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A B S T R A C T

Population increases and related urban expansion are projected to occur in various parts of the
world over the coming decades. These future changes to the urban fabric could fundamentally
alter the exposure to natural hazards and the associated vulnerability of people and the built
environment with which they interact. Thus, modelling, quantifying, and reducing future urban
disaster risk require forward-looking insights that capture the dynamic form of cities. This paper
specifically focuses on the exposure component of dynamic natural-hazard disaster risk, by
considering urban planning as the centre of future exposure characterisation in a given region.
We use the information provided by urban plans and propose an integrated data structure
for capturing future exposure to hazards. The proposed data structure provides the necessary
detailing for both future physical and socio-demographic exposure in disaster risk modelling.
More specifically, it enables users to develop a comprehensive multi-level, multi-scale expo-
sure dataset, characterising attributes of land use, buildings, households and individuals. We
showcase the proposed data schema using the virtual urban testbed Tomorrowville. In this
case study, we also demonstrate how simplified algorithmic procedures and disaggregation
methods can be used to populate the required data. This implementation demonstrates how the
proposed exposure data structure can effectively support the development of forward-looking
urban visioning scenarios to support decision-making for risk-sensitive and pro-poor urban
planning and design in tomorrow’s cities.

1. Introduction

In the last sixty years, the world’s population has increased from two to eight billion [1] at an unprecedented pace, leading to
notable expansion of urban areas. Cities enable people to gain easier access to labour and critical services such as education and
health (e.g., [2–4]). However, urban development practices in the last century have often contributed to natural-hazard-induced
disaster damages and losses (e.g., [5–8]).

Urbanisation is not slowing down. It is estimated that 70% of the world’s population will be living in cities within the next twenty
years [1], particularly in low and middle-income countries where the vast majority of urban expansion is expected (e.g., [4,9–12]).
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Fig. 1. Phases of urban planning.
Source: Adopted from [39–41].

This will require new structures to be built on undeveloped lands and multiple infrastructure systems to be expanded or improved.
These changes will further alter the exposure of people (including their livelihoods and the built environment with which they
interact) to disaster risk, and it is critical to understand how [11]. Urban planning offers an opportunity to address this challenge
as a forward-looking decision-making process [13] that can contribute to disaster risk prevention. Indeed, urban planning identifies
where (and how, to a certain extent) people will construct buildings, locate public spaces, interact with the natural environment
and connect assets through networks [14,15].

Within this context, we propose an integrated data structure and potential methods and approaches for exposure modelling that
strengthens the link between urban planning and future, people-centred disaster risk-informed decision making facilitated by the
Tomorrow’s Cities Decision Support Environment (TCDSE) [16,17]. The proposed structure is organised into four layers – (i) land
use; (ii) buildings; (iii) households; and (iv) individuals (i.e., people) – that facilitate the creation of detailed future disaster-risk
exposure datasets, leveraging basic information provided by urban plans. The configuration of each layer is carefully developed
through a comprehensive interdisciplinary process involving relevant experts from urban planning, social science, engineering, and
physical science. The proposed data structure ultimately constitutes the spatial (i.e., GIS) backend of the TCDSE Visioning Scenario
Module, which produces a detailed characterisation of the future urban system that is subjected to selected multi-hazard simulations
as part of future impact and risk assessment procedures in further modules [18].

This paper is structured in four main sections: (i) context and motivation for this study, which involves a brief literature review
on urban planning and its interplay with future disaster risk (Section 2); (ii) development of the proposed integrated data structure
(Section 3); (iii) demonstration of the structure in disaster-risk assessment, using a virtual urban testbed named Tomorrowville
(Section 4); and (iv) conclusions of the study (Section 5).

2. Context and motivation

The urban planning process (Fig. 1) typically starts with an exploration phase, in which relevant stakeholders collect and
store pertinent information on the area of interest (e.g., about its population, morphology, geology, the built environment). Then,
this information is processed to generate a conceptual master plan that sets the spatial strategies (i.e., where) and policy frames
(i.e., how) governing zoning principles. The zoning process subsequently divides the land into several zones representing prominent
land uses, such as residential, agricultural, commercial, and industrial (e.g., [19,20]). Criteria such as maximum building height,
population density limits, total built-up area, and minimum building plot area are also defined to shape urban development
according to a set of principles (e.g., [21,22]). After the zoning phase, specific locations for land uses, such as residential buildings,
transportation networks, and public and green spaces, are determined in local implementation plans that provide enhanced detail
on how urbanisation will evolve. Across the various phases of urban planning, scenario development is a relatively new approach
(mainly adopted in the last decade) that creates an opportunity to engage non-expert participation and fosters visionary thinking
(e.g., [23,24]). Scenarios can be regarded as representations of potential urban future alternatives that are conceptualised to test
the efficiency of related decisions and policies (e.g., [24,25]). A recent review of scenario development methods can be found
in [26]. These methods can be classified into three categories [27]: (1) predictive (forecasting); (2) normative (visioning and
backcasting); and (3) exploratory. Predictive scenarios try to estimate the most-likely future configurations of an urban context.
Normative scenarios aim for the most desired ones. Exploratory scenarios search for multiple alternative future configurations,
accounting for underlying uncertainties [28,29]. There are also hybrid modes of scenario development, where planners rely on
flexible methods in highly complex/data-scarce contexts (e.g., [30]). The information provided by these approaches relates to the
future form of buildings, infrastructure and socio-economic and demographic characteristics, which are particularly important for
assessing the consequences of urban development and enhancing related decision-making processes (e.g., [31,32]). At the core of all
scenario-development processes, interdisciplinarity plays an important role that requires interaction, collaboration, and know-how
transfer among disciplines [33]. Interdisciplinary approaches in urban planning include both qualitative (e.g., insights, narratives,
and social norms) and quantitative (e.g., environmental trends, built environment) aspects (e.g., [34,35]). Despite the effectiveness
of scenario development approaches in representing future urban systems, only a few urban scenario studies address future disaster
risk (e.g., [36–38]).

It is well recognised that hazards, vulnerabilities and exposure comprising disaster risk change over time (e.g., [42–44]). Yet,
their consideration in disaster risk analyses is not future-centric and sufficiently dynamic [45]; current modelling approaches
generally estimate risk using a snapshot of the relevant conditions at one point in time. In acknowledged disaster risk assessment
frameworks and products such as Hazards United States (HAZUS; [46]), Global Earthquake Model (GEM; [47]), OASIS Loss Modelling
2
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Framework [48], and the Risk Data Library Standard [49], exposure information reflects the present/current situation and has
no connection with the future urban context. There are also approaches that try to estimate future urban growth and exposure
based on Multiple Agent Systems and Cellular Automata techniques (e.g., [50,51]) for instance, but that disregard urban planning
interventions.

This backdrop implies that neither urban planning practice nor disaster risk assessment approaches follow an integrated way
f characterising future urban exposure. Hence, the effectiveness of urban planning in reducing disaster risk has not been formally
valuated yet [52–54]. For instance, flood events in Europe in 2013 (e.g., [55,56]) and 2021 (e.g., [57]) and in Australia in 2011
e.g., [58]) emphasise the existence of gaps in urban planning with respect to disaster risk considerations (e.g., [59,60]). These are
artially attributed to the fact that the urban planning process often depends on forecasts driven by past experiences and limited
mpirical data (e.g., [61]), despite its futuristic core [62]. In addition, expert-oriented and linear (top-down) approaches in planning
annot easily facilitate diverse stakeholders’ perspectives and priorities (e.g., [63]). Yet, these are critical for a holistic understanding
f disaster risk and its successful integration within the urban planning process (e.g., [64]).

. Development of an integrated data structure for future exposure modelling

To provide a basis for risk-informed decision making in future urban planning and design, we propose a detailed exposure
ata structure developed considering the results of a comprehensive interdisciplinary effort [65]. In summary, the knowledge and
erspectives of different disciplines helped us to holistically identify and explore the characteristics of an urban system that are
elevant for bridging the gap between urban planning and future disaster risk understanding and modelling. The structure represents
future urban scenario by formally capturing four components (i.e., dimensions or layers) of an urban context: (i) land use; (ii)

uilding; (iii) household; (iv) individuals, necessary for people-centred disaster risk quantification.
The proposed data structure leverages a GIS-based approach, where each data layer is kept in a GIS-compatible format either

n vector or tabular form. A vector represents a feature using a geometrical object (i.e., point, line, polygon) constructed by one or
ore connected vertices [66]. A vertex describes a position using coordinates such as X, Y and Z [67]. A single vertex represents a
oint (e.g., the centre of a building footprint). If the geometry consists of two or more vertices and the first and last vertex are not
qual, a polyline feature is formed (e.g., road, river). Where three or more vertices are present, and the last vertex is equal to the
irst, an enclosed polygon feature (e.g., building footprint) is formed. The vector data form includes an integrated table structure
hat defines the attributes (fields) of each feature (e.g., a table of building footprint polygons including attributes/fields such as
he ‘‘number of storeys’’ and ‘‘construction type’’). As geometrical attributes (area of a polygon, coordinates of the vertices and
oints) are stored automatically at the backend in GIS, they are excluded from the final proposed data structure. The household
nd individual information are stored in tabular format on a relational basis.

The exposure dataset is produced for a time in the future 𝑡𝑓 according to the proposed data structure, through the interdisciplinary
rocess depicted in Fig. 2. First, the planning extent is selected and subdivided into zones that define the aggregated projected
and-use types (stored in the land-use plan layer). The land-use information is used in conjunction with assumptions on future
azards, buildings/physical infrastructure, and socio-economic characteristics to generate spatial information on building locations
nd their attributes (stored in the building layer) as well as on households living in those buildings. The building layer is enriched
ith building taxonomy information to facilitate the physical infrastructure impact quantification within disaster risk assessments.
ocio-economic and demographic projections are used for characterising data on households (stored in the household layer) and
ndividual people within each household (stored in the individual layer).

Exposure development based on the proposed data structure is a hybrid scenario generation process, combining the predictive
nd exploratory scenario development approaches described in Section 2. It is predictive as we attempt to project physical and
ocio-economic/demographic attributes in a realistic way. It is exploratory as we create different future exposure scenarios to cover
wide range of urban development options that may occur. This hybrid scenario development approach is useful in disaster risk

revention, in which decision-making requires an awareness of all of the uncertainties involved. There is no expectation that any
articular projection will be realised, but the uncertain scenarios produced are useful for relative comparisons of the associated
isaster risk consequences. In the following sub-sections, we provide details on what the proposed data structure must include by
eans of attributes (Sections 3.1 to 3.4) and how these attributes can be generated based on several techniques (Section 3.5).

