
Unveiling Metamorphism
by Abstract Interpretation of Code Properties

Mila Dalla Predaa, Roberto Giacobazzia, Saumya Debrayb

aUniversity of Verona, Italy, {mila.dallapreda,roberto.giacobazzi}@univr.it
bUniversity of Arizona, USA, debray@cs.arizona.edu

Abstract

Metamorphic code includes self-modifying semantics-preserving transformations to
exploit code diversification. The impact of metamorphism is growing in security and
code protection technologies, both for preventing malicious host attacks, e.g., in soft-
ware diversification for IP and integrity protection, and in malicious software attacks,
e.g., in metamorphic malware self-modifying their own code in order to foil detection
systems based on signature matching. In this paper we consider the problem of au-
tomatically extracting metamorphic signatures from metamorphic code. We introduce
a semantics for self-modifying code, later called phase semantics, and prove its cor-
rectness by showing that it is an abstract interpretation of the standard trace semantics.
Phase semantics precisely models the metamorphic code behavior by providing a set
of traces of programs which correspond to the possible evolutions of the metamorphic
code during execution. We show that metamorphic signatures can be automatically
extracted by abstract interpretation of the phase semantics. In particular, we introduce
the notion of regular metamorphism, where the invariants of the phase semantics can
be modeled as finite state automata representing the code structure of all possible meta-
morphic change of a metamorphic code, and we provide a static signature extraction
algorithm for metamorphic code where metamorphic signatures are approximated in
regular metamorphism.

Keywords: Abstract interpretation, program semantics, metamorphic malware
detection, self-modifying programs.

1. Introduction

Detecting and neutralizing computer malware, such as worms, viruses, trojans, and
spyware is a major challenge in modern computer security, involving both sophisti-
cated intrusion detection strategies and advanced code manipulation tools and meth-
ods. Traditional misuse malware detectors (also known as signature-based detectors)
are typically syntactic in nature: they use pattern matching to compare the byte se-
quence comprising the body of the malware against a signature database [34]. Malware
writers have responded by using a variety of techniques in order to avoid detection:
Encryption, oligomorphism with mutational decryption patterns, and polymorphism
with different encryption methods for generating an endless sequence of decryption

Preprint submitted to Theoretical Computer Science February 18, 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Catalogo dei prodotti della ricerca

https://core.ac.uk/display/217546399?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

patterns are typical strategies for achieving malware diversification. Metamorphism
emerged in the last decade as an effective alternative strategy to foil misuse malware
detectors. Metamorphic malware apply semantics-preserving transformations to mod-
ify its own code so that one instance of the malware bears very little resemblance to
another instance, in a kind of body-polymorphism [33], even though semantically their
functionality is the same. Thus, a metamorphic malware is a malware equipped with a
metamorphic engine that takes the malware, or parts of it, as input and morphs it at run-
time to a syntactically different but semantically equivalent variant, in order to avoid
detection. Some of the basic metamorphic transformations commonly used by mal-
ware are semantic-nop/junk insertion, code permutation, register swap and substitution
of equivalent sequences of instructions [7, 33]. It is worth noting that most of these
transformations can be seen as special cases of code substitution [23]. The quantity of
metamorphic variants possible for a particular piece of malware makes it impractical
to maintain a signature set that is large enough to cover most or all of these variants,
making standard signature-based detection ineffective [10]. Existing malware detec-
tors therefore fall back on a variety of heuristic techniques, but these may be prone
to false positives (where innocuous files are mistakenly identified as malware) or false
negatives (where malware escape detection) at worst. The reason for this vulnerability
to metamorphism lies upon the purely syntactic nature of most existing and commer-
cial detectors. The key for identifying metamorphic malware lies, instead, in a deeper
understanding of their semantics. Preliminary works in this direction by Dalla Preda et
al. [16], Christodorescu et al. [11], and Kinder et al. [27] confirm the potential benefits
of a semantics-based approach to malware detection. Still a major drawback of exist-
ing semantics-based methods relies upon their need of an a priori knowledge of the
obfuscations used to implement the metamorphic engine. Because of this, it is always
possible for any expert malware writer to develop alternative metamorphic strategies,
even by simple modification of existing ones, able to foil any given detection scheme.
Indeed, handling metamorphism represents one of the main challenges in modern mal-
ware analysis and detection [18].

Contributions. We use the term metamorphic signature to refer to an abstract pro-
gram representation that ideally captures all the possible code variants that might be
generated during the execution of a metamorphic program. A metamorphic signature
is therefore any (possibly decidable) approximation of the properties of code evolu-
tion. We propose a different approach to metamorphic malware detection based on
the idea that extracting metamorphic signatures is approximating malware semantics.
Program semantics concerns here the way code changes, i.e., the effect of instructions
that modify other instructions. We face the problem of determining how code mu-
tates, by catching properties of this mutation, without any a priori knowledge about
the implementation of the metamorphic transformations. We use a formal semantics to
model the execution behavior of self-modifying code commonly encountered in mal-
ware. Using this as the basis, we propose a theoretical model for statically deriving, by
abstract interpretation, an abstract specification of all possible code variants that can be
generated during the execution of a metamorphic malware. Traditional static analysis
techniques are not adequate for this purpose, as they typically assume that programs
do not change during execution. We therefore define a more general semantics-based

2

behavioral model, called phase semantics, that can cope with changes to the program
code at run time. The idea is to partition each possible execution trace of a metamor-
phic program into phases, each collecting the computations performed by a particular
code variant. The sequence of phases (once disassembled) represents the sequence of
possible code mutations, while the sequence of states within a given phase represents
the behavior of a particular code variant.

Phase semantics precisely expresses all the possible phases, namely code variants,
that can be generated during the execution of a metamorphic code. Phase semantics
can then be used as a metamorphic signature for checking whether a program is a
metamorphic variant of another one. Indeed, thanks to the precision of phase seman-
tics, we have that a program Q is a metamorphic variant of a program P if and only
if Q appears in the phase semantics of P . Unfortunately, due to the possible infinite
sequences of code variants that can be present in the phase semantics of P , the above
test for metamorphism is undecidable in general. Thus, in order to gain decidability,
we need to loose precision and do so by using the well established theory of abstract in-
terpretation [12, 13]. Indeed, abstract interpretation is used here to extract the invariant
properties of phases, which are properties of the generated program variants. Abstract
domains represent here properties of the code shape in phases. We use the domain of
finite state automata (FSA) for approximating phases and provide a static semantics
of traces of FSA as an abstraction of the phase semantics. We introduce the notion of
regular metamorphism as a further approximation obtained by abstracting sequences of
FSA into a single FSA. This abstraction provides an upper regular language-based ap-
proximation of any metamorphic behavior of a program and it leads to a decidable test
for metamorphism. This is particularly suitable to extract metamorphic signatures for
engines implemented themselves as FSA of basic code transformations, which corre-
spond to the way most classical metamorphic generators are implemented [23, 31, 35].
Our approach is general and language independent, providing an adequate theoretical
foundation for the systematic design of algorithms and methods devoted to the extrac-
tion of approximate metamorphic signatures from any metamorphic code P . The main
advantage of the phase semantics here is in modeling code mutations without isolat-
ing the metamorphic engine from the rest of the viral code. The approximation of the
phase semantics by abstract interpretation can make decidable whether a given binary
matches a metamorphic signature, without knowing any features of the metamorphic
engine itself.

Structure of the paper. In Section 3 we describe the behavior of a metamorphic pro-
gram as a graph, later called program evolution graph, where each vertex is a standard
static representation of programs (e.g., a control flow graph) and whose edges repre-
sent possible run-time changes to the code. We then define the phase semantics of a
program as the set of all possible paths in the program evolution graph and we prove its
correctness by showing that it is a sound abstract interpretation of standard trace seman-
tics. Thus, phase semantics provides a precise description of the history of run-time
code modifications, namely the sequences of “code snapshots” that can be generated
during execution. Then, in Section 4, we introduce a general method for extracting
metamorphic signatures as abstract interpretation of phase semantics. The result of the
analysis is a correct approximate specification of the malware evolution, namely an

3

approximated representation of all its possible metamorphic variants. This method is
instantiated in Section 5 by abstracting programs with FSA over the alphabet of abstract
binary instructions and phase semantics by sequences of FSA. Here, the abstract phase
semantics is given by a set of sequences of FSA and it provides a behavioral model for
the evolution of any metamorphic program. Next, in Section 6, we introduce regular
metamorphism modeling metamorphic engines as FSA of basic code transformations.
This is achieved by approximating the phase semantics of program P as a unique FSA
W[[P]], whose language contains the strings of instructions that corresponds to the runs
of all the metamorphic variants of P . W[[P]] provides an approximated metamorphic
signature of P which can be used to verify whether a program is a metamorphic variant
of P by language inclusion which is decidable for regular languages. In Section 7 we
discuss how the presented approach could be applied to the analysis of the metamor-
phic virus MetaPHOR. The paper ends with a discussion and related works.

The results presented in this work are an extended and reviewed version of [17].

2. Background

Mathematical Notation. Given two sets S and T , we denote with ℘(S) the powerset
of S, with S r T the set-difference between S and T , with S ⊂ T strict inclusion
and with S ⊆ T inclusion. Let S⊥ be set S augmented with the undefined value
⊥, i.e., S⊥ = S ∪ {⊥}. 〈P,≤〉 denotes a poset P with ordering relation ≤, while
〈P,≤,∨,∧,>,⊥〉 denotes a complete lattice P , with ordering ≤, least upper bound
(lub) ∨, greatest lower bound (glb) ∧, greatest element (top) >, and least element
(bottom) ⊥. Often, ≤P will be used to denote the underlying ordering of a poset P ,
and ∨P ,∧P ,>P and⊥P denote the basic operations and elements of a complete lattice
P . We use the symbol v to denote pointwise ordering between functions: If X is any
set, 〈P,≤〉 is a poset and f, g : X → P then f v g if for all x ∈ X, f(x) ≤ g(x). If
f : S → T and g : T → Q then g ◦ f : S → Q denotes the composition of f and g,
i.e., g ◦ f = λx.g(f(x)). A function f : P → Q on posets is (Scott)-continuous when
it preserves the lub of countable chains in P . A function f : C → D on complete
lattices is additive when for any Y ⊆ C, f(∨CY) = ∨Df(Y), and it is co-additive
when f(∧CY) = ∧Df(Y). Given a function f : S → T , its point-wise extension
from ℘(S) to ℘(T) is λX.

{
f(x)

∣∣ x ∈ X }
.

LetA∗ be the set of finite sequences, also called strings, of elements ofA with ε the
empty string, and with |ω| the length of string ω ∈ A∗. We denote the concatenation of
ω, ν ∈ A∗ as ω :: ν. We say that a string s0 . . . sh is a subsequence of a string t0 . . . tn,
denoted s0 . . . sh � t0t1 . . . tn, if there exists l ∈ [1, n] : ∀i ∈ [0, h] : si = tl+i.

Finite State Automata (FSA). An FSA M is a tuple (Q, δ, S, F,A), where Q is the set
of states, δ : Q×A→ ℘(Q) is the transition relation, S ⊆ Q is the set of initial states,
F ⊆ Q is the set of final states and A is the finite alphabet of symbols. A transition is a
tuple (q, s, q′) such that q′ ∈ δ(q, s). Let ω ∈ A∗, we denote with δ∗ : Q×A∗ → ℘(Q)
the extension of δ to strings: δ∗(q, ε) = {q} and δ∗(q, ωs) =

⋃
q′∈δ∗(q,ω) δ(q

′, s).
A string ω ∈ A∗ is accepted by M if there exists q0 ∈ S : δ∗(q0, ω) ∩ F 6= ∅.
The language L (M) accepted by an FSA M is the set of all strings accepted by M .
Given an FSA M and a partition π over its states, the quotient automaton M/π =

4

(Q′, δ′, S′, F ′, A) is defined as follows: Q′ = {[q]π | q ∈ Q}, δ′ : Q′ × A → ℘(Q′)
is the function δ′([q]π, s) =

⋃
p∈[q]π

{[q′]π | q′ ∈ δ(p, s)}, S′ = {[q]π | q ∈ S}, and
F ′ = {[q]π | q ∈ F}. An FSA M = (Q, δ, S, F,A) can be equivalently specified as
a graph M = (Q,E, S, F) with a node q ∈ Q for each automata state and a labeled
edge (q, s, q′) ∈ E if and only if q′ ∈ δ(q, s).

Abstract Interpretation. Abstract interpretation is based on the idea that the behavior
of a program at different levels of abstraction is an approximation of its (concrete)
semantics [12, 13]. The concrete program semantics is computed on the so-called con-
crete domain, i.e., the poset of mathematical objects on which the program runs, here
denoted by 〈C,≤C〉, where the ordering relation encodes relative precision: c1 ≤C c2
means that c1 is a more precise (concrete) description than c2. Approximation is en-
coded by an abstract domain 〈A,≤A〉, which is a poset of abstract values that represent
some approximated properties of concrete objects and whose partial order models rel-
ative precision. In abstract interpretation abstraction is formally specified as a Galois
connection (GC) (C,α, γ,A), i.e., an adjunction [12, 13], namely as a concrete domain
C and an abstract domain A related through an abstraction map α : C → A and a con-
cretization map γ : A → C such that: ∀a ∈ A, c ∈ C : α(c) ≤A a ⇔ c ≤C γ(a).
Thus, α(c) ≤A a or equivalently c ≤C γ(a) means that a is a sound approximation
in A of c. GCs ensure that α(c) actually provides the best possible approximation in
the abstract domain A of the concrete value c ∈ C. Recall that a tuple (C,α, γ,A)
is a GC iff α is additive iff γ is co-additive. This means that given an additive (resp.
co-additive) function f between two domains we can always build a GC by considering
its right (resp. left) adjoint map. In particular, we have that every abstraction map α
induces a concretization map γ and vice versa, formally: γ(y) =

∨
{x | α(x) ≤ y} and

α(x) =
∧
{y | x ≤ γ(y)}. As usual, we denote a GC as a tuple (C,α, γ,A). Given two

GCs (C,α1, γ1, A1) and (A1, α2, γ2, A2), their composition (C,α2 ◦ α1, γ1 ◦ γ2, A2)
is still a GC. Abstract domains can be compared with respect to their relative degree of
precision: If A1 and A2 are both abstract domains of a common concrete domain C,
we say that A1 is more precise than A2 when for any a2 ∈ A2 there exists a1 ∈ A1

such that γ1(a1) = γ2(a2), i.e., when γ2(A2) ⊆ γ1(A1). Given a GC (C,α, γ,A) and
a concrete predicate transformer (semantics) F : C → C, we say that F] : A→ A is
a sound, i.e., correct, approximation of F in A if for any c ∈ C and a ∈ A, if a ap-
proximates c then F](a) must approximate F (c), i.e., ∀c ∈ C, α(F (c)) ≤A F](α(c)).
When α ◦ F = F] ◦ α, the abstract function F] is a complete abstraction of F in A.
While any abstract domain induces the canonical best correct approximation α ◦F ◦ γ
of F : C → C in A, not all abstract domains induce a complete abstraction [24]. The
least fix-point of an operator F on a poset 〈P,≤〉, when it exists, is denoted by lfp≤F ,
or by lfpF when the partial order is clear from the context. Any continuous opera-
tor F : C → C on a complete lattice C = 〈C,≤C ,∨C ,∧C ,>C ,⊥C〉 admits a least
fix-point: lfp≤CF =

∨
n∈N F

i(⊥C), where for any i ∈ N and x ∈ C: F 0(x) = x;
F i+1(x) = F (F i(x)). If F] : A→ A is a correct approximation of F : C → C on
〈A,≤A〉, i.e., if α ◦ F v F] ◦ α, then α(lfp≤CF) ≤A lfp≤AF]. Convergence can be
ensured through widening iterations along increasing chains [12]. A widening oper-
ator O : P × P → P approximates the lub, i.e., ∀X,Y ∈ P : X ≤P (XOY)
and Y ≤P (XOY), and it is such that the increasing chain W i, where W 0 = ⊥ and

5

Syntactic categories:
n ∈ Val (values)
a ∈ Loc (memory locations)
e ∈ E (expressions)
I ∈ I (instructions)
m ∈M : Loc → Val⊥ (memory map)
P ∈ Loc ×M×Val∗ = P (programs)
Expressions:
e::= n | MEM[e] | MEM[e1]opMEM[e2] | MEM[e1]opn
Instructions:
I::= call e | ret | pop e | push e | nop | mov e1, e2 | input⇒ e |

if e1 goto e2 | goto e | halt

Figure 1: Syntax of an abstract assembly language

W i+1 = W iOF (W i) is not strictly increasing for ≤P . The limit of the sequence W i

provides an upper-approximation of the lfp of F on P , i.e., lfp≤PF ≤P limi→∞W
i.

