29 research outputs found

    A STATE OF THE ART SURVEY ON POLYMORPHIC MALWARE ANALYSIS AND DETECTION TECHNIQUES

    Get PDF
    Nowadays, systems are under serious security threats caused by malicious software, commonly known as malware. Such malwares are sophisticatedly created with advanced techniques that make them hard to analyse and detect, thus causing a lot of damages. Polymorphism is one of the advanced techniques by which malware change their identity on each time they attack. This paper presents a detailed systematic and critical review that explores the available literature, and outlines the research efforts that have been made in relation to polymorphic malware analysis and their detection

    Assessing Code Obfuscation of Metamorphic JavaScript

    Get PDF
    Metamorphic malware is one of the biggest and most ubiquitous threats in the digital world. It can be used to morph the structure of the target code without changing the underlying functionality of the code, thus making it very difficult to detect using signature-based detection and heuristic analysis. The focus of this project is to analyze Metamorphic JavaScript malware and techniques that can be used to mutate the code in JavaScript. To assess the capabilities of the metamorphic engine, we performed experiments to visualize the degree of code morphing. Further, this project discusses potential methods that have been used to detect metamorphic malware and their potential limitations. Based on the experiments performed, SVM has shown promise when it comes to detecting and classifying metamorphic code with a high accuracy. An accuracy of 86% is observed when classifying benign, malware and metamorphic files

    An enhanced performance model for metamorphic computer virus classification and detectioN

    Get PDF
    Metamorphic computer virus employs various code mutation techniques to change its code to become new generations. These generations have similar behavior and functionality and yet, they could not be detected by most commercial antivirus because their solutions depend on a signature database and make use of string signature-based detection methods. However, the antivirus detection engine can be avoided by metamorphism techniques. The purpose of this study is to develop a performance model based on computer virus classification and detection. The model would also be able to examine portable executable files that would classify and detect metamorphic computer viruses. A Hidden Markov Model implemented on portable executable files was employed to classify and detect the metamorphic viruses. This proposed model that produce common virus statistical patterns was evaluated by comparing the results with previous related works and famous commercial antiviruses. This was done by investigating the metamorphic computer viruses and their features, and the existing classifications and detection methods. Specifically, this model was applied on binary format of portable executable files and it was able to classify if the files belonged to a virus family. Besides that, the performance of the model, practically implemented and tested, was also evaluated based on detection rate and overall accuracy. The findings indicated that the proposed model is able to classify and detect the metamorphic virus variants in portable executable file format with a high average of 99.7% detection rate. The implementation of the model is proven useful and applicable for antivirus programs

    Software similarity and classification

    Full text link
    This thesis analyses software programs in the context of their similarity to other software programs. Applications proposed and implemented include detecting malicious software and discovering security vulnerabilities

    Unveiling metamorphism by abstract interpretation of code properties

    Get PDF
    Metamorphic code includes self-modifying semantics-preserving transformations to exploit code diversification. The impact of metamorphism is growing in security and code protection technologies, both for preventing malicious host attacks, e.g., in software diversification for IP and integrity protection, and in malicious software attacks, e.g., in metamorphic malware self-modifying their own code in order to foil detection systems based on signature matching. In this paper we consider the problem of automatically extracting metamorphic signatures from metamorphic code. We introduce a semantics for self-modifying code, later called phase semantics, and prove its correctness by showing that it is an abstract interpretation of the standard trace semantics. Phase semantics precisely models the metamorphic code behavior by providing a set of traces of programs which correspond to the possible evolutions of the metamorphic code during execution. We show that metamorphic signatures can be automatically extracted by abstract interpretation of the phase semantics. In particular, we introduce the notion of regular metamorphism, where the invariants of the phase semantics can be modeled as finite state automata representing the code structure of all possible metamorphic change of a metamorphic code, and we provide a static signature extraction algorithm for metamorphic code where metamorphic signatures are approximated in regular metamorphism