.1. Land-use plan layer

Land-use zoning can be regarded as the main task of urban planning, in which stakeholders (e.g., governments, municipalities,
ommunities, researchers, private sector) decide the future functionality of a given space for a certain period (e.g., [68]). A land-use
lan layer typically includes attributes on the type of use and the associated maximum population densities, floor area ratio and/or
etback distances (e.g., [69]) of the given space. These attributes determine how and by how many people an urban space can be
nhabited in the future [70]. The land-use plan layer of our proposed data structure broadly follows this convention, incorporating
ome supplementary attributes related to socio-economic status (SES) and demographic characteristics. SES-related attributes can
e defined based on the acknowledged literature that suggests income, education and occupation as the main components defining
ES (e.g., [71]). Among these three attributes, we use income level as a proxy to represent SES within the boundaries of a land-use
ype, because income-based segregation within residential areas is quite common (e.g., [72–75]). The proposed land-use attributes
3
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Fig. 2. Development of exposure data, based on the proposed data structure.

Table 1
The attribute table of the land-use plan layer. Unless specified otherwise, all attributes correspond to time 𝑡𝑓 .

Field Alias Definition Type

zoneID Zone ID Unique land-use zone (polygon) identifier number Integer
LuF Proposed land-use type Land-use type of the zone String
population Initial population Number of people inhabiting the zone at the time of generating the

land-use plan (𝑡0)
Integer

densityCap Maximum density capacity Maximum number of persons per hectare of the zone (density
capacity of the zone)

Float

setback Setback distances Minimum distance of the building footprint boundaries from the
outer land parcel boundaries or a road

Float

floorAreaRatio Floor area ratio Ratio of building plot over building’s parcel area (land plot) Float
avgIncome Average income level Average income level of households residing within the zone String

3.2. Building layer

The proposed building layer includes a list of the minimum attributes required for quantifying related future natural-hazard-
induced impact metrics. Each building is assigned a unique building ID linked to the land-use layer through the ‘‘zoneID’’ field,
which contains the ID of the land-use zone (polygon) hosting the building. The attribute ‘‘specialFac’’ identifies the special facility
status of the building; it is an integer equal to zero for ‘‘standard’’ occupancy types (i.e., residential, commercial, industrial) and
greater than zero for special occupancy types (e.g., 1 for schools, 2 for hospitals). The ‘‘repValue’’ attribute indicates the absolute
economic cost of replacing the building in case of complete reconstruction. This attribute could incorporate 𝑡𝑓 -dependent price
fluctuations (e.g., inflation) if necessary for the application of interest, which would need to be applied in a consistent manner
across all buildings to enable relative comparisons of building values. For buildings with residential occupations, the ‘‘nHouse’’ and
‘‘residential’’ attributes respectively indicate the number of households and residents within the building. These two attributes are
equal to zero for non-residential buildings; the theoretical maximum number of people that would occupy these buildings at any
point can be approximated as the total number of individuals that rely on them (identified through the ‘‘communityFacID’’ of the
household layer and the ‘‘indivFacID’’ of the individual layer — see Sections 3.4 and 3.5). (Note that temporal variations in building
occupancy are not explicitly accounted for within the current version of the proposed data structure, but will be integrated as part
of a future update.)

Physical attributes of each building related to the physical impacts of natural hazards are condensed in the exposure taxonomy
string attribute (Field:expStr). The global exposure database for all (GED4ALL) [76] taxonomy string format is used for the proposed
data structure, since it facilitates the consideration of different asset classes (i.e., buildings, roads, railways, bridges, pipelines,
4



International Journal of Disaster Risk Reduction 90 (2023) 103651E.Y. Menteşe et al.

o
w
L
a
d

Table 2
Complete set of GED4ALL attributes for buildings exposed to different hazards. OSM:
OpenSteetMap. (Modified after [78]).

Attribute OSM Key

Direction building:direction
Material of LLRS building:lateral:material
Lateral Load Resisting System (LLRS) building:lateral:system
Height building:levels
Date of construction or retrofit building:age
Surroundings building:adjacency
Occupancy building
Shape of building plan building:shape
Structural irregularity building:irregularity
Ground floor hydrodynamics ground_floor
Exterior walls building:material
Roof shape roof:shape
Floor system material floor:material
Foundation building:foundation
Fire protection building:fireproof

Table 3
The attribute table of the building layer. All attributes correspond to time 𝑡𝑓 .

Field Alias Definition Type

zoneID Parent land-use zone ID Unique ID number of the land-use zone where the building is located Integer
bldID Building ID Unique ID number for each building Integer
specialFac Special facility status Number corresponding to the ‘‘special facility’’ status of the building Integer
repValue Replacement value Total replacement value of the building Float
nHouse Number of households Number of households residing in the building Integer
residents Residents Number of individuals residing in the building Integer
expStr Exposure taxonomy string Taxonomy string based on GED4ALL String

storage tanks, power grids, energy generation facilities, crops, livestock, forestry, and socio-economic data), and different hazards
(i.e., earthquakes, volcanoes, floods, tsunamis, storms, cyclones and drought). Table 2 provides the GED4ALL attributes for buildings,
also highlighting how they are mapped to the keys (or tags) in the OpenStreetMap database [77], a large open-source mapping
repository.

For example, the lateral load resisting system attribute is used to define physical vulnerability to earthquakes and wind (among
ther hazards), the presence of a basement affects flooding vulnerability, and the roof typology (and its features) influences
indstorm vulnerability. Each attribute of the GED4ALL string can be defined with different levels of refinement (i.e., from Level 1 to
evel 3) to accommodate various levels of data availability. An example of a Level 1 string is CR/H:1/LWAL/IND, which indicates
one-storey reinforced concrete industrial building with a wall lateral load-resisting system. Level 2 information could include

ata on the material technology, for instance, which may be cast in place (CR+CIP) in the above example. A Level 3 string could
include secondary information related to primary (Level 2) structural irregularities, such as the presence of torsion eccentricity and
a re-entrant corner for the above example (IRIR+IRPP:TOR+IRPS:REC). For each asset class, detailed documentation is provided
at [79]. The GED4ALL string easily links the specific combination of building attributes to a specific physical impact model (single-
or multi-hazard-fragility or vulnerability relationships). Specific details on how to characterise this link are provided elsewhere [78].
The attribute table of the building layer is provided in Table 3.

3.3. Household layer

This layer represents the social connections of individuals who are members of the same households and can be leveraged to
capture their collective experience of a natural-hazard-related disaster. This layer is interconnected with the underlying residential
building information through the "bldID" attribute. This field also makes it possible to determine which land-use zone the household
is living in and what type of socio-economic status is dominant in the area (Table 4).

Indicating a household’s income level (Field:income) enables impact metrics to be disaggregated based on the socio-economic
characteristics of affected people. This is essential for highlighting disproportionate impacts of natural-hazard events that are
often experienced by the poorest households. Low-income households are generally exposed to and affected by hazards more
than wealthier ones, since they lose a more significant portion of their income and assets in case of a disaster (e.g., [80,81])
and have fewer resources to recover after a disaster event. Note that the ‘‘income’’ attribute is a relative categorical variable, and
therefore implicitly accounts for 𝑡𝑓 dependent inflation, for instance. The layer includes information on the closest critical facilities
to the household (Field:communityFacID) – which could include medical facilities, schools, or grocery stores, for instance – to help
determine consequences that arise from a lack of accessibility to these services after a disaster [17].
5
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Table 4
The attribute table of the household layer. All attributes correspond to time 𝑡𝑓 .

Field Alias Definition Type

bldID Parent building ID ID Unique ID number of the residential building in which the
household lives

Integer

hhID Household ID Unique ID number for each household Integer
income Household income String indicating the level of income of the household String
nInd Number of individuals Number of individuals living in the household Integer
communityFacID Community facility ID Unique ID numbers of the closest critical facilities (e.g., hospital,

grocery store, fire station) to the household’s residence
Vector

Table 5
The attribute table of the individual layer. All attributes correspond to time 𝑡𝑓 .

Field Alias Definition Type

hhID Parent household ID Unique ID number of the household to which the individual belongs Integer
indivID Person ID Unique ID number of the individual Integer
gender Gender Number indicating the gender of the individual Integer
age Age Number indicating the age range of the individual Integer
head Head of household status Number indicating whether this individual is the head of household Integer
eduAttStat Education attainment status Number indicating the education attainment level of an adult

individual
Integer

indivFacID Individual facility ID Unique ID numbers of the buildings that the individual regularly
visits (can be workplace, school, etc.)

Vector

3.4. Individual layer

Documenting the characteristics of future individual members of an urban system is critical for quantifying people-centred
isaster-risk impacts, such as unemployment, displacement, and inaccessibility to education [17]. The attribute table of the
ndividual layer (Table 5) includes information on gender (Field:gender), age (Field:age), educational attainment (Field:eduAttStat)
nd head-of-household status (Field:head), which are widely used indicators of social vulnerability (e.g. [82–85] that can be
everaged to distinguish a person’s general reliance on the built environment. For instance, a child may depend on a school, a
orking adult of high educational attainment may work in an office, and a woman of low educational attainment who is not the head
f the household may spend a significant amount of time at their residence. These dependencies – which are documented in terms
f individual buildings within the attribute table (Field:indivFacID) – can then be used to characterise the consequent disruption
o daily lives that would result from disaster-induced damage to the built environment. Note that these individual facilities are
ifferent from the buildings provided for ‘‘communityFacID’’ in the household layer; meaning that these buildings are specifically
elevant for a given individual and do not necessarily serve the same household members.

.5. Potential data generation approaches

It is important to acknowledge that the detailed projections on discrete buildings, households, and individuals required to
opulate the proposed data structure are unlikely to be available for most urban contexts. However, disaggregation of available
oarser projected data into separate buildings, households, and individual units can be achieved using various techniques.

Procedural modelling (PM), which is defined as the development of content through a procedure or a set of prescribed
arameters [86,87], enhances the spatial details of urban plans based on criteria defined in master planning and zoning processes
e.g., [88]). PM is increasingly being adopted in urban planning practice (e.g., [89–92]). The creation of urban layouts via procedural
lgorithms was first introduced by [93], which leverages geography, population density and geographical extents as input data.
gent-based modelling approaches are also used in PM to generate building layout patterns (e.g., [94]) and to guide interactions

hat ultimately lead to the creation of land use zones such as residential, commercial, industrial, recreation, and roads (e.g., [95]).
M can also be used to generate terrain, vegetation and water bodies that are essential for comprehensive characterisation of a
patial context [96]. A detailed, relatively recent literature review on PM can be found in [97].

Although not explicitly connected with urban planning practice, disaggregation of coarse exposure datasets based on ancillary
nformation, also called ‘‘dasymetric mapping’’ (e.g., [98]), is a common approach used to enhance the resolution of urban-layout
ata within quantitative disaster risk assessments [37]. It involves transforming aggregated information (i.e., the population at the
ity level) into more local units (i.e., neighbourhood level) that capture the spatial distribution of information in finer detail [99].
n a recent related study across Europe by [100], it is found that disaggregating exposure information to finer resolution increases
he accuracy of earthquake loss estimation analysis.