3. Modeling Metamorphism

3.1. Abstract Assembly Language

Executable programs make no fundamental distinction between code and data:
Memory locations contain binary values that can be interpreted either as represent-
ing data or as encoding instructions. This makes it possible to modify a program by
operating on a memory location as though it contains data, e.g., by adding or sub-
tracting some value from it, and then interpret the result as code and execute it. To
model this, we define a program to be a tuple P = (a,m, θ), where a denotes the entry
point of P , namely the address of the first instruction of P , m specifies the contents
of memory (both code and data), and θ represents the program stack. Without loss
of generality we consider a finite set Loc ⊆ N of possible memory locations and a
finite set Val of possible values that can be stored either in the memory or in the stack.
Since a memory location contains a natural number that can be interpreted either as
data or as instruction1 we use an injective function encode : I → Val that given an
instruction I ∈ I returns its binary representation encode(I) ∈ Val , and a function
decode : Val → I⊥ such that:

decode(n) =

{
I if I ∈ I and encode(I) = n
⊥ otherwise

The syntax of the abstract assembly language, whose structure is inspired from IA-
32 assembly language, that we are considering is shown in Figure 1. Instruction

1To simplify the discussion, we assume that each instruction occupies a single location in memory. While
this does not hold true of variable-instruction-length architectures such as the Intel IA-32, the issues raised
by variable-length instructions are orthogonal to the topic of this paper, and do not affect any of our results.

6

input ⇒ e represents the assignment of the value in input to the memory location
identified by expression e; instruction mov e1, e2 denotes the mov-instruction where
e1 is the destination and e2 the source, while the other instructions have the usual
meaning. Observe that the set of instructions identified by the syntax of Figure 1 is
unbounded since it allows an unlimited number of expressions. However, the set Val
of possible values that can be stored in memory is finite and this implies that also the
set of instructions that can be encoded by Val is finite. In the rest of the paper we
use I to denote the finite set of instructions that can be encoded by Val . A program
state is a tuple 〈a,m, θ,I〉 where m is the memory map, a is the address of the next
instruction to be executed, θ ∈ Val∗ is the content of the stack and I ∈ Val∗ is the
input string. In particular, we use notation n :: θ to refer to a stack that has value n on
the top, and notation n :: I to refer to an input stream whose next input value is n. Let
Σ = Loc⊥ ×M× Val∗ × Val∗ be the set of all possible program states. We denote
with σi the i-th element of a sequence of states σ ∈ Σ∗. The semantics of expressions
is specified by function E : E×M→ Val :

E [[n]]m = n
E [[MEM[e]]]m = m(E [[e]]m)
E [[MEM[e1]opMEM[e2]]]m = E [[MEM[e1]]]mop E [[MEM[e2]]]m
E [[MEM[e1]opn]]m = E [[MEM[e1]]]mopn

and the semantics of instructions through function I : I× Σ→ Σ:

I[[call e]]〈a,m, θ, I〉 = 〈E [[e]]m,m, (a+ 1) :: θ, I〉
I[[ret]]〈a,m, n :: θ, I〉 = 〈n,m, θ, I〉
I[[mov e1, e2]]〈a,m, θ, I〉 = 〈a+ 1,m[E [[e1]]m← E [[e2]]m], θ, I〉
I[[input⇒ e]]〈a,m, θ, n :: I〉 = 〈a+ 1,m[E [[e]]m← n], θ, I〉

I[[if e1 goto e2]]〈a,m, θ, I〉 =

{
〈E [[e2]]m,m, θ, I〉 if E [[e1]]m 6= 0
〈a+ 1,m, θ, I〉 otherwise

I[[pop e]]〈a,m, n :: θ, I〉 = 〈a+ 1,m[E [[e]]m← n], θ, I〉
I[[goto e]]〈a,m, θ, I〉 = 〈E [[e]]m,m, θ, I〉
I[[push e]]〈a,m, θ, I〉 = 〈a+ 1,m, E [[e]]m :: θ, I〉
I[[halt]]〈a,m, θ, I〉 = 〈⊥,m, θ, I〉
I[[nop]]〈a,m, θ, I〉 = 〈a+ 1,m, θ,I〉

Given the instruction semantics I described above we can define the transition
relation between states T : Σ→ Σ as:

T (〈a,m, θ, I〉) = I[[decode(m(a))]]〈a,m, θ, I〉

The maximal finite trace semantics of program P = (a,m, θ), denoted as S[[P]], is
given by the least fix-point of the function FT [[P]] : ℘(Σ∗)→ ℘(Σ∗):

FT [[P]](X) = Init [[P]] ∪ {σσiσi+1 | σi+1 = T (σi), σσi ∈ X}

where Init [[P]] = {〈a,m, θ, I〉 | P = (a,m, θ), I ∈ Val∗ is an input stream} denotes
the set of initial states of P .

7

�1 �2�0 �3 �4 �5 �6 �7 �8

mod(�2) mod(�4)

phase 1 phase 2 phase 3

(a0, m0, ✓0) (a3, m3, ✓3) (a5, m5, ✓5)

TRACE OF!
STATES

TRACE OF!
PROGRAMS

Figure 2: Phases of a trace

3.2. Phase Semantics

While the trace semantics of a program gives a faithful account of its low-level
behavior, it is at far too fine granularity for our purposes. Since we are interested
primarily in comparing the metamorphic variants of a malware, it is convenient to
group together sequences of states into phases that correspond to the computations of
a particular code variant. Thus, a phase is a maximal sequence of states in an execution
trace that does not overwrite any memory location storing an instruction that is going
to be executed later in the same trace. Given an execution trace σ = σ0 . . . σn, we
can identify phase boundaries by considering the sets of memory locations modified
by each state σi = 〈ai,mi, θi, Ii〉 with i ∈ [0, n]: every time that a location aj , with
i < j ≤ n, of a future instruction is modified by the execution of state σi, then the
successive state σi+1 is a phase boundary, since it stores a modified version of the
code. We can express this more formally by denoting with mod(σi) ⊆ Loc the set of
memory locations that are modified by the instruction executed in state σi:

mod(σi) =

{
{E [[e]]m} if decode(mi(ai)) ∈ {mov e, e′,input⇒ e,pop e}
∅ otherwise

This allows us to formally define the phase boundaries and the phases of a trace.

Definition 3.1. The set of phase boundaries of a trace σ = σ0 . . . σn ∈ Σ∗, where
∀i ∈ [0, n] : σi = 〈ai,mi, θi, Ii〉, is:

bound(σ) = {σ0} ∪ {σi | mod(σi−1) ∩ {aj | i ≤ j ≤ n} 6= ∅}

The set of phases of a trace σ ∈ Σ∗ is:

phases(σ) =

{
σi . . . σj

∣∣∣∣ σ = σ0 . . . σi . . . σjσj+1 . . . σn,
σi, σj+1 ∈ bound(σ),∀l ∈ [i+ 1, j] : σl 6∈ bound(σ)

}

Observe that, since a phase does not execute instructions that are modified within the
phase, the memory map of the first state of a phase always specifies the code snap-
shot that is executed along the phase. Hence, the sequence of the initial states of the
phases of an execution trace highlights the different code snapshots encountered dur-
ing that execution. Figure 2 provides a graphical representation of the notions of phase

8

boundaries and phases inside a trace. Indeed, Figure 2 represents an execution trace
σ0σ1 . . . σ8 where σi = 〈ai,mi, θi, Ii〉. Let us assume that the execution of state σ2

overwrites the instruction that will be executed by state σ6, namely a6 ∈ mod(σ2),
and we graphically represent this with the dashed arrow from σ2 to σ6 labeled with
mod(σ2). Analogously, the dashed arrow from σ4 to σ7 denotes the fact that the exe-
cution of state σ4 overwrites the instruction executed by state σ7. In this situation, the
phase boundaries of the trace are the initial state σ0 and the states σ3 and σ5 that are
immediately after the execution of a state that modifies an instruction that will be later
executed. The phase boundaries of the considered trace are represented as states with
a double circle. The phase boundaries are then used to identify the successive phases
in the trace. As argued before the code executed by each phase is specified by the first
state of the phase. Thus, the execution trace σ0σ1 . . . σ8 corresponds to the the program
evolution (a0,m0, θ0)(a3,m3, θ3)(a5,m5, θ5) depicted at the bottom of Figure 2.
In general, different executions of a program give rise to different sequences of code
snapshots. A complete characterization of all code snapshots that can be obtained over
any possible execution of a self-modifying program is given by the program evolution
graph. Here, each vertex is a code snapshot Pi corresponding to a phase of a program
execution trace, and an edge Pi → Pj indicates that in some execution trace of the pro-
gram, a phase with code snapshot Pi can be followed by a phase with code snapshot
Pj .

Definition 3.2. The program evolution graph of a program P0 is G[[P0]] = (V,E):

V = {Pi = (ai,mi, θi) | σ = σ0..σi..σn ∈ S[[P0]] : σi = 〈ai,mi, θi, Ii〉 ∈ bound(σ)}

E =

 (Pi, Pj)

∣∣∣∣∣∣∣∣
Pi = (ai,mi, θi), Pj = (aj ,mj , θj),
σ = σ0..σi..σj−1σj ..σn ∈ S[[P0]] :
σi = 〈ai,mi, θi, Ii〉, σj = 〈aj ,mj , θj , Ij〉,
σi . . . σj−1 ∈ phases(σ)


If we consider the example in Figure 2 we have that the program evolution graph that
we can build from the single trace of states σ0σ1 . . . σ8 is the trace of programs depicted
at the bottom of the figure, where the edges of the program evolution graph connect
successive code variants. A path in G[[P0]] is a sequence of programs P0 . . . Pn such
that for every i ∈ [0, n[we have that (Pi, Pi+1) ∈ E.

Definition 3.3. Given a program P0, the set of all possible (finite) paths of the program
evolution graph G[[P0]] is the phase semantics of P0, denoted SPh [[P0]]:

SPh [[P0]] = {P0 . . . Pn | P0 . . . Pn is a path in G[[P0]]}

Example. Consider for instance the metamorphic program P0 of Figure 3, where the
numbers on the left denote memory locations. x and y are memory locations that will
store the input or the result of manipulation of the input data, while l is a memory
location that contains the location where P0 will write instructions that will then be
executed. During its execution program P0 loops between the modification of its own
code guided by the metamorphic engine (stored at memory locations from 8 to 14) and

9

P0:
1: mov l, 100 8: movMEM[l],MEM[4]
2: input⇒ x 9: movMEM[l] + 1,MEM[5]
3: if (MEM[x] mod 2) goto 7 10: movMEM[l] + 2,encode(goto 6)
4: mov y,MEM[x] 11: mov 4,encode(nop)
5: movx,MEM[x]/2 12: mov 5,encode(gotoMEM[l])
6: goto 8 13: mov l,MEM[l] + 3
7: movx, (MEM[x] + 1)/2 14: goto 2

Figure 3: A metamorphic program P0

the execution of its intended functionality (stored at memory locations from 2 to 7). Ob-
serve that the execution of instruction movMEM[l],MEM[4] at location 8 has the effect
of writing at the location indicated by the value stored in l the value stored at location 4
(that in this case is an instruction). Moreover, observe that instruction mov l,MEM[l]+3
at location 13 has the effect of increasing by 3 the address contained in location l. Ob-
serve that the first time that the metamorphic engine is executed it writes a nop at
memory location 4 and copies the original content of this location to the free location
identified by MEM[l]; then it adds some goto instructions to preserve the original se-
mantics. The second time it writes a nop at memory location 4 and copies the original
content of this location, that now is a nop to the free location identified by MEM[l] + 3,
and then adds some goto instructions to preserve the original semantics. Thus, the
effect of this metamorphic engine is to keep on adding a nop before the execution of
the instruction originally stored at location 4. To better understand this simple exam-
ple in Figure 4 we report a particular execution trace of P0 corresponding to the input
stream I = 7 :: 6. The states marked with a black bullet identify the phase boundary of
the considered execution and are used to define the phases of the considered execution
trace. The example highlights the fact that phase semantics provides a very low level
description of code evolution and it identifies a new phase every time that an instruction
that will be later executed is modified in memory. This means that when considering a
metamorphic engine that operates several instruction modifications for generating the
new variant we will end-up by observing a phase for each modification. In this cases
it would be nice and useful to further abstract the model of phase semantics in order to
observe only the “final” code variant obtained through this series of intermediate mod-
ifications. The formal definition of this abstraction will be based on some knowledge
of the metamorphic engine that we are considering. In Section 7 we will provide an
example of this when considering the metamorphic malware MetaPHOR.

3.3. Fix-point Phase Semantics

It is possible to define a function on 〈℘(P∗),⊆〉 that iteratively computes the phase
semantics of a given program. In order to do this we introduce the notion of mutat-
ing transition: A transition between two states that leads to a state which is a phase
boundary.

