrared (IR) spectral regions, to automatically map the solar flux intensity over the entire work volume of the chamber, and to provide the capability for leak detection. The first year's work, which provides a vertically mobile viewing platform equipped with stereo cameras, will be discussed. Design constraints and system implementation approaches mandated by the requirements of thermal vacuum operation will be emphasized
    • …
    corecore