Synthetic population generation algorithms, which are widely employed as part of different applications involving space-
ependent data for individual decision-making (e.g., mobility, disease spreading, population energy demand, and population
6
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Table 6
Assigned attribute values in the land-use plan layer.

LuF Population densityCap avgIncome

Agriculture 1308 40 lowIncomeA
CityCentre 1049 300 midIncome
CommercialResidential 556 250 midIncome
CommercialResidential 1107 250 midIncome
CommercialResidential 443 250 lowIncomeA
CommercialResidential 273 250 lowIncomeA
HistoricalPreservation 914 350 na
Industry 0 125 na
Recreation 0 0 na
Residential (Gated Neighbourhood) 1297 100 highIncome
Residential (High-Density) 5437 350 lowIncomeB
Residential (High-Density) 4069 350 lowIncomeA
Residential (Moderate-Density) 2028 200 highIncome
Residential (Moderate-Density) 11 776 250 midIncome
Residential (Moderate-Density) 6309 250 lowIncomeB
Residential (Low-Density) 2501 100 highIncome

growth), can be used to translate micro samples of buildings, households, or individuals and account for marginal distributions of
their attributes in relevant synthetic datasets. Furthermore, activity-based (or human mobility) models, which represent a person’s
daily travel demand, can be leveraged to capture the dynamic dependencies of individuals on the built environment and determine
their interaction with physical assets. Interested readers are referred to Appendix A (Table A.8) and Appendix B (Table B.9) for
more details on synthetic population generation and activity-based modelling, respectively.

4. Case-study demonstration — Tomorrowville

The case-study demonstration in this section showcases how the proposed future exposure data structure can be adopted for
Global South data-scarce context, where simplistic ad-hoc procedures are necessary for generating the required data. We use a

00 ha virtual urban testbed called Tomorrowville, which represents a Global South urban setting based on Nairobi (Kenya) and
athmandu (Nepal) contexts, and is currently (at 𝑡0) home to 39,058 people. The exposure dataset is generated for a time 50 years

n the future (i.e., 𝑡𝑓 = 𝑡50) when Tomorrowville is expected to cater for a population of approximately 80,000 people.
Producing Tomorrowville relied on a seven-month-long interdisciplinary scenario development process involving 19 researchers

nd experts from different disciplines, such as engineering, physical science, risk modelling, social sciences and urban planning. This
rocess ultimately defined assumptions on future urbanisation patterns [65], which were used to populate the urban characteristics
f Tomorrowville visioning scenarios based on the proposed exposure data structure. These assumptions are based on relevant studies
f Kathmandu and Nairobi [101–106] as well as expert judgement. Note that some attributes within the proposed data structure
re neglected for this application, given the underlying data scarcity (highlighting the ability of the proposed structure to adapt to
pecifically challenging circumstances).

.1. Land-use plan layer

Future land-use types within Tomorrowville address pertinent demands for housing, workplaces, and public services (e.g., school,
ospital), and facilitate agricultural areas as well as natural environment spaces (i.e. forests). There is also a historical preservation
rea with a unique socio-cultural significance, representing an ‘‘old-town’’ settlement. Assignment of attribute values for the land-use
lan layer are summarised in Table 6. (Note that the ‘‘floorAreaRatio’’ and ‘‘setback’’ fields are not used in the case study, since
omorrowville does not have defined land plots in yet-to-be developed areas).

Residential zones are classified on the basis of population density into four land-use types: (i) ‘‘low-density residential’’;
ii) ‘‘moderate-density residential’’; (iii) ‘‘high-density residential’’; and (iv) ‘‘gated neighbourhood’’. The ‘‘avgIncome’’ field has
our possible values: (i) ‘‘highIncome’’; (ii) ‘‘moderateIncome’’; (iii) ‘‘lowIncomeA’’; and (iv) ‘‘lowIncomeB’’, where ‘‘lowIncomeA’’
epresents a relatively higher income level than ‘‘lowIncomeB’’. The ‘‘CityCentre’’ zone is located close to the high-income
esidential areas. It includes commercial and governmental uses as suggested by urban planning and social scientists to represent a
usiness district within Tomorrowville. The ‘‘CommercialResidential’’ land-use type represents a mixed occupation, including both
ommercial and residential uses. It reflects the expert recommendations of local Kathmandu researchers in the interdisciplinary
eam, who noted that buildings consisting of commercial units on the first two floors and residences on higher floors are particularly
ommon in the Kathmandu region. Each zone and its avgIncome value (where relevant) are shown in Fig. 3. Tomorrowville datasets
an be found at https://github.com/TomorrowsCities/Tomorrowville.
7

https://github.com/TomorrowsCities/Tomorrowville


International Journal of Disaster Risk Reduction 90 (2023) 103651E.Y. Menteşe et al.
Fig. 3. Tomorrowville land-use plan and projected income levels.

Table 7
Input variables for the residential building data generation algorithm.

Variable explanation Symbol Applies to Source

Current population 𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡 Whole area User assumption
Projected population at 𝑡𝑓 (i.e., 50 years
in the future in this case)

𝑃𝑡𝑎𝑟𝑔𝑒𝑡 Whole area User assumption, consistent with
‘‘densityCap’’ field values

Current population density 𝑑(𝑝𝑜𝑙𝑦) Each polygon User assumption
Population density capacity 𝑑𝑐𝑎𝑝(𝑝𝑜𝑙𝑦) Each polygon ‘‘densityCap’’ field values
Area 𝐴(𝑝𝑜𝑙𝑦) Each polygon Geometrical attributes of the

land-use plan layer
Building footprint area probability
distribution

𝐴𝑏(𝑝𝑜𝑙𝑦) Each polygon User assumption

Pertinent characteristics (e.g., average,
variance, . . . ) of 𝐴𝑏(𝑝𝑜𝑙𝑦)

𝐴𝑏(𝑝𝑜𝑙𝑦);
𝜎2(𝐴𝑏)(𝑝𝑜𝑙𝑦)

Each polygon User assumption

Average number of storeys 𝑁𝑠(𝑝𝑜𝑙𝑦) Each polygon User assumption
Average building area per household 𝐴ℎ(𝑝𝑜𝑙𝑦) Each polygon User assumption
Average household size 𝑁ℎ𝑐 (𝑝𝑜𝑙𝑦) Each polygon User assumption

4.2. Building layer

Three building layers have been created for Tomorrowville. The first building layout (𝑇𝑉 0𝑏0; Fig. 4) refers to the present-day
configuration of Tomorrowville (at 𝑡0), which includes 4,810 buildings. Approximately 60% of these buildings belong to ‘‘high
density’’ land-use zones (polygons), 13% are in ‘‘medium density’’ ones, 14% belong to ‘‘low density’’ ones, and the remaining
13% are spread across other land-use zones. To reflect a Global South context, 𝑇𝑉 0𝑏0 buildings primarily consist of low-rise (1–4
storey) masonry buildings. Reinforced concrete structures constitute 27% of buildings, 85% of which are mid-rise (4 to 9 storeys)
(e.g., [104,105]). There are also adobe and stone buildings located in low-income zones.

The other two building layers (𝑇𝑉 50𝑏1 and 𝑇𝑉 50𝑏2) represent different possible configurations of the buildings to be built within
the next 50 years (described below and shown in Fig. 5). To create these building layouts, we developed a data generation algorithm
to: (i) synthetically generate a set of buildings consistent with an assumed population demand; and (ii) assign building-by-building
attributes (see Tables 2 and 3) based on coarser data (e.g., land-use data) and a set of assumed input parameters (Appendix C,
Table C.10). The algorithm requires various inputs that may be related to the entire urban area, the ‘‘avgIncome’’ value of the
associated land-use zone (polygon), or the ‘‘LuF’’ value of the associated land-use zone. The input variables, and their spatial scope
of application, are detailed in Table 7.
8
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Fig. 4. 𝑇𝑉 0𝑏0 building layout.

The first step of the algorithm involves calculating the ‘‘effective’’ population density 𝑑𝑒𝑓𝑓𝑐𝑎𝑝 (𝑝𝑜𝑙𝑦) of each land-use zone (polygon)
according to Eq. (1).

𝑑𝑒𝑓𝑓𝑐𝑎𝑝 (𝑝𝑜𝑙𝑦) = 𝑑𝑐𝑎𝑝(𝑝𝑜𝑙𝑦) − 𝑑(𝑝𝑜𝑙𝑦) (1)

Given the current population of the case-study area (𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡) based on the ‘‘Population’’ field values, the additional population to
allocate in the considered scenario is equal to 𝑃𝑡𝑎𝑟𝑔𝑒𝑡−𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡, where 𝑃𝑡𝑎𝑟𝑔𝑒𝑡 = 80,000. Each polygon is allocated a share of population,
𝑝𝑎𝑙𝑙𝑜𝑐 (𝑝𝑜𝑙𝑦), proportional to 𝑑𝑒𝑓𝑓𝑐𝑎𝑝 (𝑝𝑜𝑙𝑦):

𝑝𝑎𝑙𝑙𝑜𝑐 (𝑝𝑜𝑙𝑦) = (𝑃𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
𝑑𝑒𝑓𝑓𝑐𝑎𝑝 (𝑝𝑜𝑙𝑦)𝐴(𝑝𝑜𝑙𝑦)
∑

𝑝𝑜𝑙𝑦 𝑑
𝑒𝑓𝑓
𝑐𝑎𝑝 (𝑝𝑜𝑙𝑦)

(2)

The algorithm involves using Monte Carlo sampling to generate, for each polygon, residential buildings of a random footprint area
𝐴𝑏(𝑏𝑙𝑑) according to a selected distribution (𝑝(𝐴𝑏(𝑝𝑜𝑙𝑦))) until 𝑝𝑎𝑙𝑙𝑜𝑐 (𝑝𝑜𝑙𝑦) is met. This condition is monitored by calculating the
number of households allocated in each generated residential building ℎ𝑎𝑙𝑙𝑜𝑐 (𝑏𝑙𝑑) (Eq. (3)) and keeping track of the cumulative sum
of allocated people, 𝑝𝑎𝑙𝑙𝑜𝑐 (𝑏𝑙𝑑) from the average household size 𝑁ℎ𝑐 (𝑝𝑜𝑙𝑦).