10

phase-1 • σ1 = 〈1, m1, θ, 7 :: 6〉
σ2 = 〈2, m2 = m1[l← 100], θ, 7 :: 6〉
σ3 = 〈3, m3 = m2[x← 7], θ, 6〉
σ4 = 〈7, m4 = m3, θ, 6〉
σ5 = 〈8, m5 = m4[x← 4], θ, 6〉

phase-2 • σ6 = 〈9, m6 = m2[100← encode(movy, MEM[x])], θ, 6〉
phase-3 • σ7 = 〈10, m7 = m6[101← encode(movx, MEM[x]/2)], θ, 6〉
phase-4 • σ8 = 〈11, m8 = m7[102← encode(goto6)], θ, 6〉
phase-5 • σ9 = 〈12, m9 = m8[4← encode(nop)], θ, 6〉
phase-6 • σ10 = 〈13, m10 = m9[5← encode(goto100)], θ, 6〉

σ11 = 〈14, m11 = m10[l← 103], θ, 6〉
σ12 = 〈2, m12 = m11, θ, 6〉
σ13 = 〈3, m13 = m12[x← 6], θ, ε〉
σ14 = 〈4, m14 = m13, θ, ε〉
σ15 = 〈5, m15 = m14, θ, ε〉
σ16 = 〈100, m16 = m14, θ, ε〉
σ17 = 〈101, m17 = m16[y ← 6], θ, ε〉
σ18 = 〈102, m18 = m17[x← 3], θ, ε〉
σ19 = 〈6, m19 = m18, θ, ε〉
σ20 = 〈8, m20 = m19, θ, ε〉

phase-7 • σ21 = 〈9, m21 = m20[103← encode(nop)], θ, ε〉
phase-8 • σ22 = 〈10, m22 = m21[104← encode(goto100)], θ, ε〉
phase-9 • σ23 = 〈11, m23 = m22[105← encode(goto6)], θ, ε〉
phase-10 • σ24 = 〈12, m24 = m23[4← encode(nop)], θ, ε〉
phase-11 • σ25 = 〈13, m25 = m24[5← encode(goto103)], θ, ε〉

σ26 = 〈14, m26 = m25[l← 106], θ, ε〉
σ27 = 〈2, m27 = m26, θ, ε〉
. . .

Figure 4: Execution trace of P0 with input stream I = 7 :: 6

Definition 3.4. We say that a pair of states (σi, σj) is a mutating transition of P0,
denoted (σi, σj) ∈ MT(P0), if there exists a trace σ = σ0 . . . σiσj . . . σn ∈ S[[P0]] such
that σj ∈ bound(σ).

From the above notion of mutating transition we can derive the program transformer
T Ph : ℘(P)→ ℘(P) that associates with each set of programs the set of their possible
metamorphic variants, i.e., Pj ∈ T Ph(Pi) means that, during execution, program Pi
can be transformed into program Pj .

Definition 3.5. The transition relation between programs T Ph : ℘(P) → ℘(P) is
given by the point-wise extension of T Ph : P→ ℘(P) where ∀P0 ∈ P:

T Ph(P0) =

{
Pl

∣∣∣∣ Pl = (al,ml, θl), σ = σ0 . . . σl−1σl ∈ S[[P0]], σl = 〈al,ml, θl, Il〉,
(σl−1, σl) ∈ MT(P0),∀i ∈ [0, l − 1[: (σi, σi+1) 6∈ MT(P0)

}
and T Ph(P0) = ∅ if P0 is not self-modifying.

The transition relation T Ph can be extended to traces of programs by defining function
FT Ph [[P0]] : ℘(P∗)→ ℘(P∗) as:

FT Ph [[P0]](Z) = P0 ∪ {zPiPi+1 | Pi+1 ∈ T Ph(Pi), zPi ∈ Z}

The following lemma shows that FT [[P0]] and FT Ph [[P0]] are extensive functions when
considering prefix ordering on strings.

11

Lemma 3.6. The following implications hold:
(1) If P0 . . . PlPl+1 ∈ FT Ph [[P0]](Z) then P0 . . . Pl ∈ Z and Pl+1 ∈ T Ph(Pl).
(2) If σ0 . . . σnσn+1 ∈ FT [[P]](X) then σ0 . . . σn ∈ X and σn+1 ∈ T (σn).
(3) If σ0 . . . σl . . . σn ∈ S[[P0]], where σ0 = 〈a0,m0, θ0, I0〉, σl = 〈al,ml, θl, Il〉,

P0 = (a0,m0, θ0) and Pl = (al,ml, θl), then σl . . . σn ∈ S[[Pl]].

PROOF: Immediate by definition of FT Ph [[P0]], FT [[P0]] and S[[P]].

The following result shows how function FT Ph [[P0]] iteratively computes the phase
semantics of P0.

Theorem 3.7. lfp⊆FT Ph [[P0]] = SPh [[P0]].

PROOF: In the rest of the proof we consider that ∀i ∈ N: σi = 〈ai,mi, θi, Ii〉 and
Pi = (ai,mi, θi). Let us show that SPh [[P0]] ⊆ lfp⊆FT Ph [[P0]]. We prove this by
showing by induction on the length of the string that ∀z ∈ P∗ : z ∈ SPh [[P0]] ⇒
z ∈ lfp⊆FT Ph [[P0]]. The only path of length one in G[[P0]] is P0, and the only string
of length one in lfp⊆FT Ph [[P0]] is P0. Assume that the above implication holds for
every string of length n and let us show that it holds for z = P0 . . . PlPk of length
n + 1. If P0 . . . PlPk is a path of G[[P0]] = (V,E) it means that P0 . . . Pl is a
path of G[[P0]] = (V,E) and that (Pl, Pk) ∈ E. By Definition 3.2 of program
evolution graph, this means that P0 . . . Pl is a path of G[[P0]] and that there exists
σ = σ0 . . . σl−1σl . . . σk−1σk . . . σn ∈ S[[P0]] such that σl . . . σk−1 ∈ phases(σ). By
Definition 3.1 of phases this means that {σl, σk} ⊆ bound(σ) and ∀i ∈]l, k − 1] :
σi 6∈ bound(σ). By induction hypothesis and by point (3) of Lemma 3.6 we have
that P0 . . . Pl ∈ lfp⊆FT Ph [[P0]] and that ∃σ′ = σl . . . σk−1σk . . . σn ∈ S[[Pl]] such that
σk ∈ bound(σ′) and ∀i ∈]l, k − 1] : σi 6∈ bound(σ′). By Definition 3.4 of mutating
transition this implies that (σk−1, σk) ∈ MT(Pl) and ∀i ∈ [l, k − 1[: (σi, σi+1) 6∈
MT(Pl). By Definition 3.5 of T Ph this means that Pk ∈ T Ph(Pl). From which we can
conclude that, P0 . . . PlPk ∈ lfp⊆FT Ph [[P0]].

Let us now show that lfp⊆FT Ph [[P0]] ⊆ SPh [[P0]]. We prove this by showing
that ∀z ∈ P∗ : z ∈ lfp⊆FT Ph [[P0]] ⇒ z ∈ SPh [[P0]]. Consider P0 . . . PlPl+1 ∈
lfp⊆FT Ph [[P0]]. This means that ∀i ∈ [0, l] : Pi+1 ∈ T Ph(Pi). By Definition 3.5 of
T Ph , we have that ∀i ∈ [0, l], there exists ni ∈ N such that σi = σiσi1 . . . σiniσi+1 ∈
S[[Pi]] such that (σini , σi+1) ∈ MT(Pi), ∀k ∈ [1, ni[: (σik , σik+1

) 6∈ MT(Pi), and
(σi, σi1) 6∈ MT(Pi). By concatenating all the traces connecting pairs of programs in
transition relation we obtain a trace σ = σ0σ1 . . . σl = σ0σ01

. . . σ0n0
σ1 . . . σlnlσl+1 ∈

S[[P0]] such that ∀i ∈ [0, l + 1] : σi ∈ bound(σ) ∧ ∀k ∈ [1, ni] : σik 6∈ bound(σ).
By Definition 3.1 this means that ∀i ∈ [0, l] : σiσi1 . . . σini ∈ phases(σ). By Defi-
nition 3.2 of program evolution graph, this means that ∀i ∈ [0, l] : (Pi, Pi+1) ∈ E,
which implies that P0 . . . PlPl+1 ∈ SPh [[P0]] and concludes the proof.

3.4. Correctness and Completeness of Phase Semantics
We prove the correctness of phase semantics by showing that it is a sound ap-

proximation of maximal finite trace semantics, namely by providing a pair of ad-
joint maps αPh : ℘(Σ∗) → ℘(P∗) and γPh : ℘(P∗) → ℘(Σ∗), for which the fix-
point computation of FT Ph [[P0]] approximates the fix-point computation of FT [[P0]].

12

Given a trace σ = 〈a0,m0, θ0, I0〉 . . . σi−1σi . . . σn we define the abstraction func-
tion αPh as αPh(σ) = (a0,m0, θ0)αPh(σi . . . σn) such that σi ∈ bound(σ) and
∀l ∈ [0, i − 1] : σl 6∈ bound(σ), while α(ε) = ε. The idea is that abstraction αPh

observes only the states of a trace that are phase boundaries and it can be lifted point-
wise to ℘(Σ∗) giving rise to the Galois connection (℘(Σ∗), αPh , γPh , ℘(P∗)). The
following result shows that the fix-point computation of phase semantics approximates
the fix-point computation of trace semantics, thus proving that phase semantics is a
sound abstraction of trace semantics on the abstract domain ℘(P∗).

Theorem 3.8. ∀X ∈ ℘(Σ∗)αPh(X∪FT [[P0]](X)) ⊆ αPh(X)∪FT Ph [[P0]](αPh(X)).

PROOF: Let us consider P0 . . . PlPk ∈ αPh(X ∪ FT [[P0]](X)). Function αPh is addi-
tive, i.e., αPh(X∪FT [[P0]](X)) = αPh(X)∪αPh(FT [[P0]](X)), and we can therefore
distinguish the two following cases:

(1): P0 . . . PlPk ∈ αPh(X) which immediately implies that the program sequence
P0 . . . PlPk ∈ αPh(X) ∪ FT Ph [[P0]](αPh(X)).

(2): P0 . . . PlPk ∈ αPh(FT [[P0]](X)). In this case we have that there exists
σσiσj ∈ FT [[P0]](X) such thatαPh(σσiσj) = P0 . . . PlPk. By point (2) of Lemma 3.6,
this means that ∃σσi ∈ X such that σj = T (σi), and αPh(σσiσj) = P0 . . . PlPk. We
have two possible cases:

(A) αPh(σσi) = P0 . . . PlPk, which means that P0 . . . PlPk ∈ αPh(X) and there-
fore we are back to case (1).

(B) αPh(σσi) = P0 . . . Pl and αPh(σσiσj) = P0 . . . PlPk. This means that
P0 . . . Pl ∈ αPh(X) and, by following the definition ofαPh and point (3) of Lemma 3.6,
that σσiσj = σ0 . . . σl . . . σiσj ∈ FT [[P0]](X) is such that σ′ = σl . . . σiσj ∈ S[[Pl]]
and σj ∈ bound(σ′) and ∀f ∈ [l + 1, i] : σf 6∈ bound(σ′). This means that
P0 . . . Pl ∈ αPh(X) and σ′ = σl . . . σiσj ∈ S[[Pl]] is such that (σi, σj) ∈ MT(Pl)
and σj = 〈ak,mk, θk, Ik〉 and ∀f ∈ [l, i[: (σf , σf+1) 6∈ MT(Pl). By Defini-
tion 3.5 of T Ph , this means that P0 . . . Pl ∈ αPh(X) and Pk ∈ T Ph(Pl), where Pk =
(ak,mk, θk). From this we can conclude that P0 . . . PlPk ∈ FT Ph [[P0]](αPh(X)).

Observe that, in general, the converse of the theorem above may not hold, namely
we may have that αPh(X ∪ FT [[P0]](X)) ⊂ αPh(X) ∪ FT Ph [[P0]](αPh(X)). In fact,
given X ∈ ℘(Σ∗), the concrete function FT [[P0]] makes only one transition in T and
this may not be a mutating transition, while the abstract function FT Ph [[P0]] “jumps”
directly to the next mutating transition. Even if the fix-point computation of FT Ph [[P0]]
is not step-wise complete [24], it is complete at the fix-point, as shown by the following
theorem, proving completeness of the phase semantics.

Theorem 3.9. αPh(lfp⊆FT [[P0]]) = lfp⊆FT Ph [[P0]].

PROOF: For readability in the proof we omit the apex denoting the partial order on
which the lfp is computed. In the rest of the proof we consider that for every i ∈ N:
σi = 〈ai,mi, θi, Ii〉 and Pi = (ai,mi, θi).

Let us show that αPh(lfpFT [[P0]]) ⊆ lfpFT Ph [[P0]]. We prove this by showing by
induction on the length of the string that ∀z ∈ P∗ : z ∈ αPh(lfpFT [[P0]]) ⇒ z ∈
lfpFT Ph [[P0]]. By definition we have that the only string of length 1 that belongs to

13

αPh(lfpFT [[P0]]) is P0, and the only string of length 1 that belongs to lfpFT Ph [[P0]] is
P0. Assume that the above implication holds for any string of length n and consider
the string P0 . . . PlPk of length n+ 1. If P0 . . . PlPk ∈ αPh(lfpFT [[P0]]) it means that
∃σ = σ0 . . . σl . . . σk−1σk ∈ lfpFT [[P0]] such that αPh(σ) = P0 . . . PlPk, namely that
∃σ = σ0 . . . σl . . . σk−1σk ∈ S[[P0]] such that αPh(σ) = P0 . . . PlPk. By induction
and by following the definition of αPh and point (3) of Lemma 3.6, we have that
P0 . . . Pl ∈ lfpFT Ph [[P0]] and ∃σ′ = σl . . . σk−1σk ∈ S[[Pl]] such that σk ∈ bound(σ′)
and ∀i ∈ [l + 1, k − 1] : σi 6∈ bound(σ′). This means that (σk−1, σk) ∈ MT(Pl)
and ∀i ∈ [l, k − 1[: (σi, σi+1) 6∈ MT(Pl). By Definition 3.5 of T Ph we have that
Pk ∈ T Ph(Pl), from which we can conclude that P0 . . . PlPk ∈ lfpFT Ph [[P0]].

Let us show that lfpFT Ph [[P0]] ⊆ αPh(lfpFT [[P0]]). We prove this by showing
by induction on the length of the strings that ∀z ∈ P∗ : z ∈ lfpFT Ph [[P0]] ⇒ z ∈
αPh(lfpFT [[P0]]). For the strings of length 1 we have the same argument as before.
Assume that the above implication holds for every string of length n and consider
P0 . . . PlPk of length n + 1. Assume that P0 . . . PlPl+1 ∈ lfpFT Ph [[P0]]. From point
(1) of Lemma 3.6 this means that P0 . . . Pl ∈ lfpFT Ph [[P0]] and Pl+1 ∈ T Ph(Pl). By
induction and from Definition 3.5 of T Ph we have that P0 . . . Pl ∈ αPh(lfpFT [[P0]])
and ∃σl = σlσl1 . . . σlnlσl+1 ∈ S[[Pl]] such that (σlnl , σl+1) ∈ MT(Pl) and ∀i ∈
[l, l[: (σli , σli+1) 6∈ MT(Pl) and (σl, σl1) 6∈ MT(Pl). This means that ∃σ0 . . . σl ∈
lfpFT [[P0]] such that αPh(σ0 . . . σl) = P0 . . . Pl. This implies that there exists a trace
σ0 . . . σl . . . σl+1 ∈ lfpFT [[P0]] such that αPh(σ0 . . . σl . . . σl+1 = P0 . . . PlPl+1 and
therefore that P0 . . . PlPl+1 ∈ αPh(lfpFT [[P0]]).

