16,119 research outputs found

    Assessing the Consequences of Natural Disasters on Production Networks: A Disaggregated Approach

    Get PDF
    This article proposes a framework to investigate the consequences of natural disasters. This framework is based on the disaggregation of Input-Output tables at the business level, through the representation of the regional economy as a network of production units. This framework accounts for (i) limits in business production capacity; (ii) forward propagations through input shortages; and (iii) backward propagations through decreases in demand. Adaptive behaviors are included, with the possibility for businesses to replace failed suppliers, entailing changes in the network structure. This framework suggests that disaster costs depend on the heterogeneity of losses and on the structure of the affected economic network. The model reproduces economic collapse, suggesting that it may help understand the difference between limited-consequence disasters and disasters leading to systemic failure.Natural disasters, Economic impacts, Economic Network

    NASAs Mid-Atlantic Communities and Areas at Intensive Risk Demonstration: Translating Compounding Hazards to Societal Risk

    Get PDF
    Remote sensing provides a unique perspective on our dynamic planet, tracking changes and revealing the course of complex interactions. Long term monitoring and targeted observation combine with modeling and mapping to provide increased awareness of hydro-meteorological and geological hazards. Disasters often follow hazards and the goal of NASAs Disasters Program is to look at the earth as a highly coupled system to reduce risk and enable resilience. Remote sensing and geospatial science are used as tools to help answer critical questions that inform decisions. Data is not the same as information, nor does understanding of processes necessarily translate into decision support for disaster preparedness, response and recovery. Accordingly, NASA is engaging the scientific and decision-support communities to apply remote sensing, modeling, and related applications in Communities and Areas at Intensive Risk (CAIR). In 2017, NASAs Applied Sciences Disasters Program hosted a regional workshop to explore these issues with particular focus on coastal Virginia and North Carolina. The workshop brought together partners in academia, emergency management, and scientists from NASA and partnering federal agencies to explore capabilities among the team that could improve understanding of the physical processes related to these hazards, their potential impact to changing communities, and to identify methodologies for supporting emergency response and risk mitigation. The resulting initiative, the mid-Atlantic CAIR project, demonstrates the ability to integrate satellite derived earth observations and physical models into actionable, trusted knowledge. Severe storms and associated storm surge, sea level rise, and land subsidence coupled with increasing populations and densely populated, aging critical infrastructure often leave coastal regions and their communities extremely vulnerable. The integration of observations and models allow for a comprehensive understanding of the compounding risk experienced in coastal regions and enables individuals in all positions make risk-informed decisions. This initiative uses a representative storm surge case as a baseline to produce flood inundation maps. These maps predict building level impacts at current day and for sea level rise (SLR) and subsidence scenarios of the future in order to inform critical decisions at both the tactical and strategic levels. To accomplish this analysis, the mid-Atlantic CAIR project brings together Federal research activities with academia to examine coastal hazards in multiple ways: 1) reanalysis of impacts from 2011 Hurricane Irene, using numerical weather modeling in combination with coastal surge and hydrodynamic, urban inundation modeling to evaluate combined impact scenarios considering SLR and subsidence, 2) remote sensing of flood extent from available optical imagery, 3) adding value to remotely sensed flood maps through depth predictions, and 4) examining coastal subsidence as measured through time-series analysis of synthetic aperture radar observations. Efforts and results are published via ArcGIS story maps to communicate neighborhoods and infrastructure most vulnerable to changing conditions. Story map features enable time-aware flood mapping using hydrodynamic models, photographic comparison of flooding following Hurricane Irene, as well as visualization of heightened risk in the future due to SLR and land subsidence

    Earthquake scenarios and seismic input for cultural heritage: applications to the cities of Rome and Florence

    Full text link
    For historical buildings and monuments, i.e. when considering time intervals of about a million year (we do not want to loose cultural heritage), the applicability of standard estimates of seismic hazard is really questionable. A viable alternative is represented by the use of the scenario earthquakes, characterized at least in terms of magnitude, distance and faulting style, and by the treatment of complex source processes. Scenario-based seismic hazard maps are purely based on geophysical and seismotectonic features of a region and take into account the occurrence frequency of earthquakes only for their classification into exceptional (catastrophic), rare (disastrous), sporadic (very strong), occasional (strong) and frequent. Therefore they may provide an upper bound for the ground motion levels to be expected for most regions of the world, more appropriate than probabilities of exceedance in view of the long time scales required for the protection of historical buildings. The neo-deterministic approach naturally supplies realistic time series of ground motion, which represent also reliable estimates of ground displacement readily applicable to seismic isolation techniques, useful to preserve historical monuments and relevant man made structures. This methodology has been successfully applied to many urban areas worldwide for the purpose of seismic microzoning, to strategic buildings, lifelines and cultural heritage sites; we will discuss its application to the cities of Rome and Florence