ℎ𝑎𝑙𝑙𝑜𝑐 (𝑏𝑙𝑑) = round
(

𝐴𝑏(𝑏𝑙𝑑)𝑁𝑠(𝑝𝑜𝑙𝑦)
𝐴ℎ(𝑝𝑜𝑙𝑦)

)

(3)

Based on expert judgement within the interdisciplinary group, 𝑝(𝐴𝑏(𝑝𝑜𝑙𝑦)) are assumed to be uniform distributions for all residential
buildings in this specific case study: the limits of the distributions for residential buildings are equal to [32,66] m2 for land-use zones
with ‘‘lowIncomeA’’ and ‘‘lowIncomeB’’ avgIncome field values, [32,78] m2 for zones with ‘‘midIncome’’ avgIncome field values,
and [70,132] m2 for zones with ‘‘highIncome’’ avgIncome field values. 𝐴 (𝑝𝑜𝑙𝑦) values are 44 m2, 54 m2, and 67 m2, respectively,
9
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Fig. 5. Adopted distributions for the building data generation algorithm: (a) 𝑝(𝑜𝑐𝑐|𝑝𝑜𝑙𝑦𝑡); (b) 𝑝(𝑙𝑟𝑠|𝑝𝑜𝑙𝑦𝑡); (c) 𝑝(ℎ|𝐴𝑑𝑏, 𝑝𝑜𝑙𝑦𝑡), also valid for BrCfl, BrCri, BrM; (d)
𝑝(ℎ|𝑅𝑐𝑖, 𝑝𝑜𝑙𝑦𝑡). Res: residential; Com: commercial; Ind: industrial; BrCfl: brick and cement with flexible floor; BrCri: brick and cement with rigid floor; BrM: brick
and mud.

for polygons with ‘‘lowIncomeA/B’’, ‘‘midIncome’’, and ‘‘highIncome’’ avgIncome field values. 𝑁ℎ𝑐 (𝑝𝑜𝑙𝑦) is respectively equal to 2,
4, and 3 for polygons with ‘‘lowIncomeA/B’’, ‘‘midincome’’, and ‘‘highIncome’’ avgIncome field values.

To complete the definition of the 𝑇𝑉 50𝑏1 and 𝑇𝑉 50𝑏2 residential building layers according to Section 3.2 (Fig. 6), each generated
residential building must be assigned a GED4ALL taxonomy string so that it is possible to associate it with relevant multi-hazard
physical impact models [78]. The next steps of this algorithm use Monte Carlo sampling to randomly characterise the generated
residential buildings accordingly. The variables involved in this sampling are the various parameters of the GED4ALL taxonomy
strings. Based on the available data, we describe the taxonomy strings using four main attributes: occupancy type (𝑜𝑐𝑐), construction
material and lateral load resisting system (𝑙𝑟𝑠), height (ℎ), and design code level (𝑐𝑜𝑑𝑒). An extension of the presented procedure
to include more attributes is straightforward.

The next steps of the algorithm are as follows:

• For each unique combination of general land-use type and ‘‘avgIncome’’ that features across the prescribed land-use zones (see
Table 6) – denoted as 𝑝𝑜𝑙𝑦𝑡 – assign the distribution of occupancy type, 𝑝(𝑜𝑐𝑐|𝑝𝑜𝑙𝑦𝑡) (Fig. 5a);

• For each 𝑝𝑜𝑙𝑦𝑡, define the distribution of the building construction material and lateral resisting system, 𝑝(𝑙𝑟𝑠|𝑝𝑜𝑙𝑦𝑡). The 𝑙𝑟𝑠
distributions adopted for both 𝑇𝑉 50𝑏1 and 𝑇𝑉 50𝑏2 are shown in Fig. 5b;

• For each unique combination of 𝑙𝑟𝑠 and 𝑝𝑜𝑙𝑦𝑡, define the distribution of the building heights, 𝑝(ℎ|𝑙𝑟𝑠, 𝑝𝑜𝑙𝑦𝑡). The adopted
distributions for both 𝑇𝑉 50𝑏1 and 𝑇𝑉 50𝑏2 are shown in Fig. 5c for the Adb, BrCfl, BrCri, BrM buildings and Fig. 5d for the
RCi buildings;

• For each unique combination of 𝑙𝑟𝑠 and 𝑝𝑜𝑙𝑦𝑡, define the distribution of the building design code level (low, moderate, high),
𝑝(𝑐𝑜𝑑𝑒|𝑙𝑟𝑠, 𝑝𝑜𝑙𝑦𝑡). For Tomorrowville, this is achieved by mapping data on year of construction to the evolution of the building
design code in Kathmandu (as detailed in [78]);

• For each polygon and its generated residential buildings: (i) sample the parameters 𝑙𝑟𝑠, ℎ, 𝑐𝑜𝑑𝑒 using the above distributions;
and (ii) define and assign the corresponding GED4ALL string (see [78]).
10
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Fig. 6. TV50 buildings added to 𝑇𝑉 0𝑏0 (resulting in a total of 10,156 buildings) in the (a) 𝑇𝑉 50𝑏1 scenario, and the (b) 𝑇𝑉 50𝑏1 scenario.

Non-residential (i.e., commercial and industrial) buildings are generated until they comply with the 𝑝(𝑜𝑐𝑐|𝑝𝑜𝑙𝑦𝑡) distributions
and assumptions for TV50 specified in Table C.10 and shown in Fig. 5a. 𝑝(𝐴𝑏(𝑝𝑜𝑙𝑦)) uniform distribution limits for commercial
and industrial buildings are [12,88] m2. These buildings are assigned GED4ALL strings according to the procedure described for
residential buildings.

The next step of the algorithm assigns a location to the generated buildings within each polygon. This may be determined from
the urban design process itself (conditioned on criteria related to distances between buildings, their potential connection through
transportation and the digital elevation model of the area), and is therefore not prescribed in detail here. For the specific case
of 𝑇𝑉 50𝑏1, we first randomly allocated buildings within their corresponding polygon, and finalised an ad-hoc urban layout by
manually shifting and rotating the building footprints in the GIS environment, in line with the advice of urban planning experts
on the interdisciplinary team. We also manually added two hospitals and ten schools. 𝑇𝑉 50𝑏2 represents a rearrangement of the
buildings within 𝑇𝑉 50𝑏1 to avoid development in areas affected by flooding and debris flows [107] (see Fig. 6).

4.3. Household layer

Information sources used to generate the household (and individual) data comprise a combination of expert judgement and
geographically relevant literature and are described in Appendix D.11 (which also provides the values for each variable). Given the
lack of detailed information, we use a straightforward Monte Carlo sampling strategy to sample uncertain household and individual
attributes. It is assumed that the population across Tomorrowville (and each land-use zone that includes residential buildings) is
evenly split between male and female genders, in the absence of more detailed data. Field:nInd is first sampled according to a
distribution conditional on the avgIncome field value of the land-use zone in which the household is located, 𝑝(𝑛𝐼𝑛𝑑|𝑎𝑣𝑔𝐼𝑛𝑐𝑜𝑚𝑒)
(the ‘‘income’’ attribute’ is neglected in this case study, since household incomes are assumed not to vary significantly with
respect to the corresponding avgIncome assignment). The head of each household is assigned a gender (𝑔𝑒𝑛𝑑𝑒𝑟ℎℎ) according to the
conditional distribution, 𝑝(𝑔𝑒𝑛𝑑𝑒𝑟ℎℎ|𝑎𝑣𝑔𝐼𝑛𝑐𝑜𝑚𝑒). The age of the head of household (𝑎𝑔𝑒ℎℎ) is sampled according to the conditional
distribution, 𝑝(𝑎𝑔𝑒ℎℎ|𝑎𝑣𝑔𝐼𝑛𝑐𝑜𝑚𝑒, 𝑔𝑒𝑛𝑑𝑒𝑟ℎℎ), where 𝑎𝑔𝑒ℎℎ accounts for only those old enough to be head of household (𝑎𝑔𝑒ℎℎ,𝑚𝑖𝑛). Each
remaining person in a household is equally likely to be of either gender and has an age that is sampled according to the conditional
distribution, 𝑝(𝑎𝑔𝑒|𝑎𝑣𝑔𝐼𝑛𝑐𝑜𝑚𝑒, 𝑔𝑒𝑛𝑑𝑒𝑟). Thus, there are no explicit dependencies between the age and/or gender of members of the
same household. Field:communityFacID is assumed to comprise the nearest hospital building.
11
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4.4. Individual layer

The age and gender field values are assigned as discussed in Section 4.3. The ‘‘eduAttStat’’ attribute (possible values are ‘‘none’’:
o schooling, ‘‘primary’’: primary schooling only, ‘‘secondary’’: secondary schooling only, and ‘‘university’’: college- or university-
evel education) is sampled independently for all adults (i.e., for which 𝑎𝑔𝑒 ≥ 𝑎𝑔𝑒𝑎𝑑𝑢𝑙𝑡; see Appendix D, Table D.11). Adults with
𝑒𝑑𝑢𝐴𝑡𝑡𝑆𝑡𝑎𝑡 = 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 less than or equal to the oldest age at which a person typically attends university (𝑎𝑔𝑒𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦) are assumed
o attend university or some other tertiary institute outside of Tomorrowville. Field:indivFacID covers workplaces and schools in
his case study.

All non-college-attending adults less than a retirement age that is specific to the avgIncome field value of the land-use zone in
hich they reside (i.e., 𝑎𝑔𝑒𝑜𝑙𝑑 ; see Appendix D, Table D.11) are assigned a broad workplace location (𝑤𝑝) category (i.e., ‘‘𝑝𝑜𝑙𝑦𝑡’’ value,
ut including the possibility of unemployment) according to distributions conditional on gender, the avgIncome field of the land-use
one in which they reside, and the educational attainment rate of the individual adult 𝑝(𝑤𝑝|𝑔𝑒𝑛𝑑𝑒𝑟, 𝑎𝑣𝑔𝐼𝑛𝑐𝑜𝑚𝑒, 𝑒𝑑𝑢𝐴𝑡𝑡𝑆𝑡𝑎𝑡, 𝑎𝑔𝑒𝑎𝑑𝑢𝑙𝑡 ≤
𝑔𝑒 ≤ 𝑎𝑔𝑒𝑜𝑙𝑑 ). The individual is equally likely to work within any of the workplace buildings associated with the assigned workplace
ocation category.

Children of school-going age (i.e., individuals with 𝑎𝑔𝑒𝑠𝑐ℎ𝑜𝑜𝑙𝑚𝑖𝑛 ≤ 𝑎𝑔𝑒 ≤ 𝑎𝑔𝑒𝑠𝑐ℎ𝑜𝑜𝑙𝑚𝑎𝑥 , where 𝑎𝑔𝑒𝑠𝑐ℎ𝑜𝑜𝑙𝑚𝑖𝑛 and 𝑎𝑔𝑒𝑠𝑐ℎ𝑜𝑜𝑙𝑚𝑎𝑥 vary
epending on the avgIncome field of the land-use zone in which they reside) are assumed to attend the nearest school ac-
ording to gender-specific statistics that also change according to the avgIncome field of the land-use zone in which they
eside as well as the eduAttStat field value of their head of household 𝑒𝑑𝑢𝐴𝑡𝑡𝑆𝑡𝑎𝑡ℎℎ, 𝑝(𝑠𝑐ℎ𝑜𝑜𝑙|𝑎𝑔𝑒𝑠𝑐ℎ𝑜𝑜𝑙𝑚𝑖𝑛 ≤ 𝑎𝑔𝑒 ≤ 𝑎𝑔𝑒𝑠𝑐ℎ𝑜𝑜𝑙𝑚𝑎𝑥 ,
𝑒𝑛𝑑𝑒𝑟, 𝑎𝑣𝑔𝐼𝑛𝑐𝑜𝑚𝑒, 𝑒𝑑𝑢𝐴𝑡𝑡𝑆𝑡𝑎𝑡ℎℎ); see Appendix D, Table D.11.