4. Abstracting metamorphism

Consider a sequence P0P1P2 . . . ∈ SPh [[P0]] in the phase semantics of a metamor-
phic program P0. By definition this means that during execution the program P0 may
evolve into the syntactically different but semantically equivalent program P1, then
into program P2 and so on. Thus, a program Q is a metamorphic variant of a program
P0, denoted P0 ;Ph Q, if Q is an element of at least one trace in SPh [[P0]]. This leads
to the following concrete test for metamorphism:

P0 ;Ph Q ⇔ ∃P0P1 . . . Pn ∈ SPh [[P0]],∃i ∈ [0, n] : Pi = Q (1)

Thanks to the completeness of phase semantics, the above concrete test for metamor-
phic variant avoids both false positives and false negatives. Unfortunately, the phase
semantics of a metamorphic program may present infinite traces, modeling infinite
code evolutions, and this means that it may not be possible to decide whether a pro-
gram appears (or not) in the phase semantics of a metamorphic program. So phase
semantics provides a very precise model of code evolution that leads to a test for meta-
morphism that is undecidable in general. In order to gain decidability we have to loose
precision. In particular, our idea is to abstract the phase semantics in order to obtain an
approximated model of code evolution that leads to a decidable abstract test for meta-
morphism. Indeed, the considered model of metamorphic code behavior is based on a
very low-level representation of programs as memory maps that simply give the con-
tents of memory locations together with the address of the instruction to be executed

14

next. While such a representation is necessary to precisely capture the effects of code
self-modification, it is not a convenient representation if we want to statically recognize
the different code snapshots encountered during a program’s execution. Instead, we
would like to consider a suitable abstraction of the domain of programs where it is pos-
sible to compute an approximation of the metamorphic behavior of a self-modifying
program that can be used to decide whether a program is a metamorphic variant of
another one. The idea is to determine an abstract interpretation of phase semantics,
namely to approximate the computation of phase semantics on an abstract domain that
captures properties of the evolution of the code, rather than of the evolution of program
states, as usual in abstract interpretation. Following the standard abstract interpretation
approach to static program analysis [12], we have to:

• Define an abstract domain 〈A,vA〉 of code properties that gives rise to a Galois
connection (℘(P∗), αA, γA, A);

• Define the abstract transition relation T A : ℘(A) → ℘(A) and the abstract
function FT A [[P0]] : A → A such that lfpvAFT A [[P0]] = SA[[P0]] provides an
abstract specification of the metamorphic behavior on A;

• Prove that SA[[P0]] is a correct approximation of phase semantics SPh [[P0]], namely
that αA(lfp⊆FT Ph [[P0]]) vA lfpvAFT A [[P0]].

The abstract specification SA[[P0]], obtained as abstract interpretation of the phase se-
mantics, induces an abstract notion of metamorphic variant with respect to the abstract
domain A: A program Q is a metamorphic variant of program P0 with respect to the
abstract domain A, denoted P0 ;A Q, if SA[[P0]] approximates Q in the abstract
domain A. This leads to the following abstract test for metamorphism wrt A:

P0 ;A Q ⇔ αA(Q) vA SA[[P0]]

In this sense, SA[[P0]] is an abstract metamorphic signature for P0. Whenever SA[[P0]]
is a correct approximation of phase semantics, we have that P0 ;A Q avoids false
negatives, namely the abstract metamorphic test never misses a program that is a meta-
morphic variant of P0. The absence of false positives is not guaranteed in general and
it may need a refinement of the abstract domain A [24]. In fact, due to the loss of
precision of the abstraction process it may happen that the above test on the abstract
metamorphic signature classifies a program as a metamorphic variant of the original
malware P0 even if it is not. For example, if we consider the most abstract domain
A = {>} that maps every program and every phase semantics in > we would have
an abstract test for metamorphism that says that every program is a metamorphic vari-
ant of another one. Of course this result is sound in the sense that we heave no false
negatives, while it is very imprecise since we have the maximal amount of false posi-
tives. Indeed, there is a wide gamma of abstract domains between the concrete domain
of programs (used to compute the precise phase semantics) and the abstract domain
A = {>}, and we have to carefully choose the abstract domain in order to gain decid-
ability while keeping a good degree of precision. How to choose this abstract domains
is a challenging task. Of course the decidability of the abstract test for metamorphism

15

depends on the choice of the abstract domain A. The example at the end of Section 6
shows another case of loss of precision due to abstraction.

Observe that we are interested in abstract domains representing code properties,
namely in abstract domains that need to approximate properties of sequences of in-
structions. This is an unusual view of abstract domains, which are instead traditionally
designed to approximate properties of the states computed by the program. Abstrac-
tions for approximating code properties can be achieved naturally by grammar-based,
constraint-based and finite state automata abstractions [14]. This allows us to extract,
by abstract interpretation, invariant properties of the code evolution in metamorphic
code without any a priori knowledge about the obfuscations implemented in the meta-
morphic engine. This idea will be exploited in the following section, where we propose
to abstract each phase by an FSA, describing the sequence of instructions (or approx-
imate descriptions of instructions) that may be disassembled from the corresponding
memory. Of course intermediate abstractions can be considered in case we have some
partial knowledge on the structure of possible obfuscations implemented by the meta-
morphic engine. As observed in [16], the knowledge of some aspects of the obfus-
cation implemented by the metamorphic engine may induce an abstraction on traces
which can be composed with the Galois connection identified by the adjoint maps αPh
and γPh in order to provide a more abstract basic representation of phases, on which
checking whether P0 ;A Q is simpler.

5. Phase Semantics as Sequences of FSA

5.1. Phases as FSA

We introduce a representation of programs, where a program is specified by the
sequences of possibly abstract instructions that may occur during its execution. Tradi-
tionally, the most commonly used program representation that expresses the possible
control flow behaviors of a program, and hence the possible instruction sequences that
may be obtained from its execution, is the control flow graph. In this representation,
the vertices contain the instructions to be executed, and the edges represent possible
control flow. For our purposes, it is convenient to consider a dual representation where
vertices correspond to program locations and abstract instructions label edges. The
resulting representation, which is clearly isomorphic to standard control flow graphs
up-to memory locations, is an FSA over an alphabet of instructions. The instructions
that define the alphabet of the FSA associated with a phase could be a simplification of
ordinary IA-32 instructions, later called abstract instructions. LetMP denote the FSA-
representation of a given program P and let L (MP) be the language it recognizes. The
idea is that for each sequence in L (MP) the order of the abstract instructions in the
sequence corresponds to the execution order of the corresponding concrete instructions
in at least one run of the control flow graph of P . Instructions are abstracted in or-
der to provide a simplified alphabet and to be independent from low-level details that
are not relevant when describing the malware metamorphic behaviour. Our construc-
tion is parametric in the instruction abstraction. In the rest of the paper, as a possible

16

abstraction of instructions, we consider function ι : I→ I̊ defined as follows:

ι(I) = I̊ =


call if I = call e
e1 if I = if e1 goto e2

goto if I = goto e
I otherwise

Observe that since I is finite also the set I̊ of abstract instructions is finite. The intuition
beyond abstraction ι is to have a program representation that is independent from the
particular memory locations used to store instructions, and this is the reason why we
abstract from the specific expression denoting the destination of redirection of control
flow. Let function Succ : I × Loc → ℘(Loc) denote any sound control flow analysis
that determines the locations of the possible successors of an instruction stored at a
given location. Hence, Succ(I, b) approximates the set of locations to which the con-
trol may flow after the execution of the instruction I stored at location b. We say that
the control flow analysis Succ is sound if for every pair of states σi = 〈ai,mi, θi, Ii〉
and σj = 〈aj ,mj , θj , Ij〉 such that σj = T (σi) then aj ∈ Succ(decode(m(ai)), ai).

Let F be the set of FSA over the alphabet I̊ of abstract instructions where every
state is considered to be final. Each FSA in F is specified as a graph M = (Q,E, S)

where S ⊆ Q is the set of initial states andE ⊆ Q× I̊×Q is the set of edges labeled by
abstract instructions. We define function α̊ : P→ F that associates with each program
its corresponding FSA-representation as follows:

α̊((a,m, θ)) = (QP , EP , {a})

where the set of states is given by QP = {b ∈ Loc | decode(m(b)) ∈ I} and the set
of edges EP ⊆ QP × I̊×QP is given by:

EP =

{
(c, I̊, d)

∣∣∣∣ P = (a,m, θ); c, d ∈ QP ;

d ∈ Succ(decode(m(c)), c); ι(decode(m(c))) = I̊

}
As an example, in Figure 5 we show the automaton α̊(P0) corresponding to program
P0 of Figure 3.

Definition 5.1. We say that π = a0[I̊0] . . . [I̊n−1]an[I̊n]an+1 is a path of automaton
M = (Q,E, S) if a0 ∈ S and ∀i ∈ [0, n] : (ai, I̊i, ai+1) ∈ E. We denoted with Π(M)
the set of paths of M .

By point-wise extension of function α̊we obtain the Galois connection (℘(P), α̊, γ̊, ℘(F)).

5.2. Static Approximation of Phase Semantics on ℘(F∗)

In the previous section we have defined a function α̊ : P → F that approximates
programs as FSA on the alphabet of abstract instructions. In this section, we want to
approximate the computation of the phase semantics on the abstract domain of sets of
sequences of FSA, i.e., 〈℘(F∗),⊆〉. To this end we define function αF : P∗ → F∗ as
the extension of α̊ : P→ F to sequences:

αF(ε) = ε and αF(P0P1 . . . Pn) = α̊(P0)αF(P1 . . . Pn)

17

1 3

4

7

2 9

10111213

mov f, 100 input => a
MEM[a] mod 2

5 6

8

mov b, MEM[a] mov a, MEM[a]/2

goto

mov MEM[f], MEM[4]

mov MEM[f]+1], MEM[5]
mov MEM[f]+2,
encode(goto 6)

mov 4, encode(nop)

mov 5, encode(goto MEM[f])

mov f, MEM[f] + 3
14

goto

α̊(P0)

mov a, (MEM[a] + 1)/2

Figure 5: FSA α̊(P0) corresponding to program P0 of Figure 3

and then we consider its point-wise extension to ℘(P∗) that gives rise to the Galois
connection (℘(P∗), αF, γF, ℘(F∗)). In order to compute a correct approximation of
the phase semantics on 〈℘(F∗),⊆〉, we need to define an abstract transition relation
T F : ℘(F) → ℘(F) on FSA that correctly approximates the transition relation on
programs T Ph : ℘(P) → ℘(P), namely such that for every program P in P we have
that α̊(T Ph(P)) ⊆ T F(α̊(P)). We define T F as the best correct approximation of
T Ph on ℘(F), namely T F = α̊ ◦ T Ph ◦ γ̊:

T F(K) = α̊(T Ph (̊γ(K)))

=
{
α̊(P ′)

∣∣ P ′ ∈ T Ph(P) ∧ P ∈ γ̊(K)
}

=
⋃

P∈γ̊(K)

{
α̊(P ′)

∣∣ P ′ ∈ T Ph(P)
}

Given the transition relation on FSA we can define FT F [[P0]] : ℘(F∗)→ ℘(F∗) as:

FT F [[P0]](K) = α̊(P0) ∪ {kMiMi+1 | kMi ∈ K,Mi+1 ∈ T F(Mi)}

The fix-point computation of FT F [[P0]], denoted as SF[[P0]] = lfpFT F [[P0]], approxi-
mates the phase semantics of P0 on the abstract domain 〈℘(F∗),⊆〉. The correctness
of the approximation SF[[P0]] follows form the correctness of T F as shown by the fol-
lowing result.

Theorem 5.2. αF(lfpFT Ph [[P0]]) ⊆ lfpFT F [[P0]] = SF[[P0]].

PROOF: Let us prove that ω ∈ αF(lfpFT Ph [[P0]]) ⇒ ω ∈ lfpFT F [[P0]]. Let
M0 . . .Mn ∈ αF(lfpFT Ph [[P0]]), this means that ∃P0 . . . Pn ∈ lfpFT Ph [[P0]] such that
αF(P0 . . . Pn) = M0 . . .Mn. This means that ∀i ∈ [0, n[: Pi+1 ∈ T Ph(Pi) and
∀j ∈ [1, n] : α̊(Pj) = Mj . From the correctness of T F we have that ∀P ∈ P :
α̊(T Ph(P)) ⊆ T F(α̊(P)) and therefore: ∀i ∈ [0, n[: α̊(Pi+1) ∈ T F(α̊(Pi)) and
∀j ∈ [0, n] : α̊(Pj) = Mj . And this means that M0 . . .Mn ∈ lfpFT F [[P0]].

SF[[P0]] approximates the phase semantics of program P0 on 〈℘(F∗),⊆〉 by ab-
stracting programs with FSA, while the transitions, i.e., the metamorphic engine, fol-
low directly from T Ph and are not approximated. For this reason SF[[P0]] may still

18

have infinite traces of FSAs thus leading to an abstract test of metamorphism that is
still undecidable in general. In the following we introduce a static computable approxi-
mation of the transition relation on FSA that allows us to obtain a static approximation
S][[P0]] of the phase semantics of P0 on 〈℘(F∗),⊆〉. S][[P0]] may play the role of ab-
stract metamorphic signature of P0. To this end, we introduce the notion of limits of
a path that approximates the notion of bounds of a trace, and the notion of transition
edge that approximates the notion of mutating transition. Moreover, we assume to have
access to the following sound program analyses:

• a stack analysis StackVal : Loc → ℘(Val) that approximates the set of possible
values on the top of the stack when control reaches a given location (e.g. [3, 4]);

• a memory analysis LocVal : Loc × Loc → ℘(Val) that approximates the set of
possible values that can be stored in a memory location when the control reaches
a given location (e.g. [3, 4]).