    Performance Measures to Assess Resiliency and Efficiency of Transit Systems

    Get PDF
    Transit agencies are interested in assessing the short-, mid-, and long-term performance of infrastructure with the objective of enhancing resiliency and efficiency. This report addresses three distinct aspects of New Jersey’s Transit System: 1) resiliency of bridge infrastructure, 2) resiliency of public transit systems, and 3) efficiency of transit systems with an emphasis on paratransit service. This project proposed a conceptual framework to assess the performance and resiliency for bridge structures in a transit network before and after disasters utilizing structural health monitoring (SHM), finite element (FE) modeling and remote sensing using Interferometric Synthetic Aperture Radar (InSAR). The public transit systems in NY/NJ were analyzed based on their vulnerability, resiliency, and efficiency in recovery following a major natural disaster

    Population Synthesis via k-Nearest Neighbor Crossover Kernel

    Full text link
    The recent development of multi-agent simulations brings about a need for population synthesis. It is a task of reconstructing the entire population from a sampling survey of limited size (1% or so), supplying the initial conditions from which simulations begin. This paper presents a new kernel density estimator for this task. Our method is an analogue of the classical Breiman-Meisel-Purcell estimator, but employs novel techniques that harness the huge degree of freedom which is required to model high-dimensional nonlinearly correlated datasets: the crossover kernel, the k-nearest neighbor restriction of the kernel construction set and the bagging of kernels. The performance as a statistical estimator is examined through real and synthetic datasets. We provide an "optimization-free" parameter selection rule for our method, a theory of how our method works and a computational cost analysis. To demonstrate the usefulness as a population synthesizer, our method is applied to a household synthesis task for an urban micro-simulator.Comment: 10 pages, 4 figures, IEEE International Conference on Data Mining (ICDM) 201

    The MATSim Network Flow Model for Traffic Simulation Adapted to Large-Scale Emergency Egress and an Application to the Evacuation of the Indonesian City of Padang in Case of a Tsunami Warning

    Get PDF
    The evacuation of whole cities or even regions is an important problem, as demonstrated by recent events such as evacuation of Houston in the case of Hurricane Rita or the evacuation of coastal cities in the case of Tsunamis. This paper describes a complex evacuation simulation framework for the city of Pandang, with approximately 1,000,000 inhabitants. Padang faces a high risk of being inundated by a tsunami wave. The evacuation simulation is based on the MATSim framework for large-scale transport simulations. Different optimization parameters like evacuation distance, evacuation time, or the variation of the advance warning time are investigated. The results are given as overall evacuation times, evacuation curves, an detailed GIS analysis of the evacuation directions. All these results are discussed with regard to their usability for evacuation recommendations.BMBF, 03G0666E, Verbundprojekt FW: Last-mile Evacuation; Vorhaben: Evakuierungsanalyse und Verkehrsoptimierung, Evakuierungsplan einer Stadt - Sonderprogramm GEOTECHNOLOGIENBMBF, 03NAPAI4, Transport und Verkehr: Verbundprojekt ADVEST: Adaptive Verkehrssteuerung; Teilprojekt Verkehrsplanung und Verkehrssteuerung in Megacitie

    Global Risks 2015, 10th Edition.

    Get PDF
    The 2015 edition of the Global Risks report completes a decade of highlighting the most significant long-term risks worldwide, drawing on the perspectives of experts and global decision-makers. Over that time, analysis has moved from risk identification to thinking through risk interconnections and the potentially cascading effects that result. Taking this effort one step further, this year's report underscores potential causes as well as solutions to global risks. Not only do we set out a view on 28 global risks in the report's traditional categories (economic, environmental, societal, geopolitical and technological) but also we consider the drivers of those risks in the form of 13 trends. In addition, we have selected initiatives for addressing significant challenges, which we hope will inspire collaboration among business, government and civil society communitie

    Future exposure modelling for risk-informed decision making in urban planning

    Get PDF
    Population increases and related urban expansion are projected to occur in various parts of the world over the coming decades. These future changes to the urban fabric could fundamentally alter the exposure to natural hazards and the associated vulnerability of people and the built environment with which they interact. Thus, modelling, quantifying, and reducing future urban disaster risk require forward-looking insights that capture the dynamic form of cities. This paper specifically focuses on the exposure component of dynamic natural-hazard disaster risk, by considering urban planning as the centre of future exposure characterisation in a given region. We use the information provided by urban plans and propose an integrated data structure for capturing future exposure to hazards. The proposed data structure provides the necessary detailing for both future physical and socio-demographic exposure in disaster risk modelling. More specifically, it enables users to develop a comprehensive multi-level, multi-scale exposure dataset, characterising attributes of land use, buildings, households and individuals. We showcase the proposed data schema using the virtual urban testbed Tomorrowville. In this case study, we also demonstrate how simplified algorithmic procedures and disaggregation methods can be used to populate the required data. This implementation demonstrates how the proposed exposure data structure can effectively support the development of forward-looking urban visioning scenarios to support decision-making for risk-sensitive and pro-poor urban planning and design in tomorrow's cities
    corecore