. Conclusions

This paper introduced a comprehensive future exposure data structure that can be used to strengthen the link between traditional
rban planning practice and forward-looking, people-centred disaster risk decision support studies [18]. The proposed structure
acilitates spatial links between physical and social exposure through a multi-layered GIS database that accounts for varying levels
f detail on the future urban system. It can also be leveraged for a holistic exploration of the consequences of risk-related policies on
uture urban development. Suggested procedures for generating the high-resolution data to be stored in the proposed structure were
lso provided. The proposed approach represents a significant contribution to (1) identifying, understanding and using current and
uture disaster risk scenarios; and (2) facilitating the pursuit of resilient urban development and design, which are two of the United
ations Office for Disaster Risk Reduction Ten Essentials for Making Cities Resilient [14,108] a campaign set up to accelerate the

mplementation of the Sendai Framework for Disaster Risk Reduction [5] at local level.
We demonstrated an implementation of the proposed data structure for a virtual urban testbed known as Tomrrowville, which

as been designed to represent a generic Global South city. The data-scarce circumstances of the case study required the development
f ad-hoc algorithms to procedurally generate the required physical and social data within the specified urban extent. The exposure
atabase developed for Tomorrowville in this paper is leveraged for risk-informed decision support on future urban development
n [18], demonstrating the significant utility of the proposed structure in a forward-looking natural-hazard risk assessment context.

While the proposed data structure fills a notable gap in the state-of-the-art regarding future risk exposure characterisation, there
re a number of limitations associated with it. Firstly, the data structure only accounts for separate (nodal) physical and social
ntities (e.g., buildings and people); future work will establish additional layers of the GIS database that characterise the important
etworks that connect (and interconnect) these nodes. Capturing these networks will enable a more enriched quantification of future
atural-hazard impacts, including the inaccessibility experienced by people to significant physical (i.e., schools, hospitals) and social
i.e., friends’ and relatives’ houses) focal points within the urban system. Furthermore, our research will investigate incorporating the
ynamic nature of certain attributes (e.g., population, income level, replacement value) in a more structured way within the exposure
odelling process. A comprehensive visualisation platform for the stored exposure will also be created, transforming the proposed
ata structure into a powerful tool that can guide and inform relevant stakeholders on risk-informed future urban development.
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Appendix A. Literature review of synthetic population generation approaches

Table A.8 provides a summary of popular synthetic generation methods that have been employed in the literature, along with
heir advantages and disadvantages. While these methods have been traditionally leveraged for generating synthetic populations of
ouseholds and individuals (and are described as such in the following tables), non-hierarchical models for generating individuals
e.g., iterative proportional fitting, Monte Carlo Simulation methods, combinatorial optimisation) could also be used to generate
uildings if the necessary information (e.g., marginal distributions of building attributes and relevant inter-attribute correlation
ata) is available.

ppendix B. Literature review of activity-based modelling approaches

Activity-based (or human mobility) models seek to represent the travel demand of an individual over an entire 24-h period,
ncluding the sequence of activities and (in some cases) the exact locations and durations of these activities. As such, they are
seful for characterising the dependencies of people on the built environment (i.e., for populating the FacilityID attributes of
he individual layer). Activity-based models may be broadly categorised as [122]: (1) constraint-based (which assign trips based
n their feasibility within a space–time context); (2) utility-maximising (which focus on the activity-related choice-making of
gents using a pre-specified utility function); and (3) computational process models (rule-based approaches that capture decision
euristics of individuals, for more natural decision making under uncertainty than that of the models in category (2)). Depending on
heir categorisation, these models can require a significant amount of information, ranging from origin–destination matrices (e.g.,
123]) to a travel diary/survey that records the movement and activity participation of people over a given day (e.g., [124–126]),
rban sensing (e.g., mobile phone) data that contains intrinsic mobility patterns (e.g., [126–130]). Recent efforts have focused on
xclusively leveraging open-access data [131] to fulfil the necessary information requirements. Given the context of their traditional
pplication to transport demand modelling, most activity-based models particularly focus on the structure of daily patterns (i.e., the
equences or patterns of activities and resulting trip chains) rather than the description of exact locations that individuals frequent
ithin the urban system (e.g., [128,132]). We focus here on the relatively few efforts of the literature that have centred on the latter

hallenge, which is particularly relevant for the scope of this work. A brief literature review of a small selection of these studies
s provided in Table B.9; the studies were specifically chosen to capture a variety of activity-based model categories, considered
ocations, (mathematical) methods used, and required information.

ppendix C. General assumptions for building data generation in Tomorrowville

Kathmandu census data were used to determine six material types (adobe, brick in cement with rigid floor, brick in cement with
lexible floor, brick in mud, reinforced concrete, stone in mud) and their related distributions for each 𝑝𝑜𝑙𝑦𝑡. A combination of census

data and qualitative expert knowledge of local researchers were then used to define eight unique values of the building taxonomy
strings. The 𝑝(𝑙𝑟𝑠|𝑝𝑜𝑙𝑦𝑡) distributions were constructed by assuming that every adobe or brick building is composed of walls, and
every reinforced concrete building is composed of masonry-infilled frames. The 𝑝(𝑐𝑜𝑑𝑒|𝑙𝑟𝑠, 𝑝𝑜𝑙𝑦𝑡) distributions were constructed by:
i) assuming that all wall masonry buildings are low code; and (ii) using the distributions of 𝑝(𝑐𝑜𝑑𝑒|𝑙𝑟𝑠) provided by the Kathmandu
ensus data for the reinforced concrete frame buildings. The 𝑝(𝑜𝑐𝑐|𝑝𝑜𝑙𝑦𝑡) distribution is summarised in Table C.10. More detailed
nformation regarding building attributes and the distribution of taxonomy strings is provided by [78]. Further assumptions are:

1. All buildings within 𝑇𝑉 0𝑏0 still exist after 50 years.
2. More than 95% of buildings constructed within 𝑇𝑉 0𝑏1 or 𝑇𝑉 0𝑏2 are reinforced concrete with infills.
3. 𝑇𝑉 0𝑏1 and 𝑇𝑉 0𝑏2 do not feature any stone or adobe buildings.
4. Buildings in 𝑇𝑉 0𝑏1 and 𝑇𝑉 0𝑏2 are either low-rise (1–4 storeys) or mid-rise (5–8 storeys).
5. Commercial occupation (commercial building footprint) is expected to increase by approximately 20% between 𝑡0 and 𝑡𝑓
6. Industrial occupation (industrial building footprint) is expected to increase by approximately 30% between 𝑡0 and 𝑡𝑓
7. Non-residential buildings have the same probability distribution characteristics as residential buildings with respect to 𝑙𝑟𝑠,

𝑐𝑜𝑑𝑒 and ℎ (height) attributes.

ppendix D. General assumptions for household and individual data generation in Tomorrowville

Household and individual population data for land-use zones with an avgIncome field value of ‘‘highIncome’’ are largely based
n unpublished household survey information collected for Ward no 3. of the Lalitpur Metropolitan City (LMC-3; for which 2020/21
ax/revenue collection exceeded 50 million). Household and individual population data for land-use zones with an avgIncome field
alue of ‘‘midIncome’’ are largely based on unpublished household survey information collected for Ward no. 21 of the Lalitpur
etropolitan City (LMC-21; for which 2020/21 tax/revenue collection was between 10 and 50 million); any unavailable population

nformation in this survey (such as the distribution of household number) was obtained from the Ward no 3. survey. Specific head
f household details for land-use zones with avgIncome field values of either ‘‘highIncome’’ or ‘‘midIncome’’ were obtained from
national-level annual household survey [106], given a lack of available information at the ward level. Household and individual
13

opulation data for land-use zones with an avgIncome field value of ‘‘lowIncomeA’’ or ‘‘lowIncomeB’’ are based on national-level
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Table A.8
Methods and their details on social data disaggregation.

Method name: Iterative proportional fitting

Method description:

IPF is used to construct a sample that is consistent with known statistics of a target population. The method requires information about marginal
distributions of individual attributes as well as a frequency cross-table of all attributes involved that defines their correlations. An iterative reweighting
procedure is employed to fit the multi-dimensional cross-table conditional on the marginal distributions. The generated sample exactly matches the target
marginal distributions of attributes and preserves the provided correlation structure.

Advantages Disadvantages Key references

- It is simple and accurate
- The efficiency of the algorithm enables large-scale problems
to be solved with minimum computation overhead

- The method only yields fractions of individuals (rather than
explicit individual agents)
- In its original form, it cannot link individuals to household
characteristics and cannot account for information that is
missing in the correlation structure but exists in the real
population

[109]

Method name: Iterative Proportional Updating (IPU)

Method description:

IPU is a hierarchical version of IPF, in which the multi-dimensional tables are fit using single joint weights that simultaneously account for individuals
and households.

Advantages Disadvantages Key references

- Simultaneously captures individual and household-level
attributes, for more accurate characterisations of the overall
synthetic population than IPF
- Leverages more efficient data storage approaches than IPF

- The method can quickly become computationally
burdensome
- Can fail in extreme cases (i.e., when all persons of certain
types fall into a single household type and can only capture
nested relationships (i.e., person-residence associations but
not person-workplace associations, for a given household)

[110–112]

Method name: Monte Carlo Simulation Methods (MCS)

Method description:

MCS covers a variety of simulation-based techniques, including Markov Chain Monte Carlo simulation. These approaches draw synthetic samples of
individuals from conditional distributions of individual attributes, which form a partial view of the true population structure. The empirical distribution
of the simulated population is as close as possible to the unique joint distributions in the actual population.

Advantages Disadvantages Key references

- Generally produces more accurate results than IPF, across
different scales and sampling rates
- Only requires sample data; information on marginal
distributions of attributes is not crucial
- Sample from the distribution rather than simple cloning

- Not capable of synthesising a full household of individuals
in their original form

[113]

Method name: Combinatorial Optimisation (CO)

Method description:

CO covers a variety of approaches, including simulated annealing. The procedure starts with a random subset of households/individuals from the
provided micro sample. The selected households/individuals are iteratively replaced to improve their fit to the target marginal distributions; if a change
improves the fit, then the swap is accepted. The performance of the fit is continuously assessed and the algorithm terminates when the most accurate
synthetic population is obtained.