These analyses allow us to define the function EVal : Loc × E → ℘(Val), that ap-
proximates the evaluation of an expression in a given point:

EVal(b, n) = {n}
EVal(b,MEM[e]) = {LocVal(b, l) | l ∈ EVal(b, e)}
EVal(b,MEM[e1]opMEM[e2]) = {n1 opn2 | i ∈ {1, 2} : ni ∈ EVal(b,MEM[ei])}
EVal(b,MEM[e]opn) = {n1 opn | n1 ∈ EVal(b,MEM[e])}

and a sound control flow analysis Succ : I× Loc → ℘(Loc):

Succ(I, b) =


EVal(b, e) if I ∈ {call e,goto e}
StackVal(b) if I = ret
{b+ 1} ∪ EVal(b, e2) if I = if e1 goto e2,
∅ if I = halt
{b+ 1} otherwise

Moreover, function EVal allows us to define function write : I̊× Loc → ℘(Loc) that
approximates the set of memory locations that may be modified by the execution of an
abstract instruction stored at a given location:

write(I̊ , b) =

{
EVal(b, e) if I̊ ∈ {mov e, e′,input⇒ e,pop e}
∅ otherwise

With these assumptions, we define the limits of an execution path π as the nodes that
are reached by an edge labeled by an abstract instruction that may modify the label of
a future edge in π, namely an abstract instruction that occurs later in the same path.
Given a path π = a0[I̊0] . . . [I̊n−1]an we have:

limit(π) = {a0} ∪ {ai | write(I̊i−1, ai−1) ∩ {aj | i ≤ j ≤ n} 6= ∅}

Definition 5.3. Consider an automata M = (Q,E, S) that represents a program.
A pair of program locations (b, c) is a transition edge of M = (Q,E, S), denoted
(b, c) ∈ TE(M), if there exists a ∈ S and an execution path π ∈ Π(M) such that
π = a[I̊a] . . . [I̊b−1]b[I̊b]c and c ∈ limit(π).

19

EXE(M, I̊, b) //M = (Q,E, S) is an FSA
Exe = {M ′ = (Q,E, S′) | S′ = {d | (b, I̊, d) ∈ E}}
if I̊ = mov e1, e2

thenX = write(I̊, b)
Y = {n | n ∈ EVal(b, e2), decode(n) ∈ I}
Exe = Exe ∪NEXT(X,Y,M, b)

if I̊ = input⇒ e

thenX = write(I̊, b)
Y = {n | n is an input , decode(n) ∈ I}
Exe = Exe ∪NEXT(X,Y,M, b)

if I̊ = pop e
thenX = write(I̊, b)
Y = {n | n ∈ StackVal(b), decode(n) ∈ I}
Exe = Exe ∪NEXT(X,Y,M, b)

return Exe

NEXT(X,Y,M, b)
Next = ∅
for each aj ∈ X do
Ê = E r {(aj , I̊j , c) | (aj , I̊j , c) ∈ E}

Next = Next ∪
⋃
n∈Y

 M̂ = (Q̂, Ê, Ŝ)

∣∣∣∣∣∣
Q̂ = Q ∪ {aj} ∪ Succ(decode(n), aj)

Ê = Ê ∪ {(aj , ι(decode(n)), d) | d ∈ Succ(decode(n), aj)}
Ŝ = {d | (b, I̊, d) ∈ E}


return Next

Figure 6: Algorithm for statically executing instruction I̊

In the FSA of Figure 5 there are two transition edges: the one from 11 to 12 and the one
from 12 to 13. These edges are labeled with instructions mov 4,encode(nop) and
mov 5,encode(gotoMEM[f]), and they both overwrite a location that is reachable in
the future. Observe that also the instructions labeling the edges from 8 to 9, from 9 to
10, and from 10 to 11 write instructions in memory, but the locations that store these
instructions are not reachable when considering the control flow of P0.

In order to statically compute the set of possible FSA evolutions of a given au-
tomaton M = (Q,E, S) we need to statically execute the abstract instructions that
may modify an FSA. Algorithm EXE(M, I̊, b) in Figure 6 returns the set Exe of all
possible FSA that can be obtained by executing the abstract instruction I̊ stored at lo-
cation b of automaton M . The interesting cases of the algorithm are I̊ = mov e1, e2,
I̊ = input ⇒ e and I̊ = pop e, since these are the only cases in which we might
have a modification of the automaton.

The algorithm starts by initializing Exe to the FSA M ′ that has the same states and
edges ofM and whose possible initial states S′ are the nodes reachable through the ab-
stract instruction I̊ stored at b inM . This ensures correctness when the execution of the
abstract instruction I̊ does not correspond to a real code mutation. Then if I̊ writes in
memory, namely if I̊ ∈ {mov e1, e2,input⇒ e,pop e}, we consider the setX of lo-
cations that can be modified by the execution of I̊ , i.e., X = write(I̊ , b), and the set Y
of possible instructions that can be written by I̊ in a location ofX . Next, we add to Exe
the set NEXT(X,Y,M, b) of all possible automata that can be obtained by writing an
instruction of Y in a memory location inX . In particular, NEXT(X,Y,M, b) is based
on the following observation: For each location aj in X and for each n ∈ Y we have
an automaton M̂ = (Q̂, Ê, Ŝ) to add to Exe where Q̂ is obtained by adding toQ the lo-

20

cation aj and the possible successors of the new instruction written by I̊ at location aj ;
Ê is obtained fromE by deleting all the edges that start from aj (if any), and by adding
for each n ∈ Y the edges {(aj , ιk(decode(n)), d) | d ∈ Succ(decode(n), aj)}, Ŝ
is given by the set of nodes reachable through I̊ in the original automaton M .

Let Evol(M) denote the possible evolutions of automatonM , namely the automata
that can be obtained by the execution of the abstract instruction labeling the first tran-
sition edge of a path of M :

Evol(M) =

{
M ′
∣∣∣∣ a0[I̊0] . . . [I̊l−1]al[I̊l]al+1 ∈ Π(M), (al, al+1) ∈ TE(M),

∀i ∈ [0, l[: (ai, ai+1) 6∈ TE(M),M ′ ∈ EXE(M, I̊l, al)

}
We can now define the static transition T] : ℘(F) → ℘(F). The idea is that the
possible static successors of an automatonM are all the automata in Evol(M) together
with all the automata M ′ that are different from M and that can be reached from M
through a sequence of successive automata that differ from M only in the entry point.
This ensures the correctness of T], i.e., Ml ∈ T F(M0) ⇒ Ml ∈ T](M0), even if
between M0 and Ml there are spurious transition edges, i.e., transition edges that do
not correspond to any mutating transition.

Definition 5.4. Let M = (Q,E, S). T] : ℘(F) → ℘(F) is given by the point-wise
extension of:

T](M) = Evol(M)∪

M ′

∣∣∣∣∣∣
MM1 . . .MkM

′ : M1 ∈ Evol(M),∀i ∈ [1, k[:
Mi+1 ∈ Evol(Mi),M

′ = (Q′, E′, S′) ∈ Evol(Mk),
(E 6= E′ ∨Q 6= Q′),∀j ∈ [1, k] : Mj = (Q,E, Sj)


Observe that X ⊆ Loc and Y ⊆ Val are finite sets and this ensures that the set of
automata returned by the algorithm EXE(M, I̊, b) is finite and therefore the set of
possible successors of any given automata M is finite. The following result shows that
T] correctly approximates T F.

Lemma 5.5. For any M ∈ F : T F(M) ⊆ T](M).

PROOF: Let Ml ∈ T F(M0). By definition of T F this means Ml ∈ α̊(T Ph (̊γ(M0))).
Which means that ∃P0 = (a0,m0, θ0), Pl = (al,ml, θl) : α̊(P0) = M0 and α̊(Pl) =
Ml such that Pl ∈ T Ph(P0). By definition of T Ph this means that there exists P0 =
(a0,m0, θ0), Pl = (al,ml, θl) : α̊(P0) = M0 and α̊(Pl) = Ml such that M0 =
(Q0, E0, S0), Ml = (Ql, El, Sl) and E0 6= El ∨ Q0 6= Ql, moreover there exists
σ0 . . . σl−1σl ∈ S[[P0]] where (σl−1, σl) ∈ MT(P0) and ∀i ∈ [0, l − 2] : (σi, σi+1) 6∈
MT(P0) with ∀i ∈ [0, l] : σi = 〈ai,mi, θi, Ii〉. Thanks to the soundness of the analyses
this means that: ∃P0 = (a0,m0, θ0), Pl = (al,ml, θl) : α̊(P0) = M0 and α̊(Pl) =
Ml such that M0 = (Q0, E0, S0), Ml = (Ql, El, Sl) and E0 6= El ∨ Q0 6= Ql;

moreover there exists π = a0
I̊0−→ . . .

I̊l−2−→ al−1
I̊l−1−→ al ∈ Π(M0) where ∀i ∈ [0, l[:

ι(decode(mi(ai))) = I̊i and (al−1, al) ∈ TE(M0). Here we have two possible cases:

(1) ∀j ∈ [0, l − 2] : (aj , aj+1) 6∈ TE(M0). In this case from the correctness of
write and EVal it follows that Ml ∈ EXE(M0, I̊l−1, al−1), and therefore that
Ml ∈ Evol(M0) and hence that Ml ∈ T](M0).

21

(2) ∃j ∈ [0, l − 2] : (aj , aj+1) ∈ TE(M0). Observe that every transition edge of
M0 that precedes (al−1, al) in π does not correspond to a real mutating transition
and it is therefore spurious, in fact they represent code modifications that seem to
be possible because of the loss of information implicit in the static analysis of the
code. Let k be the number of transition edges of M0 that precede the transition
edge (al−1, al) in π. Let us denote the set of transition edges of M0 along the
path π up to al as follows:

TE(M0, π, al) = {(ai1 , ai1+1), (ai2 , ai2+1), . . . , (aik , aik+1), (al−1, al)}

Let π|ai denote the suffix of path π starting from ai. Let M0 = (Q0, E0, S0),
and ∀j ∈ [1, k] let I̊ij be the abstract instruction labeling the transition edge
(aij , aij+1), then from the definition of algorithm EXE it follows that:

– Mi1 = (Q0, E0, {ai1+1}) ∈ EXE(M0, I̊i1 , ai1) and thusMi1 ∈ Evol(M0),
moreover TE(Mi1 , π|ai1+1

, al) = {(ai2 , ai2+1), . . . , (aik , aik+1), (al−1, al)};

– ∀j ∈ [2, k] we have thatMij = (Q0, E0, {aij+1}) ∈ EXE(Mij−1 , I̊ij , aij),
thus Mij ∈ Evol(Mij−1), and TE(Mij , π|aij+1

, al) = {(aij+1 , aij+1+1),

. . . , (aik , aik+1), (al−1, al)}.

In particular, we have that TE(Mik , π|aik+1
, al) = {(al−1, al)}. Thanks to the

correctness of write and EVal we have that Ml ∈ EXE(Mik , I̊l−1, al−1) and
therefore Ml ∈ Evol(Mik), with Ml = (Ql, El, Sl) and Q0 6= Ql ∨ E0 6=
El. Thus, we have that M0Mi1 . . .MikMl is a sequence of FSA such that:
M1 ∈ Evol(M0), ∀j ∈ [1, k[: Mij+1 ∈ Evol(Mij), Ml ∈ Evol(Mik) with
Ml = (Ql, El, Sl) and Q0 6= Ql ∨ E0 6= El, and ∀h ∈ [1, k] : Mih =
(Q0, E0, {aih+1}) and from the definition of T] this means that Ml ∈ T](M0).

We can now define function FT] [[P0]] : ℘(F∗) → ℘(F∗) that statically approximates
the iterative computation of phase semantics on the abstract domain 〈℘(F∗),⊆〉:

FT] [[P0]](K) = α̊(P0) ∪ {kMiMj | (Mi,Mj) ∈ T], kMi ∈ K}

From the correctness of T] it follows the correctness of S][[P0]] = lfpFT] [[P0]], as
shown by the following result.

Theorem 5.6. αF(lfpFT Ph [[P0]]) ⊆ lfpFT] [[P0]].

PROOF: From Theorem 5.2 we have that αF(lfpFT Ph [[P0]]) ⊆ lfpFT F [[P0]]. Thus it
is enough to prove that lfpFT F [[P0]] ⊆ lfpFT] [[P0]]. Let M0 . . .Mn ∈ lfpFT F [[P0]].
This means that ∀i ∈ [0, n[: Mi+1 ∈ T](Mi). From Lemma 5.5 this means that
∀i ∈ [0, n[: Mi+1 ∈ T](Mi) and therefore M0 . . .Mn ∈ lfpFT] [[P0]].

Thus, S][[P0]] provides a correct approximation of the phase semantic of a metamor-
phic program on the abstract domain of set of sequences of FSA, where both programs
and transitions a re approximated. However, it is still possible to have infinite traces of
FSA and thus the abstract test for metamorphism defined by S][[P0]] may still be unde-
cidable. In the next section we propose a further abstraction of S][[P0]] that provides an

22

2

3

4

5

6

7

 MEM[a] mod 2

T F

 input => a

mov b, MEM[a]

mov a, MEM[a]/2

goto

 mov a, (MEM[a]+1)/2

goto

ME

M0

2

3

4

5

6

7

 MEM[a] mod 2

T F

 input => a

nop

mov a, MEM[a]/2

goto

 mov a, (MEM[a]+1)/2

goto

ME

M1

2

3

4

5

102

7

 MEM[a] mod 2

T F

 input => a

nop

goto

goto

 mov a, (MEM[a]+1)/2

goto

ME

M2

100

101

mov b, MEM[a]

mov a, MEM[a]/2

goto

6

2

3

4

5

102

7

 MEM[a] mod 2

T F

 input => a

nop

goto

goto

 mov a, (MEM[a]+1)/2

goto

ME

M3

100

101

mov b, MEM[a]

mov a, MEM[a]/2

goto

6

M4

M0

entry-point=1
TE: (11,12)

M1

entry-point=12
TE: (12,13)

M2

entry-point=13
TE: (11,12)

M3

entry-point=12
TE: (12,13)

M4

1

mov f, 100

1

mov f, 100

1

mov f, 100

1

mov f, 100

2

3

4

5

102

7

 MEM[a] mod 2

T F

 input => a

nop

goto

goto

 mov a, (MEM[a]+1)/2

goto

ME

103

101

nop

mov a, MEM[a]/2

goto

6

1

mov f, 100

104

goto

100

mov b, MEM[a]

Figure 7: Some metamorphic variants of program P0 of Figure 3, where the metamorphic engine, namely
the instructions stored at locations from 8 to 14, is briefly represented by the box marked ME. In the graphic
representation of automata we omit to show the nodes that are not reachable.

approximation of the phase semantics that leads to a decidable test for metamorphism
for every metamorphic program.

In Figure 7 we report a possible sequence of FSA that can be generated during
the execution of program P0 of Figure 3. In this case, thanks to the simplicity of the
example, it is possible to use the (concrete) transition relation over FSA defined by T F.

6. Regular Metamorphism

Regular metamorphism models the metamorphic behavior as a regular language
of abstract instructions. This can be achieved by approximating sequences of FSA
into a single FSA, denoted W[[P0]]. W[[P0]] represents all possible (regular) program
evolutions of P0, i.e., it recognizes all the sequences of instructions that correspond to
a run of at least one metamorphic variant of P0. This abstraction of course is able to
precisely model metamorphic engines implemented as FSA of basic code replacement
as well as it may provide a regular language-based approximation for any metamorphic
engine, by extracting the regular invariant of their behavior.

