1,251 research outputs found

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 182, July 1978

    Get PDF
    This bibliography lists 165 reports, articles, and other documents introduced into the NASA scientific and technical information system in June 1978

    Doppler Radar Techniques for Distinct Respiratory Pattern Recognition and Subject Identification.

    Get PDF
    Ph.D. Thesis. University of Hawaiʻi at Mānoa 2017

    Sensing Systems for Respiration Monitoring: A Technical Systematic Review

    Get PDF
    Respiratory monitoring is essential in sleep studies, sport training, patient monitoring, or health at work, among other applications. This paper presents a comprehensive systematic review of respiration sensing systems. After several systematic searches in scientific repositories, the 198 most relevant papers in this field were analyzed in detail. Different items were examined: sensing technique and sensor, respiration parameter, sensor location and size, general system setup, communication protocol, processing station, energy autonomy and power consumption, sensor validation, processing algorithm, performance evaluation, and analysis software. As a result, several trends and the remaining research challenges of respiration sensors were identified. Long-term evaluations and usability tests should be performed. Researchers designed custom experiments to validate the sensing systems, making it difficult to compare results. Therefore, another challenge is to have a common validation framework to fairly compare sensor performance. The implementation of energy-saving strategies, the incorporation of energy harvesting techniques, the calculation of volume parameters of breathing, or the effective integration of respiration sensors into clothing are other remaining research efforts. Addressing these and other challenges outlined in the paper is a required step to obtain a feasible, robust, affordable, and unobtrusive respiration sensing system

    Development of an Intelligent Real-time Multi-Person Respiratory Illnesses Sensing System using SDR Technology

    Get PDF
    Respiration monitoring plays a vital role in human health monitoring, as it is an essential indicator of vital signs. Respiration monitoring can help determine the physiological state of the human body and provide insight into certain illnesses. Recently, non-contact respiratory illness sensing methods have drawn much attention due to user acceptance and great potential for real-world deployment. Such methods can reduce stress on healthcare facilities by providing modern digital health technologies. This digital revolution in the healthcare sector will provide inexpensive and unobstructed solutions. Non-contact respiratory illness sensing is effective as it does not require users to carry devices and avoids privacy concerns. The primary objective of this research work is to develop a system for continuous real-time sensing of respiratory illnesses. In this research work, the non-contact software-defined radio (SDR) based RF technique is exploited for respiratory illness sensing. The developed system measures respiratory activity imprints on channel state information (CSI). For this purpose, an orthogonal frequency division multiplexing (OFDM) transceiver is designed, and the developed system is tested for single-person and multi-person cases. Nine respiratory illnesses are detected and classified using machine learning algorithms (ML) with maximum accuracy of 99.7% for a single-person case. Three respiratory illnesses are detected and classified with a maximum accuracy of 93.5% and 88.4% for two- and three-person cases, respectively. The research provides an intelligent, accurate, continuous, and real-time solution for respiratory illness sensing. Furthermore, the developed system can also be deployed in office and home environments

    Smart vest for respiratory rate monitoring of COPD patients based on non-contact capacitive sensing

    Get PDF
    In this paper, a first approach to the design of a portable device for non-contact monitoring of respiratory rate by capacitive sensing is presented. The sensing system is integrated into a smart vest for an untethered, low-cost and comfortable breathing monitoring of Chronic Obstructive Pulmonary Disease (COPD) patients during the rest period between respiratory rehabilitation exercises at home. To provide an extensible solution to the remote monitoring using this sensor and other devices, the design and preliminary development of an e-Health platform based on the Internet of Medical Things (IoMT) paradigm is also presented. In order to validate the proposed solution, two quasi-experimental studies have been developed, comparing the estimations with respect to the golden standard. In a first study with healthy subjects, the mean value of the respiratory rate error, the standard deviation of the error and the correlation coefficient were 0.01 breaths per minute (bpm), 0.97 bpm and 0.995 (p < 0.00001), respectively. In a second study with COPD patients, the values were -0.14 bpm, 0.28 bpm and 0.9988 (p < 0.0000001), respectively. The results for the rest period show the technical and functional feasibility of the prototype and serve as a preliminary validation of the device for respiratory rate monitoring of patients with COPD.Ministerio de Ciencia e Innovación PI15/00306Ministerio de Ciencia e Innovación DTS15/00195Junta de Andalucía PI-0010-2013Junta de Andalucía PI-0041-2014Junta de Andalucía PIN-0394-201

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 127, April 1974

    Get PDF
    This special bibliography lists 279 reports, articles, and other documents introduced into the NASA scientific and technical information system in March 1974

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 129, June 1974

    Get PDF
    This special bibliography lists 280 reports, articles, and other documents introduced into the NASA scientific and technical information system in May 1974

    Contact and remote breathing rate monitoring techniques: a review

    Get PDF
    ABSTRACT: Breathing rate monitoring is a must for hospitalized patients with the current coronavirus disease 2019 (COVID-19). We review in this paper recent implementations of breathing monitoring techniques, where both contact and remote approaches are presented. It is known that with non-contact monitoring, the patient is not tied to an instrument, which improves patients’ comfort and enhances the accuracy of extracted breathing activity, since the distress generated by a contact device is avoided. Remote breathing monitoring allows screening people infected with COVID-19 by detecting abnormal respiratory patterns. However, non-contact methods show some disadvantages such as the higher set-up complexity compared to contact ones. On the other hand, many reported contact methods are mainly implemented using discrete components. While, numerous integrated solutions have been reported for non-contact techniques, such as continuous wave (CW) Doppler radar and ultrawideband (UWB) pulsed radar. These radar chips are discussed and their measured performances are summarized and compared

    Non Contact Heart Monitoring

    Get PDF
    Electrocardiograms are one of the most widely used methods for evaluating the structure-function relationships of the heart in health and disease. This book is the first of two volumes which reviews recent advancements in electrocardiography. This volume lays the groundwork for understanding the technical aspects of these advancements. The five sections of this volume, Cardiac Anatomy, ECG Technique, ECG Features, Heart Rate Variability and ECG Data Management, provide comprehensive reviews of advancements in the technical and analytical methods for interpreting and evaluating electrocardiograms. This volume is complemented with anatomical diagrams, electrocardiogram recordings, flow diagrams and algorithms which demonstrate the most modern principles of electrocardiography. The chapters which form this volume describe how the technical impediments inherent to instrument-patient interfacing, recording and interpreting variations in electrocardiogram time intervals and morphologies, as well as electrocardiogram data sharing have been effectively overcome. The advent of novel detection, filtering and testing devices are described. Foremost, among these devices are innovative algorithms for automating the evaluation of electrocardiograms. Permanenet links: Full chapter: http://www.intechopen.com/articles/show/title/non-contact-heart-monitoring Book: http://www.intechopen.com/books/show/title/advances-in-electrocardiograms-methods-and-analysi
    corecore