76,580 research outputs found

    Overlay networks for smart grids

    Get PDF

    Tiny Groups Tackle Byzantine Adversaries

    Full text link
    A popular technique for tolerating malicious faults in open distributed systems is to establish small groups of participants, each of which has a non-faulty majority. These groups are used as building blocks to design attack-resistant algorithms. Despite over a decade of active research, current constructions require group sizes of O(logn)O(\log n), where nn is the number of participants in the system. This group size is important since communication and state costs scale polynomially with this parameter. Given the stubbornness of this logarithmic barrier, a natural question is whether better bounds are possible. Here, we consider an attacker that controls a constant fraction of the total computational resources in the system. By leveraging proof-of-work (PoW), we demonstrate how to reduce the group size exponentially to O(loglogn)O(\log\log n) while maintaining strong security guarantees. This reduction in group size yields a significant improvement in communication and state costs.Comment: This work is supported by the National Science Foundation grant CCF 1613772 and a C Spire Research Gif

    Architectural Considerations for a Self-Configuring Routing Scheme for Spontaneous Networks

    Get PDF
    Decoupling the permanent identifier of a node from the node's topology-dependent address is a promising approach toward completely scalable self-organizing networks. A group of proposals that have adopted such an approach use the same structure to: address nodes, perform routing, and implement location service. In this way, the consistency of the routing protocol relies on the coherent sharing of the addressing space among all nodes in the network. Such proposals use a logical tree-like structure where routes in this space correspond to routes in the physical level. The advantage of tree-like spaces is that it allows for simple address assignment and management. Nevertheless, it has low route selection flexibility, which results in low routing performance and poor resilience to failures. In this paper, we propose to increase the number of paths using incomplete hypercubes. The design of more complex structures, like multi-dimensional Cartesian spaces, improves the resilience and routing performance due to the flexibility in route selection. We present a framework for using hypercubes to implement indirect routing. This framework allows to give a solution adapted to the dynamics of the network, providing a proactive and reactive routing protocols, our major contributions. We show that, contrary to traditional approaches, our proposal supports more dynamic networks and is more robust to node failures

    Self-Healing Protocols for Connectivity Maintenance in Unstructured Overlays

    Full text link
    In this paper, we discuss on the use of self-organizing protocols to improve the reliability of dynamic Peer-to-Peer (P2P) overlay networks. Two similar approaches are studied, which are based on local knowledge of the nodes' 2nd neighborhood. The first scheme is a simple protocol requiring interactions among nodes and their direct neighbors. The second scheme adds a check on the Edge Clustering Coefficient (ECC), a local measure that allows determining edges connecting different clusters in the network. The performed simulation assessment evaluates these protocols over uniform networks, clustered networks and scale-free networks. Different failure modes are considered. Results demonstrate the effectiveness of the proposal.Comment: The paper has been accepted to the journal Peer-to-Peer Networking and Applications. The final publication is available at Springer via http://dx.doi.org/10.1007/s12083-015-0384-

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio
    corecore