We define an ordering relation on FSA according to the language they recognize:
Given two FSA M1 and M2 we say that M1 vF M2 if L (M1) ⊆ L (M2). Observe
that vF is reflexive and transitive but not antisymmetric and it is therefore a pre-order.
Moreover, according to this ordering, a unique least upper bound of two automata M1

and M2 does not always exist, since there is an infinite number of automata that recog-
nize the language L (M1) ∪L (M2). Given two automata M1 = (Q1, δ1, S1, F1, A)

23

and M2 = (Q2, δ2, S2, F2, A) on the same alphabet A, we approximate their least
upper bound with:

M1 dM2 = (Q1 ∪Q2, δ̂, S1 ∪ S2, F1 ∪ F2, A)

where the transition relation δ̂ : (Q1 ∪Q2)×A→ ℘(Q1 ∪Q2) is defined as δ̂(q, s) =
δ1(q, s)∪ δ2(q, s). FSA are d-closed for finite sets, and the following result shows that
d approximates any upper bound with respect to the ordering vF.

Lemma 6.1. Given two FSAM1 andM2 we have: L (M1)∪L (M2) ⊆ L (M1dM2).

PROOF: Let us show by induction on the length of ω ∈ A∗ that for every q1 ∈ S1

it holds that q ∈ δ1(q1, ω) ⇒ q ∈ δ̂(q1, ω). Base: When |ω| = 1 we have that
ω = s ∈ A and therefore δ1(q1, s) ⊆ δ1(q1, s) ∪ δ2(q1, s) = δ̂(q1, s). Assume that it
holds for strings of length n and let us prove that it holds for strings of length n + 1.
Let ω = s0 . . . sn−1sn. By definition we have that:

δ∗1(q1, s0 . . . sn−1sn) =
⋃

p∈δ∗1 (q1,s0...sn−1)

δ̂(p, sn)

δ̂∗(q1, s0 . . . sn−1sn) =
⋃

p∈δ̂∗(q1,s0...sn−1)

δ̂(p, sn)

By induction hypothesis δ∗1(q1, s0 . . . sn−1) ⊆ δ̂∗(q1, s0 . . . sn−1), and since δ̂(p, sn) =

δ1(p, sn) ∪ δ2(p, sn), we have δ∗1(q1, s0 . . . sn−1sn) ⊆ δ̂∗(q1, s0 . . . sn−1sn). More-
over the final states of M1 dM2 are F1 ∪ F2 and therefore: δ∗1(q1, ω) ∩ F1 6= ∅ ⇒
δ̂∗(q1, ω) ∩ (F1 ∪ F2) 6= ∅. The proof that ∀q2 ∈ S2 : q ∈ δ2(q2, ω) ⇒ q ∈ δ̂(q2, ω)
is analogous.

We can now define the function Fd
T] [[P0]] : F→ F as follows:

Fd
T] [[P0]](M) = α̊(P0) dM d (d{M ′ |M ′ ∈ T](M)})

Observe that the set of possible successors of a given automaton M , i.e., T](M), is
finite since we have a (finite family of) successor for every transition edge ofM andM
has a finite set of edges. Since FSA are d-closed for finite sets, the function Fd

T] [[P0]] is
well defined and returns an FSA. Let ℘F (F∗) denote the domain of finite sets of strings
of FSA, let K ∈ ℘F (F∗) and let us define the function αS : ℘F (F∗)→ F as:

αS(M0 . . .Mk) = d{Mi | 0 ≤ i ≤ k}
αS(K) = d{αS(M0 . . .Mk) |M0 . . .Mk ∈ K}

Function αS is additive and thus it defines a Galois connection (℘F (F∗), αS , γS ,F).
The following result shows that, when considering finite sets of sequences of FSA, the
abstract function Fd

T] [[P0]] correctly approximates function FT] [[P0]] on F.

Theorem 6.2. For any K ∈ ℘F (F∗): αS(FT] [[P0]](K)) vF Fd
T] [[P0]](αS(K)).

24

PROOF: We prove L (αS(FT] [[P0]](K))) ⊆ L (Fd
T] [[P0]](αS(K))). Let I̊0 . . . I̊n ∈

L (αS(FT] [[P0]](K))). This means ∃M0 . . .Mh ∈ FT] [[P0]](K) with α̊(P0) = M0

s.t. I̊0 . . . I̊n ∈ L (αS(M0 . . .Mh)). Let ∀i ∈ [0, h] : Mi = (Qi, Ei, Si). Therefore,
by definition ofFT] [[P0]] and of d, we have that ∃M0 . . .Mh−1 ∈ K with α̊(P0) = M0

andMh ∈ T](Mh−1) such that I̊0 . . . I̊n ∈ L ((Q0∪ . . .∪Qh), (E0∪ . . .∪Eh), (S0∪
. . . ∪ Sh)). Since M0 . . .Mh−1 ∈ K we have that αS(K) = (QK , EK , SK) where
Q0 ∪ . . . ∪ Qh−1 ⊆ QK , E0 ∪ . . . ∪ Eh−1 ⊆ EK and S0 ∪ . . . ∪ Sh−1 ⊆ SK .
This implies that Mh ∈ T](αS(K)). By definition Fd

T] [[P0]](αS(K)) = α̊(P0) d
αS(K) d (d{M ′ |M ′ ∈ T](αS(K))}), and therefore we have Fd

T] [[P0]](αS(K)) =
(Q′, E′, S′) where Q0 ∪ . . . ∪ Qh−1 ∪ Qh ⊆ Q′, E0 ∪ . . . ∪ Eh−1 ∪ Eh ⊆ E′ and
S0 ∪ . . . ∪ Sh−1 ∪ Sh ⊆ S′ and therefore I̊0 . . . I̊n ∈ L (Fd

T] [[P0]](αS(K))).

Observe that, thanks to the fact that T](M) returns a finite number of possible
successors of M , then at each step of the fix-point computation of FT] the function
FT] is applied to a finite set of traces of FSA. This means Theorem 6.2 can be applied
to each step of the fix-point computation of FT] .

The domain 〈F,vF〉 has infinite ascending chains, which means that, in general,
the fix-point computation of Fd

T] [[P0]] on F may not converge. A typical solution for
this situation is the use of a widening operator which forces convergence towards an
upper approximation of all intermediate computations along the fix-point iteration, i.e.,
an element in F which upper approximates the iterations of the fix-point semantic op-
erator. The widening operator has for example been used to approximate fix-point
computations in possibly non-complete lattices, e.g., in the case of convex ployhe-
dra [15]. We refer to the widening operation over FSA described by D’Silva [22].
Here the author considers an increasing sequence M0M1 . . .Mk of FSA in a fix-point
computation of a functionH on autoamta, where L (Mi+1) = L (Mi)∪L (H(Mi)).
Given two FSA over a finite alphabet A in the considered sequence Mi = (Qi, Ei, Si)
and Mj = (Qj , Ej , Sj) with i < j, the widening between Mi and Mj is formalized in
terms of an equivalence relation R ⊆ Qi ×Qj between the set of states of the two au-
tomata. The equivalence relationR, also called widening seed, is used to define another
equivalence relation ≡R⊆ Qj × Qj over the states of Mj , such that ≡R= R ◦ R−1.
The widening between Mi and Mj is then given by the quotient of Mj with respect to
the partition induced by ≡R:

MiOMj = Mj/≡R

By changing the widening seed, i.e., the equivalence relation R, we obtain different
widening operators. It has been proved that convergence is guaranteed when the widen-
ing seed is the relation Rn ⊆ Qi × Qj such that (qi, qj) ∈ Rn if qi and qj recognize
the same language of strings of length at most n [22]. When considering the widening
seed Rn we have that two states q and q′ of Mj are in equivalence relation ≡Rn if they
recognize the same language of strings of length at most n that is recognized by a state
r of Mi, i.e., if ∃r ∈ Qi : (r, q) ∈ Rn and (r, q′) ∈ Rn. Thus, the parameter n tunes
the length of the strings that we consider for establishing the equivalence of states and
therefore for merging them in the widening, namely the more abstract will be the result
of the widening. Observe that the smaller is n the more information will be lost by the

25

MEM[a] mod 2

T F

 mov f, 100

goto

 mov a, (MEM[a]+1)/2

goto

 input => a

ME

goto

nop

mov b, MEM[a] goto

mov a, MEM[b]

nop

 mov b, MEM[a]

 mov a, MEM[a]/2

goto

 mov a, MEM[a]/2

mov a, MEM[a]/2

goto

Figure 8: Widened phase semantics

widening. We denote with On the widening operator that uses Rn as widening seed.
On is well defined since I̊ is finite.

The widening operator On allows us to approximate the least fix-point of Fd
T] [[P0]]

on 〈Fk,vF〉 with the limit W[[P0]] of the following widening sequence:

W0 = α̊(P0) Wi+1 = Wi On Fd
T] [[P0]](Wi)

In the following we refer to W[[P0]] as the widened fix-point of Fd
T] [[P0]] and to the

sequence W0W1, . . . as the widening sequence of Fd
T] [[P0]], namely the sequence of

automata generated in the above widening fix-point computation. From the correct-
ness of the widening operator On and by Theorem 6.2, it follows that the widen-
ing sequence W0W1 . . . converges to an upper-approximation of the least fix-point of
FT] [[P0]], namely any automata modeling a possible static variant of P0 is correctly
approximated by W[[P0]]. This means that for every Mi we have that:

. . .Mi . . . ∈ lfp⊆FT] [[P0]] ⇒ Mi vF W[[P0]]

Therefore, the language L (W[[P0]]) recognized by the limit of the widening sequence
contains all the possible sequences of abstract instructions that can be executed by a
metamorphic variant of the original program P0. As a consequence, a program Q is
a regular (abstract) metamorphic variant of P0 if W[[P0]] recognizes all the sequences
of abstract instructions that correspond to the runs of Q. This leads to the following
abstract test for metamorphism:

P0 ;F Q ⇔ α̊(Q) vF W[[P0]] ⇔ L (α̊(Q)) ⊆ L (W[[P0]])

In this abstract model it is possible to decide if a program is a metamorphic vari-
ant of another one since language containment is decidable in FSA. The language

26

L (W[[P0]]) represents the regular metamorphic signature for the metamorphic mal-
ware P0. On the other side, the automaton W[[P0]] represents the mechanism of gener-
ation of the metamorphic variants and therefore it provides a model of the metamorphic
engine of P0. Figure 8 shows the widened fix-point W[[P0]] of the widening sequence
of program P0 reported in Figure 3, where the widening seed is R2. This automaton
recognizes any possible program that can be obtained during the execution of P0. Note
that, the loss of precision introduced by the abstraction and the widening, may lead
to false positives, as for example the sequences of instructions along the bold path
mov f, 100;input ⇒ a;MEM[a] mod 2 = 0;mov b,MEM[a];goto;mov b,MEM[a];
goto; . . . that is not a run of any of the metamorphic variants of P0.

7. Case Study: The malware MetaPHOR

In this section we discuss how the proposed approach could be applied to a well-
known metamorphic malware called MetaPHOR, also known as Win32/Smile or ETAP.
In particular, we will show how the knowledge of some implementation details of the
metamorphic engine of MetaPHOR could be used for designing an abstraction of phase
semantics that observes only the “final” metamorphic variants of the malware while
abstracting from the intermediate phases that lead to the generation of the new code
variant. Moreover, at the end of this section we provide a very simple example that
shows how the knowledge of specific features of the metamorphic engine can be used
for learning an approximated specification of the transformations used by the metamor-
phic engine. The proposed example is very simple but it provides good insights on how
further knowledge of the metamorphic code can be exploited for extracting properties
of the metamorphic engine from the phase semantics.

We have decided to focus on MetaPHOR because it is a real metamorphic virus
that, according to [5], uses highly advanced metamorphic techniques which combine
the majority of the techniques used by its predecessor. The virus, written by the virus
writer Mental Driller, was released in the most recent version in early March 2002. The
original version of this virus infects only Windows 32-bit files, but a later variant of the
virus was a cross-platform infector capable of infecting also Linux ELF files. The
Mental Driller named it MetaPHOR from the words “Metamorphic Permutating High-
Obfuscating Reassembler”, which accurately describe this virus. A detailed description
of the virus can be found at [5, 21]2.

Let us describe the main stages of the life-cycle behavior of MetaPHOR. Polymor-
phic Decryption: MetaPHOR starts by running a sophisticated polymorphic decryptor
that hides from decryption heuristic scanners. Sometimes this step is not necessary
because the virus could be unencrypted, as MetaPHOR is programmed to produce an
unencrypted copy every few infections. Payload: MetaPHOR performs the intended
payload that consists in displaying a specific message according to the current date.
Re-building by metamorphism: MetaPHOR builds a new virus body in memory at
each generation. The metamorphic process is very complex and accounts for around

2The assembly code of the virus can be found at: http://vx.netlux.org/29a/29a-6/29a-6.602.

27

70% of the viral code. Polymorphism: MetaPHOR uses advanced polymorphic tech-
niques such as the branching technique, pseudo-random index decryption technique
(PRIDE) and entry point obscuring technique (EPO), see [5, 19, 20] for details. Infec-
tion: MetaPHOR searches for Win32 PE executable files in the current directory and in
the directories located in the three levels above the current directory. The virus checks
several things before infecting a file: For example it avoids to infect “goat” or “bait”
files – files that are created by anti-virus programs.

7.1. The re-building engine of MetaPHOR

An innovative feature of the metamorphic re-building engine of MetaPHOR is the
use of an intermediate representation which allows to abstract from the complexity of
the underlying processors instruction-set and to simplify the metamorphic transforma-
tions. In particular, the instruction-set of the intermediate representation includes: base
instructions with 2 operands, such as: add, sub, or, and, mov, ..., base in-
structions with 1 operand, such as: push, pop, call, ..., other instructions, such
as: ret, lea, ... and macro-instructions that represent for example the instruction
sequences which are used when calling a Windows API (such as apicall-begin,
apicall-end), or a system call, or a system call followed by the results saving and
so on. Once MetaPHOR has decrypted its own code, it gives control to it and, af-
ter the potential payload actions, it re-builds its own code by applying metamorphic
transformations. The re-building process is organized as follows:

• Disassembly-Depermutation: The x86 code is first disassembled into the inter-
mediate representation presented above. The disassembly algorithm builds the
intermediate code in a linear way and this ensures both the depermutation of the
resulting code and the removal of the inaccessible code (dead code).

• Compression: This step is necessary in order to avoid continuous growth of the
viral code that would lead to a virus of many mega-bytes in very few genera-
tions. The basic idea of this process is to compress in one instruction what the
expansion process codes in many. This is achieved by applying transformations
that are the inverse of the ones used by the expansion process. Examples of
compressing transformations are:

1. Rules that transform one instruction into an equivalent one, as for example:
– sub e,imm −→ add e,−imm
– or e, 0 −→ nop

2. Rules that transform a sequence of two instructions into one instruction, as
for example:

– push imm; pop e −→ mov e,imm

– mov e, imm; push e −→ push imm

– op e, imm; op e,imm2 −→ op e, (imm op imm2)

3. Rules that transform a sequence of three instructions into one instruction,
as for example:

– mov e1, e2; op e1, e3; mov e2, e1 −→ op e2, e3

28

Compression corresponds to rewriting code in such a way that we substitute the
first instructions by their equivalent one according to the rule and we overwrite
the remaining instructions with nop. The compression algorithm compresses
the code as much as possible by iterating the code rewriting process. A complete
list of the compression rules used by MetaPHOR can be found in [21]. In the
following we report an example of what a compressor does in few iterations:

mov [var1], esi mov eax, esi
push [var1] nop
pop eax =⇒ nop
push ebx add eax, ebx
pop [var2] nop
add eax, [var2] nop

• Permutation: The code is permutated by splitting it into blocks of random size.
Once the blocks have been computed and shuffled in memory, they are linked by
direct jump-instructions and a jump at the first code block is inserted at the very
beginning of the code. Despite its simplicity, permutation is very powerful since
it breaks all the scan strings that can be used to detect the virus.