    Proactive Detection of Computer Worms Using Model Checking

    Get PDF
    Although recent estimates are speaking of 200,000 different viruses, worms, and Trojan horses, the majority of them are variants of previously existing malware. As these variants mostly differ in their binary representation rather than their functionality, they can be recognized by analyzing the program behavior, even though they are not covered by the signature databases of current antivirus tools. Proactive malware detectors mitigate this risk by detection procedures that use a single signature to detect whole classes of functionally related malware without signature updates. It is evident that the quality of proactive detection procedures depends on their ability to analyze the semantics of the binary. In this paper, we propose the use of model checkinga well-established software verification techniquefor proactive malware detection. We describe a tool that extracts an annotated control flow graph from the binary and automatically verifies it against a formal malware specification. To this end, we introduce the new specification language CTPL, which balances the high expressive power needed for malware signatures with efficient model checking algorithms. Our experiments demonstrate that our technique indeed is able to recognize variants of existing malware with a low risk of false positives. © 2006 IEEE

    a framework for automated similarity analysis of malware

    Get PDF
    Malware, a category of software including viruses, worms, and other malicious programs, is developed by hackers to damage, disrupt, or perform other harmful actions on data, computer systems and networks. Malware analysis, as an indispensable part of the work of IT security specialists, aims to gain an in-depth understanding of malware code. Manual analysis of malware is a very costly and time-consuming process. As more malware variants are evolved by hackers who occasionally use a copy-paste-modify programming style to accelerate the generation of large number of malware, the effort spent in analyzing similar pieces of malicious code has dramatically grown. One approach to remedy this situation is to automatically perform similarity analysis on malware samples and identify the functions they share in order to minimize duplicated effort in analyzing similar codes of malware variants. In this thesis, we present a framework to match cloned functions in a large chunk of malware samples. Firstly, the instructions of the functions to be analyzed are extracted from the disassembled malware binary code and then normalized. We propose a new similarity metric and use it to determine the pair-wise similarity among malware samples based on the calculated similarity of their functions. The developed tool also includes an API class recognizer designed to determine probable malicious operations that can be performed by malware functions. Furthermore, it allows us to visualize the relationship among functions inside malware codes and locate similar functions importing the same API class. We evaluate this framework on three malware datasets including metamorphic viruses created by malware generation tools, real-life malware variants in the wild, and two well-known botnet trojans. The obtained experimental results confirm that the proposed framework is effective in detecting similar malware code

    FIREFOX ADD-ON FOR METAMORPHIC JAVASCRIPT MALWARE DETECTION

    Get PDF
    With the increasing use of the Internet, malicious software has more frequently been designed to take control of users computers for illicit purposes. Cybercriminals are putting a lot of efforts to make malware difficult to detect. In this study, we demonstrate how the metamorphic JavaScript malware can effect a victim’s machine using a malicious or compromised Firefox add-on. Following the same methodology, we develop another add-on with malware static detection technique to detect metamorphic JavaScript malware

    Data Mining Methods For Malware Detection

    Get PDF
    This research investigates the use of data mining methods for malware (malicious programs) detection and proposed a framework as an alternative to the traditional signature detection methods. The traditional approaches using signatures to detect malicious programs fails for the new and unknown malwares case, where signatures are not available. We present a data mining framework to detect malicious programs. We collected, analyzed and processed several thousand malicious and clean programs to find out the best features and build models that can classify a given program into a malware or a clean class. Our research is closely related to information retrieval and classification techniques and borrows a number of ideas from the field. We used a vector space model to represent the programs in our collection. Our data mining framework includes two separate and distinct classes of experiments. The first are the supervised learning experiments that used a dataset, consisting of several thousand malicious and clean program samples to train, validate and test, an array of classifiers. In the second class of experiments, we proposed using sequential association analysis for feature selection and automatic signature extraction. With our experiments, we were able to achieve as high as 98.4% detection rate and as low as 1.9% false positive rate on novel malwares
    corecore