Advantages Disadvantages Key references

- Generally produces more accurate results than IPF
- Results in entire individuals or households (rather than
fractions)

- Cannot guarantee the optimal solution is reached
- Requires excessive computational time as population size
grows

[114,115]

Method name: Hierarchical Models (HM)

Method description:

These methods can cover any of those mentioned in previous tables (i.e., IPF, CO, and MCS) and their adaptation to account for both individual and
household attributes, associating these interdependent attributes in the most optimal way possible. HM also covers Bayesian Updating approaches, which
use directed acyclical graphs to describe the conditional distribution of random variables, and respect the hierarchical structure of households and
individuals. Furthermore, HM covers Hierarchical Mixture Modelling. Little attention has been paid to reproduce cross-level and within-household
associations.

Advantages Disadvantages Key references

- Ensure that the generated individuals/households respect
the structure of each other
- See previous sections for additional advantages associated
with the underlying methods

- Bayesian frameworks are challenging from a computational
perspective (it is better for the number of considered
attributes to be small)
- See previous sections for additional disadvantages
associated with the underlying methods

[116,117]

(continued on next page)
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Table A.8 (continued).
Method name: Deep Generative Modelling (DGM)

Method description:

DGM covers a variety of methods, including Variable Auto Encoders (an unsupervised model based on a deep artificial neural network) and General
Adversarial Networks. Each person is represented as a vector of random variables, and the objective is to learn the joint distribution of all individuals in
the sample.

Advantages Disadvantages Key references

- Can be used to generate a consistent synthetic population of
households and individuals with many attributes
- Both categorical and numerical variables can be modelled
jointly

- Requires advanced computational expertise
- Cannot make direct use of marginal population count data
- May lead to overfitting when trained with small datasets

[118–121]

Table B.9
Methods and their details on activity modelling.

Paper name Activity model
category

Locations captured Methods used Brief description Information required

[133] (1) Home, Workplace, and
Discretionary Activities
(in particular)

Space–time prism
constraint and its 2D
projection (i.e., potential
path area)

Uses space–time constraints
to derive a potential path
area (PPA) containing a
maximum number of
potential alternative
discretionary activity
locations. Assumes that
choices for discretionary
activity locations are
spatially related to fixed
locations of home and
workplace.

Household and travel
survey, providing
information on trips as well
as socio-demographic and
economic characteristics of
household members

[134] (1) Home, Workplace,
School, and Discretionary
Activities

Space–time prism
constraint and its 2D
projection (i.e., PPA)

Develops a methodology for
applying the concept of the
space–time prism to PPA
development and
appropriate location choice
formation, considering the
dynamic nature of the urban
environment

Household travel survey,
land parcel database,
employment database
(number of persons
employed in each industry),
database of business
establishments

[135] (1) & (2) Home, Workplace,
School, and Discretionary
Activities

Random utility
maximisation assumption

Proposes a framework for
activity-travel scheduling of
workers and students. The
framework simultaneously
accounts for space–time
constraints (which determine
the PPA of feasible locations
for the next activity) and
microeconomic theory of
random utility maximising
choice behaviour.

Household travel survey,
including activity schedules
and household/individual
socio-economic variables

[136] (2) Workplace Utility maximisation,
using a multinomial logit
model

Leverages a utility function
to efficiently assign
commuters to workplaces
while respecting individual
commuter preferences

Household travel survey
information (including
revealed preference data),
spatial information on
workplace locations

[137] (3) Home, Workplace,
School, University

Gravity modelling Examines commuting
patterns by developing a
gravity model that accounts
for origin–destination fixed
effects

Microdata files of workplace,
school, and university
locations

[138] (1) & (3) Discretionary Activities Bayesian networks Models the location choices
of discretionary activities, by
combining space–time
constraints and the
heuristics of individuals’
location selection based on a
Bayesian network hybrid
learning algorithm

One-day travel diary,
including socio-demographic
characteristics, trip purpose,
and zone destination
15
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Table C.10
𝑝(𝑜𝑐𝑐|𝑝𝑜𝑙𝑦𝑡) distributions for Tomorrowville. Res: Residential; Com: Commercial; Ind: Industrial.
𝑝𝑜𝑙𝑦𝑡 TV0 TV50

Res Com Ind Res Com Ind

Agriculture 1.00 0.00 0.00 1.00 0.00 0.00
CommercialResidential 0.00 1.00 0.00 0.00 1.00 0.00
HistoricalPreservation 0.70 0.30 0.00 0.70 0.30 0.00
Industry 0.00 0.00 1.00 0.00 0.00 1.00
CityCentre 0.00 1.00 0.00 0.00 1.00 0.00
Residential (lowIncomeA) 0.90 0.10 0.00 1.00 0.00 0.00
Residential (lowIncomeB) 0.90 0.10 0.00 1.00 0.00 0.00
Residential (midIncome) 0.60 0.40 0.00 1.00 0.00 0.00
Residential (highIncome) 0.80 0.20 0.00 1.00 0.00 0.00

Table D.11
Empirical statistics and probability distributions used for generating household- and individual-level attribute data.

Variable/Function Value
(avgIncome:
highIncome)

Value
(avgIncome:
middleIncome)

Value
(avgIncome:
lowIncomeA)

Value
(avgIncome:
lowIncomeB)

𝑎𝑔𝑒𝑠𝑐ℎ𝑜𝑜𝑙𝑚𝑖𝑛 2 2 6 6

𝑎𝑔𝑒𝑠𝑐ℎ𝑜𝑜𝑙𝑚𝑎𝑥 17 17 17 17

𝑎𝑔𝑒𝑜𝑙𝑑 50 50 50 50

𝑎𝑔𝑒ℎℎ,𝑚𝑖𝑛 20 20 18 18

𝑎𝑔𝑒𝑎𝑑𝑢𝑙𝑡 18 18 18 18

𝑎𝑔𝑒𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 25 25 25 25

𝑝(𝑠𝑐ℎ𝑜𝑜𝑙|
𝑎𝑔𝑒𝑠𝑐ℎ𝑜𝑜𝑙𝑚𝑖𝑛 ≤ 𝑎𝑔𝑒 ≤
𝑎𝑔𝑒𝑠𝑐ℎ𝑜𝑜𝑙𝑚𝑎𝑥 , 𝑔𝑒𝑛𝑑𝑒𝑟)

𝑝(𝑠𝑐ℎ𝑜𝑜𝑙|𝑚𝑎𝑙𝑒) = 1
𝑝(𝑠𝑐ℎ𝑜𝑜𝑙|𝑓𝑒𝑚𝑎𝑙𝑒) = 1

𝑝(𝑠𝑐ℎ𝑜𝑜𝑙|𝑚𝑎𝑙𝑒) = 1
𝑝(𝑠𝑐ℎ𝑜𝑜𝑙|𝑓𝑒𝑚𝑎𝑙𝑒) = 1

𝑝(𝑠𝑐ℎ𝑜𝑜𝑙|𝑚𝑎𝑙𝑒) = 0.85
𝑝(𝑠𝑐ℎ𝑜𝑜𝑙|𝑓𝑒𝑚𝑎𝑙𝑒) = 0.87
𝑝(𝑠𝑐ℎ𝑜𝑜𝑙|𝑚𝑎𝑙𝑒,
𝑒𝑑𝑢𝐴𝑡𝑡𝑆𝑡𝑎𝑡ℎℎ > 𝑝𝑟𝑖𝑚𝑎𝑟𝑦) = 1

𝑝(𝑠𝑐ℎ𝑜𝑜𝑙|
𝑓𝑒𝑚𝑎𝑙𝑒,
𝑒𝑑𝑢𝐴𝑡𝑡𝑆𝑡𝑎𝑡ℎℎ > 𝑝𝑟𝑖𝑚𝑎𝑟𝑦) = 1

𝑝(𝑠𝑐ℎ𝑜𝑜𝑙|𝑚𝑎𝑙𝑒) = 0.85
𝑝(𝑠𝑐ℎ𝑜𝑜𝑙|𝑓𝑒𝑚𝑎𝑙𝑒) = 0.87
𝑝(𝑠𝑐ℎ𝑜𝑜𝑙|𝑚𝑎𝑙𝑒,
𝑒𝑑𝑢𝐴𝑡𝑡𝑆𝑡𝑎𝑡ℎℎ > 𝑝𝑟𝑖𝑚𝑎𝑟𝑦) = 1

𝑝(𝑠𝑐ℎ𝑜𝑜𝑙|
𝑓𝑒𝑚𝑎𝑙𝑒,
𝑒𝑑𝑢𝐴𝑡𝑡𝑆𝑡𝑎𝑡ℎℎ > 𝑝𝑟𝑖𝑚𝑎𝑟𝑦) = 1

𝑝(𝑛𝐼𝑛𝑑) 𝑝(𝑛𝐼𝑛𝑑 = 1) = 0.224
𝑝(𝑛𝐼𝑛𝑑 = 2) = 0.06
𝑝(𝑛𝐼𝑛𝑑 = 3) = 0.113
𝑝(𝑛𝐼𝑛𝑑 = 4) = 0.237
𝑝(𝑛𝐼𝑛𝑑 = 5) = 0.149
𝑝(𝑛𝐼𝑛𝑑 = 6) = 0.083
𝑝(𝑛𝐼𝑛𝑑 = 7) = 0.032
𝑝(𝑛𝐼𝑛𝑑 = 8) = 0.032
𝑝(𝑛𝐼𝑛𝑑 = 9) = 0.07

𝑝(𝑛𝐼𝑛𝑑 = 1) = 0.024
𝑝(𝑛𝐼𝑛𝑑 = 2) = 0.053
𝑝(𝑛𝐼𝑛𝑑 = 3) = 0.131
𝑝(𝑛𝐼𝑛𝑑 = 4) = 0.258
𝑝(𝑛𝐼𝑛𝑑 = 5) = 0.186
𝑝(𝑛𝐼𝑛𝑑 = 6) = 0.130
𝑝(𝑛𝐼𝑛𝑑 = 7) = 0.065
𝑝(𝑛𝐼𝑛𝑑 = 8) = 0.064
𝑝(𝑛𝐼𝑛𝑑 = 9) = 0.090

𝑝(𝑛𝐼𝑛𝑑 = 1) = 0.222
𝑝(𝑛𝐼𝑛𝑑 = 2) = 0.202
𝑝(𝑛𝐼𝑛𝑑 = 3) = 0.172
𝑝(𝑛𝐼𝑛𝑑 = 4) = 0.152
𝑝(𝑛𝐼𝑛𝑑 = 5) = 0.11
𝑝(𝑛𝐼𝑛𝑑 = 6) = 0.066
𝑝(𝑛𝐼𝑛𝑑 = 7) = 0.043
𝑝(𝑛𝐼𝑛𝑑 = 8) = 0.016
𝑝(𝑛𝐼𝑛𝑑 = 9) = 0.017