• Expansion: This phase consists in applying, randomly, the inverse of the com-
pression rules. In order to control the growth of the code size, a maximum level
of recursion is usually set to 3. This means that every time that an expansion rule
is applied to an instruction its recursion level, initially set to 0, is incremented
until it reaches the value 3. Moreover, when an instruction uses an immediate
value, this can be computationally decomposed into a sequence of operations that
compute it. For example, the instruction mov e1, imm can be replaced with the
following sequence random⇒ v1;mov e1, v1;add e1, (imm − v1), where instruc-
tion random ⇒ v1 assigns a random value to v1. Additionally, the expansion
process applies the insertion of dead code, with probability 1/16, after the trans-
formation of each instruction of the compressed code. Examples of dead code
inserted by MetaPHOR are instructions that do nothing, like mov e,e; add e,0;
sub e,0; nop.

• Reassembly: The intermediate representation of the expanded, i.e., obfuscated,
code is reassembled into the valid x86 assembly language. When several transla-
tions are possible, the algorithm chooses one at random. The code is now ready
for encryption (polymorphism).

7.2. Applying regular metamorphism to MetaPHOR

Given the description of the life-cycle behavior of MetaPHOR, we want to study
the phase semantics of its metamorphic engine. We identify the metamorphic engine of
MetaPHOR with the manipulation of the intermediate representation of the code that
transforms a MetaPHOR variant into a new one. This means that the metamorphic en-
gine of MetaPHOR consists of the three stages named: Compression, permutation, and
expansion; while the other stages (disassembly/reassembly and encryption/decryption)

29

permutated
codeobfuscated

code

compressed
 code

expansion

permutationcompression

Figure 9: MetaPHOR metamorphic engine behavior

do not deal with metamorphism and will not be considered here. Hence, the metamor-
phic engine of MetaPHOR takes an obfuscated version of the virus in its intermedi-
ate representation and generates a (set of) metamorphic variant in intermediate form.
Figure 9 reports the structure of the metamorphic engine of MetaPHOR that will be
considered in our analysis.

In the following we assume to have no a priori knowledge about the compres-
sion and expansion processes, namely we ignore the set of compression rules used for
shrinking code. This information is indeed critical for the effectiveness of MetaPHOR,
being the core of its metamorphic engine. Therefore, we assume that the compression
rules are secret and the only observable property of MetaPHOR consists in its alternate
use of the compression and expansion processes, a feature achievable by tracing its
execution. This property of the MetaPHOR behavior makes the virus particularly vul-
nerable because the compression process shrinks the code into a form that is roughly
the same from one generation to another. Indeed, every evolution trace in the phase
semantics SPh [[Q]] of a given a metamorphic variant Q of MetaPHOR will start by ap-
plying several compression rules and obtaining the compressed version C1. C1 clearly
has a number of instructions smaller than Q. Of course between Q and C1 we have
many intermediate phases, one for each compression rule applied. Then C1 will be
obfuscated again by applying several expansion rules that lead to the final metamor-
phic variant Q1, whose number of instructions in greater than the one of C1. Also in
this case between C1 and Q1 we have many intermediate phases, possibly one for each
expansion rule applied. This process keeps on being repeated generating a sequence
of code variants where compressed and final metamorphic variants alternate. Thus, the
sequence of phases generated by the execution of a variant Q of MetaPHOR has the
following structure:

Q . . . C1 . . . Q1 . . . C2 . . . Q2 . . . C3 . . . Q3 . . . C4 . . . Q4 . . .

whereC1, C2, . . . denote the compressed code variants, andQ1, Q2, . . . the final meta-
morphic variants of Q.

In the following we show how it is possible to exploit this knowledge of the partic-
ular structure of the metamorphic engine of MetaPHOR that alternates code expansion
and code compression, in order to design an abstraction of phase semantics that ob-
serves only the compressed code variants Ci and the final metamorphic variants Qi of

30

the code evolution of MetaPHOR. This shows how the knowledge of some implemen-
tation details of the metamorphic engine can be used for abstracting from the inter-
mediate phases that model the intermediate steps of generation of a new metamorphic
variant. Given a program P = (a,m, θ) we consider the code property ||P || ∈ N that
observes the number of instructions of P that are different from nop:

||P || = |{n | decode(m(n)) ∈ I,decode(m(n)) 6= nop}|

Given a traceQ . . . C1 . . . Q1 . . . C2 . . . Q2 . . . of the phase semantics SPh [[Q]], we have
that for every i the number of no-nop instructions decreases at each step between Qi
and Ci+1 (namely during the compression process), and increases at each step between
Ci and Qi (namely during the permutation and expansion process). This is a property
satisfied by all the traces in the phase semantics SPh [[Q]]. By knowing this, we can
design an abstraction of the phase semantics that observes only the compressed code
and the maximal metamorphic variants and ignores the intermediate phases. To this
end we define a function t[: P∗ → ℘(P) that extracts the code snapshots with the local
minimum and local maximum number of instructions from a trace of programs:

t[(ε) = ∅ t[(P0 . . . Pn) = {P0, Pn} ∪ µ(P0 . . . Pn)
µ(ε) = ∅ µ(P) = ∅ µ(QP) = ∅

µ(P0P1P2 . . . Pn) ={
µ(P1P2 . . . Pn) if (||P0|| < ||P1|| < ||P2||) ∨ (||P0|| > ||P1|| > ||P2||)

P1 ∪ µ(P1P2 . . . Pn) if (||P0|| < ||P1|| > ||P2||) ∨ (||P0|| > ||P1|| < ||P2||)

Function t[can be lifted point-wise to ℘(P∗) and this gives rise to the abstraction
α[: ℘(P∗)→ ℘(P) and to the Galois connection (℘(P∗), α[, γ[, ℘(P)). Given the par-
ticular structure of the metamorphic engine of MetaPHOR we have that, given a meta-
morphic variant Q of MetaPHOR: α[(SPh [[Q]]) = {Q,C1, Q1, C2Q2 . . . Qn} where
Ci are the compressed versions of Q and Qi are the possible maximal metamorphic
variants of Q. Hence, abstraction α[of the phase semantics allows us to ignore inter-
mediate code evolutions. We apply the above abstraction to the static approximation of
the phase semantics as sequences of FSA, namely:

• We define α[F : ℘(F∗) → ℘(F) that keeps only the FSA corresponding to the
minimal and the maximal code in each trace of FSA: α[F = αF ◦ α[◦ γF.

• Given a metamorphic variantQ of MetaPHOR, compute the static approximation
of its phase semantics S][[Q]].

• Extract from S][[Q]] the set of FSA representing the compressed code and the
maximal metamorphic variants of Q: α[F(S][[Q]]) ∈ ℘(F).

• Fix an order /[on the elements in α[F(S][[Q]]) ∈ ℘(F) and assume that the
corresponding ordered set α[F(S][[Q]]) is {M0,M1 . . .Mn}.

• Compute the limit W[of the following widening sequence with widening seed
Rn:

W0 = M0 Wi+1 = WiOnWi dMi

31

The metamorphic signature W[approximates the possible metamorphic variants of
the virus MetaPHOR. Indeed, by construction, the language L (W[) contains all the
possible sequences of instructions that can be executed by a metamorphic variants of
MetaPHOR. Moreover, W[is built on the FSAs observed by the abstraction α[F of
the abstract phase semantics (S][[Q]]), namely W[is build considering only the final
metamorphic variants of Q and not all the intermediate phases. For this reason W[

provides an abstract signature of MetaPHOR that is more precise than the one that we
would obtain by computing the widening on all the steps of the phase semantics (as
proposed in Section 6).

It is interesting to observe that while L (W[) models the possible code evolu-
tions, the FSA W[describes the mechanism of generation of such variants, namely the
rewriting rules used by the engine. The idea is that, by analyzing the multiple paths
that connect relevant pairs of nodes in W[, i.e., the pairs of nodes which are common
between any compressed code α̊(Ci) and W[, it is possible to extract the equivalent
sequences of instructions generated during the metamorphic behavior, and therefore
an approximate description of the rewriting rules. This means that in this case the
proposed methodology provides a systematic way for extracting a set of metamorphic
transformations that approximates the ones used by MetaPHOR. This is a very impor-
tant and promising feature of our model, since deriving the code transformations used
by metamorphic malware is typically a manual and time consuming task.

In the following we provide a very simple example that hows how it can be possible
to exploit the knowledge of some details of the implementation of the metamorphic
engine in order to to systematically learn the metamorphic transformations used by
abstract interpretation of its phase semantics.

Example. Given the analogy between the intermediate representation of MetaPHOR
and our abstract assembly language described in Section 3.1, in the following we use
our abstract assembly language to present an example of how the MetaPHOR metamor-
phic process could modify a simple program and how regular metamorphism allows us
to approximate the secret rewriting rules used for its morphing. We consider a very
simple program made of only one instruction:

P = mov e, 10

We consider the following secret compression rules:

Rule1 : push e2; pop e1 −→ mov e1, e2
Rule2 : mov e2, e1; push e2 −→ push e1
Rule3 : pop e2; mov e1, e2 −→ pop e1

Given the simplicity of our example we set the maximal recursion level to 4. It is
clear that this simple example only deals with instructions mov e1, e2, push e and pop

e. Our proposed framework is parametric on instruction abstraction and in this case
we consider the following abstraction ι(mov e1, e2) = mov, ι(push e1, e2) = push and
ι(pop e) = pop. We have chosen this abstraction in order to be independent from the
particular locations used in the expansion process (location renaming can be handled

32

MOV

MOV

PUSH

PUSH

POP

POP

MOV

MOV POP

POP

PUSH

MOV

PUSH

POP

POP

MOV

PUSH

Figure 10: Possible metamorphic variant of P = mov l, 10 generated by the MetaPHOR engine

by using symbolic names). As observed above, from the phase semantics of a program
mutated through the MetaPHOR engine we can extract the set of automata represent-
ing the possible metamorphic variants through function α[F. Thus, we consider the
automata α̊(P) and the automata representing the possible evolutions of program P
that we can obtain by repetitively applying the three rules above to program P and by
stopping when the maximal recursion level reaches 4. In order to define the widening
sequence we need to fix an order among the possible variants of P . Let M0 . . .Mn

be the ordered sequence of FSA that represent possible evolutions of P , for example
we can order the automata with respect to the number of their instructions (choose an
order for those evolutions having the same number of instructions). Then we compute
the following widening sequence, with widening seed R2:

W0 = α̊(P) Wi+1 = WiO2Wi dMi

The automata W[in Figure 10 is built as the limit of the above widening sequence
and it recognizes all the possible metamorphic variants of P . As observed above, we
can extract an approximated set of rewriting rules from W[by considering all paths
connecting the common nodes between α̊({mov e, 10}) and W[(depicted in black). In
this case, a clause of the form I1, . . . , In → mov can be derived from each path with
instruction-labels I1, . . . , In connecting black nodes. The following set Ł of clauses
subsumes all clauses which can be generated in this way from W[:

push ; pop → mov

mov ; mov → mov

The language generated by the rewriting rules Ł includes all the metamorphic variants
of mov generated by the rules {Rule1,Rule2,Rule3} introduced above, including
spurious sequences like movmovmovmov induced by the widening approximation.
This shows how the analysis of the phase semantics of a metamorphic virus can provide
important information about the implementation of its metamorphic engine.

33

8. Related Works

Existing malware detectors typically use signature-based schemes, which are inher-
ently syntactic in nature [34] and that can be easily fooled using simple code obfusca-
tions [10]. In order to face this problem, researchers have recently started to consider
semantic approaches to malware detection in order to deal with metamorphism, i.e.,
obfuscation, (e.g., see [9, 11, 16, 29, 26, 27, 28, 32]).

In [16] the authors use trace semantics to characterize the behaviors of the malware
and of the potentially infected program, and use abstract interpretation to “hide” irrel-
evant aspects of these behaviors. In this setting, a program is infected by a malware if
their behaviors are indistinguishable up to a certain abstraction, which corresponds to
some obfuscations. A significant limitation of this work, however, is that it does not
give any systematic method to derive abstractions from obfuscations. The knowledge
of the obfuscation is essential in order to derive these abstractions.

In [27] the authors model the malware as a formula in the new logic CTPL, which is
an extension of CTL able to handle register renaming. They develop a model checking
algorithm for CTPL and use it to verify infection. A program P is infected by malware
M , if P satisfies the CTPL formula that models M . By knowing the obfuscations
used by malware M it is possible to design CTPL specifications that recognise several
metamorphic variants of M . Once again the knowledge of the obfuscations is essential
in order to check infection.

In [11] the idea is to model the malware as a template that expresses its malicious
intent, while no distinction is made among their different metamorphic variants. Also
in this case the definition of the template is driven by the knowledge of the obfuscations
commonly used by malware: It uses symbolic variable/constants to handle variable and
register renaming, and it is related to the malware control flow graph in order to deal
with code reordering. The authors provide an algorithm that verifies whether a program
presents the considered template malicious behavior, and in the case of positive answer
they classify the program as infected.

In [28] the authors propose a methodology for making context-sensitive analysis of
assembly programs even when the call and ret instructions are obfuscated. In particu-
lar, they define a general framework where they formalize the notion of context-trace
semantics. They show how, by successive abstractions of the context-trace semantics,
it is possible to derive by abstract interpretation the context-sensitive version of any
context insensitive analysis that was obtained by approximating the context insensitive
trace semantics.

Some researchers have tried to detect metamorphic malware by modeling the meta-
morphic engine as formal grammars and automata [23, 31, 35]. These works are
promising but the design of the grammar and automata is based on the knowledge
of the metamorphic transformations used, and none of them provides a methodology
for extracting a grammar or an automata from a given metamorphic malware.

In [6] the authors use FSA to approximate programs in a setting that is different
from ours. In particular, Beaucamps et al. approximate the set of possible execution
traces of a program with a regular language P on a given alphabet Σ that expresses
some instruction properties (like being a system call). In order to be independent from
implementation details (and therefore cope with metamorphism) the regular language

34

P is abstracted with respect to predefined behavioral patterns. A behavioral pattern is
formalized as an automata whose regular language Bλ ∈ ℘(Σ∗) describes the possible
sequences in Σ∗ that satisfy a high level property λ. The abstraction of P with respect
to Bλ is obtained by replacing in each trace of P all the occurrences of the patterns of
Bλ with λ. This abstraction can be carried out with respect to all the behavioral patterns
Bλ1 . . .Bλn representing high level properties of interest. This leads to a description
of the original program as a regular language of abstract symbols Γ = {λ1 . . . λn}
that can be compared to the abstract description of known malware in order to detect
infection. This detection strategy is able to recognize all the metamorphic variants that
are considered by the behavioral patterns. Thus, in order to design efficient behavioral
patterns we need to know in advance the metamorphic transformations used by mal-
ware. In the experiments in [6] the authors construct the behavioral patterns from the
observation of some known malicious execution traces. We believe that it is possible to
use our method based on abstracting the phase semantics to systematically derive the
FSA for Bλ.

In [1, 2] the authors model malware as tree automata and then use tree automata
inference for capturing the essence of being malicious. Their idea is to focus on the
system call behaviour of the malware and to use dynamic analysis in order to extract the
data flow dependences between system calls. These dependences are then represented
as a graph that provides an abstract model of the malicious behaviour. Next, given
a set of these system call dependences graphs, they use tree automata inference to
derive (learn) an automata that is able to recognize them. This automata should ideally
capture the essence of the malicious behavior and should be able to detect also unknown
variants of the considered malware. In our framework we would say that the learned
automata acts like a metamorphic signature for the set of malware variants from which
it has been generated. However, it cannot be ensured that the so obtained metamorphic
signature is able to capture all the possible variants of a given malware. Indeed the
efficency of the automata in capturing unknown malware depends on the malware set
used for training the inference algorithm.

All these approaches provide a model of the metamorphic behavior that is based
on the knowledge of the metamorphic transformations, i.e., obfuscations, that mal-
ware typically use. By knowing how code mutates, it is possible to specify suitable
(semantics-based) equivalence relations which trace code evolution and detect mal-
ware. This knowledge is typically the result of a time and cost consuming tracking
analysis based on emulation and heuristics, which requires intensive human interaction
in order to achieve an abstract specification of code features that are common to the
malware variants obtained through various obfuscations and mutations. These abstract
specifications of the malicious behavior are designed based on the obfuscations used
by malware and can therefore be potentially bypassed by the design of a variety of new
evasion techniques, yet keeping the basic attack model unchanged.

A work closed to our is the one proposed by Guizani et al. [25]. Here the au-
thors propose a theoretical framework for modeling self-modifying programs. They
introduce the notion of code waves which are very similar to our phases. The main
difference is that their approach for modeling code evolution is dynamic while our one
is static. So they can might be more precise on the analysis of the considered execu-
tion traces but they have to face the problem of behavioral coverage typical of dynamic

35

analysis.
To the best of our knowledge, we are not aware of any work for statically model-

ing metamorphism without any a priori knowledge of the transformations used by the
metamorphic engine.

Another important work that formally addresses the analysis of self-modifying code
is the one of Cai et al. [8]. In this work the authors propose a general framework based
on Hoare logic for the modular verification of self-modifying programs. In particular,
in order to reason on self-mpdifying code Cai et al. treat code as data and apply separa-
tion logic to support local reasoning in order to verify code modules and then combine
them through the frame rule. A related recent work in the verification of self-modifying
x86 code based on Hoare logic is the one of Myreen [30]. Myreen proposes a formal se-
mantics for x86 that models possible out-of-date instruction cache and defines a Hoare
logic on this semantics that allows to reason about self-modifying code. However, their
goals and results are very different from ours: Cai et al. and Myreen propose a general
framework based on Hoare logic to verify self-modifying code, while we use program
semantics and abstract interpretation to extract metamorphic signature from malicious
self-modifying code.

9. Discussion

While traditional static models of programs consider programs that have a con-
stant structure during execution, metamorphic attacks require new semantic models
and analysis for coping with unknown obfuscation strategies, generated by an unknown
metamorphic engine. In order to model the self-modifying nature of a metamorphic
malware it is necessary to provide a model of program behavior that allows the pro-
gram to change during execution. For this reason we have introduced the notion of
phase semantics, that precisely describes the evolution of any metamorphic program
during execution. Phase semantics allows us to model the self modifying behavior of
any metamorphic malware and it does not need any a priori knowledge of the metamor-
phic transformations. The key contribution relies upon the idea that abstract interpreta-
tion of phase semantics provides useful information about the way code changes, i.e.,
about the metamorphic engine itself, without any a priori knowledge on its concrete im-
plementation. Phase semantics provides a very precise and low level description of the
metamorphic behavior, and due to the presence of possible infinite sequences of code
evolution it may not be possible to decide whether a program appears in the phase se-
mantics of another one, namely whether a program is a metamorphic variant of another
one. Since we are interested in deciding this fact we recurred to abstract interpretation
in order to loose some of the precision of phase semantics in favor of decidability. In
particular, the abstract interpretation of the phase semantics of a metamorphic program
P on the abstract domain of FSA, i.e., automaton W[[P]], provides an abstract meta-
morphic signature that can be used to verify if a program is a metamorphic variant of
P . The idea is that the language recognized by the resulting automaton represents the
sequences of all possible instructions that can be encountered during the execution of
a variant of the original code. A priori knowledge of the transformations applied by
the metamorphic engine can be used to further abstract the FSA-representation and to
obtain a FSA that models in a more concise way all the possible metamorphic variants.

36

For example, by abstracting from the intermediate phases that model the intermediate
steps of code mutation that lead to the generation of a metamorphic code variant.

Interestingly, the language recognized by W[[P]] provides an upper-approximation
of the possible metamorphic variants of the original malware, while the automaton it-
self models the mechanism of generation of such variants, i.e., an approximation of the
metamorphic engine. This means that with our approach it should be possible to extract
properties of the implementation of the metamorphic engine by abstract interpretation
of the phase semantics. In Section 7 we have considered the malware MetaPHOR and
we have shown how to learn the metamorphic engine from phase semantics on toy ex-
ample. Besides its simplicity, this example provides good insights on how to proceed
for the extraction of properties of code evolution from phase semantics. The idea is
that phase semantics captures all the details of code evolution and in order to extract
properties of this evolution we need to know what to look at, namely what to observe
and what to abstract from. Indeed, we need to design a proper abstraction of code that
it is suitable for the property of interest. Any information regarding features of the
metamorphic engine can be useful in the design of such an abstraction.

The phase semantics provides a semantics-based model for code metamorphism
where abstract interpretation is used for reasoning about code layout. This opens an
interesting new field that may represent a future challenge for abstract interpretation:
The abstraction of code layout, where the code is the object of abstraction and the way
it is generated is the object of abstract interpretation. The computation of the phase se-
mantics on these abstract domains returns an approximation of the possible evolutions
of the malicious code, where the code variants are approximated with objects of the
abstract domain. As future work we are interested in using these approximated code
variants in order to extract a formal specification of all possible code variants that could
be generated and of the metamorphic engine. The idea is to consider known algorithms
for learning from positive examples and to adapt them to the extraction of common
features among variants of metamorphic malware. For example we could model the
metamorphic engine as a rewriting system, an automata, a grammar or a logic program
and then develop a learning strategy for the extraction of upper approximating term
rewriting systems, automata and grammars incorporating the provided positive exam-
ples yet inducing an approximation of the metamorphic mutation engine. Particular
emphasis will be devoted to extract context-free grammars modeling code mutations
driven by context free rewriting rules. This involves the definition of widening opera-
tors, namely a transformation which steady unstable substrings characterizing exactly
the invariant part of the unstable strings of a self-mutating malware. We then plan to
validate these learning methodology on real malware.

We believe that the possibility of understanding properties of the implementation
of the metamorphic engine, by analyzing the structure of an approximate specification
derived by abstract interpretation from the phase semantics of a malware (e.g., the FSA
W[[P]]), will become an essential tool for a quick tracking of malicious code and for
understanding new obfuscation strategies in the long standing battle between hiding
and seeking in computer security.

37

10. Acknowledgments

The work of Mila Dalla Preda was partially supported by the MIUR project FACE
(Formal Avenue for Chasing malwarE).

We would like to thank the anonymous referees for their useful comments that have
helped us in improving the paper.

References

[1] D. Babic, D. Reynaud, and D. Song. Malware analysis with tree automata infer-
ence. In Proceedings of the Computer Aided Verification - 23rd International
Conference, CAV 2011, volume 6806 of Lecture Notes in Computer Science,
pages 116–131. Springer, 2011.

[2] D. Babic, D. Reynaud, and D. Song. Recognizing malicious software behaviors
with tree automata inference. Formal Methods in System Design, 41(1):107–128,
2012.

[3] G. Balakrishnan, R. Gruian, T. W. Reps, and T. Teitelbaum. Codesurfer/x86-a
platform for analyzing x86 executables. In Proceedings of the 14th Internata-
tional Conference on Compiler Construction (CC’05), pages 250–254, 2005.

[4] G. Balakrishnan and T. W. Reps. Analyzing memory accesses in x86 executables.
In Proceedings of the 13th Internatational Conference on Compiler Construction
(CC’04), pages 5–23, 2004.

[5] P. Beaucamps. Advanced metamorphic techniques in computer viruses. 2008.
available at VX Heavens: http://vxheavens.com/lib/apb01.html.

[6] P. Beaucamps, I. Gnaedig, and J. Marion. Behavior abstraction in malware
analysis. In Proceedings of Runtime Verification - First International Confer-
ence, RV10, volume 6418 of Lecture Notes in Computer Science, pages 168–182.
Springer, 2010.

[7] D. Bruschi, L. Martignoni, and M. Monga. Code normalization for self-mutating
malware. IEEE Security and Privacy, 5(2):46–54, 2007.

[8] H. Cai, Z. Shao, and A. Vaynberg. Certified self-modifying code. In PLDI ’07:
Proceedings of the 2007 ACM SIGPLAN conference on Programming language
design and implementation, pages 66–77, New York, NY, USA, 2007. ACM.

[9] M. Christodorescu and S. Jha. Static analysis of executables to detect malicious
patterns. In Proceedings of the 12th USENIX Security Symposium (Security ’03),
pages 169–186, 2003.

[10] M. Christodorescu and S. Jha. Testing malware detectors. In Proceedings of
the ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA ’04), pages 34–44. ACM, 2004.

38

[11] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant. Semantics-
aware malware detection. In Proceedings of the IEEE Symposium on Security
and Privacy (S&P’05), pages 32–46, Oakland, CA, USA, 2005.

[12] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
Proceedings of the 4th ACM Symp. on Principles of Programming Languages
(POPL ’77), pages 238–252. ACM Press, New York, 1977.

[13] P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
In Proceedings of the 6th ACM Symp. on Principles of Programming Languages
(POPL ’79), pages 269–282. ACM Press, New York, 1979.

[14] P. Cousot and R. Cousot. Formal language, grammar and set-constraint-based
program analysis by abstract interpretation. In Proceedings of the Seventh ACM
Conference on Functional Programming Languages and Computer Architecture,
pages 170–181, La Jolla, California, 25–28 June 1995. ACM Press, New York,
NY.

[15] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among vari-
ables of a program. In Conference Record of the Fifth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 84–97,
Tucson, Arizona, 1978. ACM Press, New York, NY.

[16] M. Dalla Preda, M. Christodorescu, S. Jha, and S. Debray. A semantics-based
approach to malware detection. ACM Trans. Program. Lang. Syst., 30(5):1–54,
2008.

[17] M. Dalla Preda, R. Giacobazzi, S. Debray, K. Coogan, and G. Townsend. Mod-
elling metamorphism by abstract interpretation. In Proceedings of the 17th In-
ternational Static Analysis Symposium, SAS10, volume 6337 of Lecture Notes in
Computer Science, pages 218–235. Springer-Verlag, 2010.

[18] M. Dalla Preda. The Grand Chellenge in Metamorphic Analysis. In Proceed-
ings of the 6th International Conference on Information Systems, Technology and
Management, ICISTM’12, volume 285 of Communications in Computer and In-
formation Science, pages 439–444. Springer, 2012.

[19] Mental Driller. Advanced polymorphic engine construction. 29A E-zine, 2000.
available at http://vx.netlux.org/lib/vmd03.html.

[20] Mental Driller. Tuareg details and source code. 29A E-zine, 2000. available at
http://vx.org.ua/29a/29A-5.html.

[21] Mental Driller. How i made metaphor and what i’ve learnt. 2002. available at
VX Heavens: http://vxheavens.com/lib/vmd01.html.

[22] V. D’Silva. Widening for automata. Diploma Thesis, Institut Fur Informatick,
Universitat Zurich, 2006.

39

[23] E. Filiol. Metamorphism, formal grammars and undecidable code mutation.
In Proceedings of World Academy of Science, Engineering and Technology
(PWASET), volume 20, 2007.

[24] R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations com-
plete. J. of the ACM., 47(2):361–416, 2000.

[25] W. Guizani, J. Marion, and D. Reynaud-Plantey. Server-side dynamic code anal-
ysis. In Proceedings of the 4th IEEE International Conference on Malicious an
Unwanted Software (MALWARE’09), pages 55–62, 2009.

[26] A. Holzer, J. Kinder, and H. Veith. Using verification technology to specify and
detect malware. In Proceedings of the 11th International Conference on Com-
puter Aided System Theory (EUROCAST’07), volume 4739 of LNCS, pages 497–
504, 2007.

[27] J. Kinder, S. Katzenbeisser, C. Schallhart, and H. Veith. Detecting malicious
code by model checking. In Proceedings of the 2nd International Conference
on Intrusion and Malware Detection and Vulnerability Assessment (DIMVA’05),
volume 3548 of LNCS, pages 174–187, 2005.

[28] A. Lakhotia, D. Boccardo, A. Singh, and A. Manacero. Context-sensitive anal-
ysis of obfuscated x86 executables. In Proceedings of the 2010 ACM SIGPLAN
Workshop on Partial Evaluation and Program Manipulation, PEPM 2010, pages
131–140. ACM, 2010.

[29] G. Lu and S. Debray. Automatic simplification of obfuscated javascript code: A
semantics-based approach. In Proceedings of the Sixth International Conference
on Software Security and Reliability, SERE 2012, pages 31–40. IEEE, 2012.

[30] Magnus O. Myreen. Verified just-in-time compiler on x86. In Proceedings of the
37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2010, pages 107–118. ACM, 2010.

[31] Qozah. Polymorphism and grammars. 29A E-zine, 2009.

[32] P. Singh and A. Lakhotia. Static verification of worm and virus behaviour in
binary executables using model checking. In Proceedings of the 4th IEEE Infor-
mation Assurance Workshop, 2003.

[33] P. Ször and P. Ferrie. Hunting for metamorphic. In Proceedings of the Virus
Bulleting Conference, pages 123–144. Virus Bulletin Ltd, 2001.

[34] P. Ször. The Art of Computer Virus Research and Defense. Addison-Wesley
Professional, Boston, MA, USA, 2005.

[35] P. Zbitskiy. Code mutation techniques by means of formal grammars and automa-
tons. Journal in Computer Virology, 2009.

40