𝑝(𝑛𝐼𝑛𝑑 = 1) = 0.222
𝑝(𝑛𝐼𝑛𝑑 = 2) = 0.202
𝑝(𝑛𝐼𝑛𝑑 = 3) = 0.172
𝑝(𝑛𝐼𝑛𝑑 = 4) = 0.152
𝑝(𝑛𝐼𝑛𝑑 = 5) = 0.11
𝑝(𝑛𝐼𝑛𝑑 = 6) = 0.066
𝑝(𝑛𝐼𝑛𝑑 = 7) = 0.043
𝑝(𝑛𝐼𝑛𝑑 = 8) = 0.016
𝑝(𝑛𝐼𝑛𝑑 = 9) = 0.017

𝑝(𝑎𝑔𝑒|𝑚𝑎𝑙𝑒) 𝑝(𝑎𝑔𝑒 = 0–1) = 0.016
𝑝(𝑎𝑔𝑒 = 2–9) = 0.065
𝑝(𝑎𝑔𝑒 = 10–17) = 0.105
𝑝(𝑎𝑔𝑒 = 18–19) = 0.026
𝑝(𝑎𝑔𝑒 = 20–25) = 0.103
𝑝(𝑎𝑔𝑒 = 26–29) = 0.069
𝑝(𝑎𝑔𝑒 = 30–39) = 0.202
𝑝(𝑎𝑔𝑒 = 40–49) = 0.162
𝑝(𝑎𝑔𝑒 = 50+) = 0.253

𝑝(𝑎𝑔𝑒 = 0–1) = 0.016
𝑝(𝑎𝑔𝑒 = 2–9) = 0.065
𝑝(𝑎𝑔𝑒 = 10–17) = 0.105
𝑝(𝑎𝑔𝑒 = 18–19) = 0.026
𝑝(𝑎𝑔𝑒 = 20–25) = 0.103
𝑝(𝑎𝑔𝑒 = 26–29) = 0.069
𝑝(𝑎𝑔𝑒 = 30–39) = 0.202
𝑝(𝑎𝑔𝑒 = 40–49) = 0.162
𝑝(𝑎𝑔𝑒 = 50+) = 0.253

𝑝(𝑎𝑔𝑒 = 0–5) = 0.15
𝑝(𝑎𝑔𝑒 = 6–17) = 0.20
𝑝(𝑎𝑔𝑒 = 18–25) = 0.19
𝑝(𝑎𝑔𝑒 = 26–49) = 0.42
𝑝(𝑎𝑔𝑒 = 50+) = 0.04

𝑝(𝑎𝑔𝑒 = 0–5) = 0.15
𝑝(𝑎𝑔𝑒 = 6–17) = 0.20
𝑝(𝑎𝑔𝑒 = 18–25) = 0.19
𝑝(𝑎𝑔𝑒 = 26–49) = 0.42
𝑝(𝑎𝑔𝑒 = 50+) = 0.04

(continued on next page)

household population and housing characteristics [139] as well as statistics for the Kibera slum in Nairobi [140]. Specific head
of household details for these land-use zones were obtained from a country-level (Kenya) open dataset [141], given a lack of
information at a more detailed resolution.

Employment and workplace location information for land-use zones with an avgIncome field value of ‘‘highIncome’’ were
obtained from a national-level Nepalese labour force survey (due to a lack of availability of more granular information) [106].
Employment and workplace location information for land-use zones with an avgIncome field value of ‘‘midIncome’’ are largely
based on the results of a relevant survey of LMC-21. Employment and workplace location information for land-use zones with an
avgIncome field value of ‘‘lowIncomeA’’ or ‘‘lowIncomeB’’ were largely obtained from statistics for the Kibera slum in Nairobi [140]
as well as Kenya-wide reporting data [141] and international economic data on slums [142].

Educational information for land-use zones with an avgIncome field value of ‘‘highIncome’’ or ‘‘midIncome’’ is based on
16

a combination of expert judgement, data obtained from [143], and conversations with the ward chair of LMC-3. Educational
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a

Table D.11 (continued).
Variable/Function Value

(avgIncome:
highIncome)

Value
(avgIncome:
middleIncome)

Value
(avgIncome:
lowIncomeA)

Value
(avgIncome:
lowIncomeB)

𝑝(𝑎𝑔𝑒|𝑓𝑒𝑚𝑎𝑙𝑒) 𝑝(𝑎𝑔𝑒 = 0–1) = 0.014
𝑝(𝑎𝑔𝑒 = 2–9) = 0.056
𝑝(𝑎𝑔𝑒 = 10–17) = 0.088
𝑝(𝑎𝑔𝑒 = 18–19) = 0.022
𝑝(𝑎𝑔𝑒 = 20–25) = 0.102
𝑝(𝑎𝑔𝑒 = 26–29) = 0.068
𝑝(𝑎𝑔𝑒 = 30–39) = 0.19
𝑝(𝑎𝑔𝑒 = 40–49) = 0.17
𝑝(𝑎𝑔𝑒 = 50+) = 0.29

𝑝(𝑎𝑔𝑒 = 0–1) = 0.014
𝑝(𝑎𝑔𝑒 = 2–9) = 0.056
𝑝(𝑎𝑔𝑒 = 10–17) = 0.088
𝑝(𝑎𝑔𝑒 = 18–19) = 0.022
𝑝(𝑎𝑔𝑒 = 20–25) = 0.102
𝑝(𝑎𝑔𝑒 = 26–29) = 0.068
𝑝(𝑎𝑔𝑒 = 30–39) = 0.19
𝑝(𝑎𝑔𝑒 = 40–49) = 0.17
𝑝(𝑎𝑔𝑒 = 50+) = 0.29

𝑝(𝑎𝑔𝑒 = 0–5) = 0.175
𝑝(𝑎𝑔𝑒 = 6–17) = 0.22
𝑝(𝑎𝑔𝑒 = 18–25) = 0.26
𝑝(𝑎𝑔𝑒 = 26–49) = 0.32
𝑝(𝑎𝑔𝑒 = 50+) = 0.025

𝑝(𝑎𝑔𝑒 = 0–5) = 0.175
𝑝(𝑎𝑔𝑒 = 6–17) = 0.22
𝑝(𝑎𝑔𝑒 = 18–25) = 0.26
𝑝(𝑎𝑔𝑒 = 26–49) = 0.32
𝑝(𝑎𝑔𝑒 = 50+) = 0.025

𝑝(𝑔𝑒𝑛𝑑𝑒𝑟ℎℎ) 𝑝(𝑚𝑎𝑙𝑒) = 0.77
𝑝(𝑓𝑒𝑚𝑎𝑙𝑒) = 0.23

𝑝(𝑚𝑎𝑙𝑒) = 0.84
𝑝(𝑓𝑒𝑚𝑎𝑙𝑒) = 0.16

𝑝(𝑚𝑎𝑙𝑒) = 0.8
𝑝(𝑓𝑒𝑚𝑎𝑙𝑒) = 0.2

𝑝(𝑚𝑎𝑙𝑒) = 0.8
𝑝(𝑓𝑒𝑚𝑎𝑙𝑒) = 0.2

𝑝(𝑎𝑔𝑒ℎℎ|𝑚𝑎𝑙𝑒) 𝑝(𝑎𝑔𝑒 = 20–25) = 0.131
𝑝(𝑎𝑔𝑒 = 26–29) = 0.087
𝑝(𝑎𝑔𝑒 = 30–39) = 0.256
𝑝(𝑎𝑔𝑒 = 40–49) = 0.205
𝑝(𝑎𝑔𝑒 = 50+) = 0.321

𝑝(𝑎𝑔𝑒 = 20–25) = 0.131
𝑝(𝑎𝑔𝑒 = 26–29) = 0.087
𝑝(𝑎𝑔𝑒 = 30–39) = 0.256
𝑝(𝑎𝑔𝑒 = 40–49) = 0.205
𝑝(𝑎𝑔𝑒 = 50+) = 0.321

𝑝(𝑎𝑔𝑒 = 18–25) = 0.29
𝑝(𝑎𝑔𝑒 = 26–49) = 0.65
𝑝(𝑎𝑔𝑒 = 50+) = 0.06

𝑝(𝑎𝑔𝑒 = 18–25) = 0.29
𝑝(𝑎𝑔𝑒 = 26–49) = 0.65
𝑝(𝑎𝑔𝑒 = 50+) = 0.06

𝑝(𝑎𝑔𝑒ℎℎ|𝑓𝑒𝑚𝑎𝑙𝑒) 𝑝(𝑎𝑔𝑒 = 20–25) = 0.124
𝑝(𝑎𝑔𝑒 = 26–29) = 0.083
𝑝(𝑎𝑔𝑒 = 30–39) = 0.232
𝑝(𝑎𝑔𝑒 = 40–49) = 0.207
𝑝(𝑎𝑔𝑒 = 50+) = 0.354

𝑝(𝑎𝑔𝑒 = 20–25) = 0.124
𝑝(𝑎𝑔𝑒 = 26–29) = 0.083
𝑝(𝑎𝑔𝑒 = 30–39) = 0.232
𝑝(𝑎𝑔𝑒 = 40–49) = 0.207
𝑝(𝑎𝑔𝑒 = 50+) = 0.354

𝑝(𝑎𝑔𝑒 = 18–25) = 0.43
𝑝(𝑎𝑔𝑒 = 26–49) = 0.53
𝑝(𝑎𝑔𝑒 = 50+) = 0.04

𝑝(𝑎𝑔𝑒 = 18–25) = 0.43
𝑝(𝑎𝑔𝑒 = 26–49) = 0.53
𝑝(𝑎𝑔𝑒 = 50+) = 0.04

𝑝(𝑒𝑑𝑢𝐴𝑡𝑡𝑆𝑡𝑎𝑡|
𝑎𝑔𝑒 > 𝑎𝑔𝑒𝑎𝑑𝑢𝑙𝑡 ,
𝑚𝑎𝑙𝑒)

𝑝(𝑒𝑑𝑢𝐴𝑡𝑡𝑆𝑡𝑎𝑡 ≤ 𝑝𝑟𝑖𝑚𝑎𝑟𝑦) =
0.33
𝑝(𝑒𝑑𝑢𝐴𝑡𝑡𝑆𝑡𝑎𝑡 =
𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦) = 0.22
𝑝(𝑒𝑑𝑢𝐴𝑡𝑡𝑆𝑡𝑎𝑡 =
𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦) = 0.45

𝑝(𝑒𝑑𝑢𝐴𝑡𝑡𝑆𝑡𝑎𝑡 ≤ 𝑝𝑟𝑖𝑚𝑎𝑟𝑦) =
0.38
𝑝(𝑒𝑑𝑢𝐴𝑡𝑡𝑆𝑡𝑎𝑡 =
𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦) = 0.40
𝑝(𝑒𝑑𝑢𝐴𝑡𝑡𝑆𝑡𝑎𝑡 =
𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦) = 0.22

𝑝(𝑒𝑑𝑢𝐴𝑡𝑡𝑆𝑡𝑎𝑡 ≤ 𝑝𝑟𝑖𝑚𝑎𝑟𝑦) =
0.7
𝑝(𝑒𝑑𝑢𝐴𝑡𝑡𝑆𝑡𝑎𝑡 = 𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦) =
0.27
𝑝(𝑒𝑑𝑢𝐴𝑡𝑡𝑆𝑡𝑎𝑡 = 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦) =
0.03

𝑝(𝑒𝑑𝑢𝐴𝑡𝑡𝑆𝑡𝑎𝑡 ≤ 𝑝𝑟𝑖𝑚𝑎𝑟𝑦) =
0.70
𝑝(𝑒𝑑𝑢𝐴𝑡𝑡𝑆𝑡𝑎𝑡 = 𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦) =
0.27
𝑝(𝑒𝑑𝑢𝐴𝑡𝑡𝑆𝑡𝑎𝑡 = 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦) =
0.03

𝑝(𝑒𝑑𝑢𝐴𝑡𝑡𝑆𝑡𝑎𝑡|
𝑎𝑔𝑒 ≥ 𝑎𝑔𝑒𝑎𝑑𝑢𝑙𝑡 , 𝑓𝑒𝑚𝑎𝑙𝑒)

𝑝(𝑒𝑑𝑢𝐴𝑡𝑡𝑆𝑡𝑎𝑡 ≤ 𝑝𝑟𝑖𝑚𝑎𝑟𝑦) =
0.43
𝑝(𝑒𝑑𝑢𝐴𝑡𝑡𝑆𝑡𝑎𝑡 =
𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦) = 0.24
𝑝(𝑒𝑑𝑢𝐴𝑡𝑡𝑆𝑡𝑎𝑡 =
𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦) = 0.33

𝑝(𝑒𝑑𝑢𝐴𝑡𝑡𝑆𝑡𝑎𝑡 ≤ 𝑝𝑟𝑖𝑚𝑎𝑟𝑦) =
0.57
𝑝(𝑒𝑑𝑢𝐴𝑡𝑡𝑆𝑡𝑎𝑡 =
𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦) = 0.23
𝑝(𝑒𝑑𝑢𝐴𝑡𝑡𝑆𝑡𝑎𝑡 =
𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦) = 0.19

𝑝(𝑒𝑑𝑢𝐴𝑡𝑡𝑆𝑡𝑎𝑡 ≤ 𝑝𝑟𝑖𝑚𝑎𝑟𝑦) =
0.79
𝑝(𝑒𝑑𝑢𝐴𝑡𝑡𝑆𝑡𝑎𝑡 = 𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦) =
0.18
𝑝(𝑒𝑑𝑢𝐴𝑡𝑡𝑆𝑡𝑎𝑡 = 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦) =
0.03

𝑝(𝑒𝑑𝑢𝐴𝑡𝑡𝑆𝑡𝑎𝑡 ≤ 𝑝𝑟𝑖𝑚𝑎𝑟𝑦) =
0.79
𝑝(𝑒𝑑𝑢𝐴𝑡𝑡𝑆𝑡𝑎𝑡 = 𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦) =
0.18
𝑝(𝑒𝑑𝑢𝐴𝑡𝑡𝑆𝑡𝑎𝑡 = 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦) =
0.03

𝑝(𝑤𝑝|𝑚𝑎𝑙𝑒) 𝑝(𝑝𝑟𝑜𝑓𝑒𝑠𝑠𝑖𝑜𝑛𝑎𝑙) = 0.45
𝑝(𝑝𝑟𝑜𝑓𝑒𝑠𝑠𝑖𝑜𝑛𝑎𝑙|
𝑒𝑑𝑢𝐴𝑡𝑡𝑆𝑡𝑎𝑡 = 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦) =
1
𝑝(𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦) = 0.32
𝑝(𝑎𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒) = 0.13
𝑝(𝑢𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑑) = 0.10

𝑝(𝑝𝑟𝑜𝑓𝑒𝑠𝑠𝑖𝑜𝑛𝑎𝑙) = 0.78
𝑝(𝑝𝑟𝑜𝑓𝑒𝑠𝑠𝑖𝑜𝑛𝑎𝑙|
𝑒𝑑𝑢𝐴𝑡𝑡𝑆𝑡𝑎𝑡 = 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦) =
1
𝑝(𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦) = 0.04
𝑝(𝑎𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒) = 0.09
𝑝(𝑚𝑖𝑑𝑑𝑙𝑒𝐼𝑛𝑐𝑟𝑒𝑠) = 0.01
𝑝(𝑢𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑑) = 0.08

𝑝(𝑝𝑟𝑜𝑓𝑒𝑠𝑠𝑖𝑜𝑛𝑎𝑙) = 0.35
𝑝(𝑝𝑟𝑜𝑓𝑒𝑠𝑠𝑖𝑜𝑛𝑎𝑙|
𝑒𝑑𝑢𝐴𝑡𝑡𝑆𝑡𝑎𝑡 = 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦) = 1
𝑝(𝑙𝑜𝑤𝐼𝑛𝑐𝐴) = 0.38
𝑝(𝑢𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑑) = 0.27

𝑝(𝑝𝑟𝑜𝑓𝑒𝑠𝑠𝑖𝑜𝑛𝑎𝑙) = 0.35
𝑝(𝑙𝑜𝑤𝐼𝑛𝑐𝐵|
𝑒𝑑𝑢𝐴𝑡𝑡𝑆𝑡𝑎𝑡 = 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦) = 1
𝑝(𝑙𝑜𝑤𝐼𝑛𝑐𝐵) = 0.38
𝑝(𝑢𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑑) = 0.27

𝑝(𝑤𝑝|𝑓𝑒𝑚𝑎𝑙𝑒) 𝑝(𝑝𝑟𝑜𝑓𝑒𝑠𝑠𝑖𝑜𝑛𝑎𝑙) = 0.42
𝑝(𝑝𝑟𝑜𝑓𝑒𝑠𝑠𝑖𝑜𝑛𝑎𝑙|
𝑒𝑑𝑢𝐴𝑡𝑡𝑆𝑡𝑎𝑡 = 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦) =
1
𝑝(𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦) = 0.16
𝑝(𝑎𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒) = 0.29
𝑝(𝑢𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑑) = 0.13

𝑝(𝑝𝑟𝑜𝑓𝑒𝑠𝑠𝑖𝑜𝑛𝑎𝑙) = 0.53
𝑝(𝑝𝑟𝑜𝑓𝑒𝑠𝑠𝑖𝑜𝑛𝑎𝑙|
𝑒𝑑𝑢𝐴𝑡𝑡𝑆𝑡𝑎𝑡 = 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦) =
1
𝑝(𝑎𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒) = 0.02
𝑝(𝑚𝑖𝑑𝑑𝑙𝑒𝐼𝑛𝑐𝑟𝑒𝑠) = 0.34
𝑝(𝑢𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑑) = 0.11

𝑝(𝑝𝑟𝑜𝑓𝑒𝑠𝑠𝑖𝑜𝑛𝑎𝑙) = 0.15
𝑝(𝑝𝑟𝑜𝑓𝑒𝑠𝑠𝑖𝑜𝑛𝑎𝑙|
𝑒𝑑𝑢𝐴𝑡𝑡𝑆𝑡𝑎𝑡 = 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦) = 1
𝑝(𝑙𝑜𝑤𝐼𝑛𝑐𝐴) = 0.35
𝑝(𝑢𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑑) = 0.5

𝑝(𝑝𝑟𝑜𝑓𝑒𝑠𝑠𝑖𝑜𝑛𝑎𝑙) = 0.05
𝑝(𝑙𝑜𝑤𝐼𝑛𝑐𝐵|
𝑒𝑑𝑢𝐴𝑡𝑡𝑆𝑡𝑎𝑡 = 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦) = 1
𝑝(𝑙𝑜𝑤𝐼𝑛𝑐𝐵) = 0.4
𝑝(𝑢𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑑) = 0.55

information for land-use zones with an avgIncome field value of ‘‘lowIncomeA’’ or ‘‘lowIncomeB’’ was obtained from reports and
household-survey-level information for the Kibera slum in Nairobi [105] as well as Kenya-wide reporting data [144]. All other
information (including empirical information related to correlations between different attributes) is based on expert judgement of
experienced social scientists. Empirical statistics and probability distributions used for generating household- and individual-level
attribute data are provided in Table D.11. Further assumptions are:

1. Where required, polygon- and gender-specific ages are assumed to be evenly distributed within a given provided age range
(e.g., if someone is assigned an age range of 10–19, they have a 10% chance of being any single discrete age between 10 and
19, inclusive).

2. It is assumed that households with 𝑛𝐼𝑛𝑑 ≥ 9 have exactly nine members.
3. It is assumed that household and individual data do not change over time.

Note that Individuals who work in ‘‘professional’’ (i.e., professional or service-type) workplace locations are equally likely to be
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ssigned a workplace building across: ‘‘CityCentre’’, ‘‘CommercialResidential’’, ‘‘Residential (highIncome)’’ (commercial buildings
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only), and ‘‘Residential (midIncome)’’ (commercial buildings only). 𝑙𝑜𝑤𝐼𝑛𝑐𝐴 denotes ‘‘Residential (lowIncomeA)’’, 𝑙𝑜𝑤𝐼𝑛𝑐𝐵 denotes
‘‘Residential (lowIncomeB)’’, 𝑢𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑑 denotes unemployment, and 𝑚𝑖𝑑𝑑𝑙𝑒𝐼𝑛𝑐𝑟𝑒𝑠 represents ‘‘Residential (midIncome)’’ (residential
buildings only). Note that conditionals are removed from some of the probability expressions in the table, for brevity. Note that
probability distributions 𝑝(𝐴) are related to conditional versions of 𝑝(𝐴|𝑥), as follows:

𝑝 (𝐴|𝑥) 𝑟𝑥 + 𝑝 (𝐴|𝑥̄) 𝑟𝑥̄ = 𝑝 (𝐴) (D.1)

where 𝑟𝑥 is the proportion of the population of interest associated with the property 𝑥, 𝑟𝑥̄ is the remaining proportion of that
population (i.e., those not associated with the property 𝑥). For example, if 𝐴 denotes adults who work in professional workplace
locations, and 𝑥 implies adults with a university (or college-level degree), then 𝑥̄ implies adults with 𝑒𝑑𝑢𝐴𝑡𝑡𝑆𝑡𝑎𝑡 ≤ 𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦.
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