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ABSTRACT

A FRAMEWORK FOR AUTOMATED SIMILARITY ANALYSIS OF

MALWARE

Wei Long Song

Malware, a category of software including viruses, worms, and other malicious programs,

is developed by hackers to damage, disrupt, or perform other harmful actions on data, com-

puter systems and networks. Malware analysis, as an indispensable part of the work of IT

security specialists, aims to gain an in-depth understanding of malware code. Manual anal-

ysis of malware is a very costly and time-consuming process. As more malware variants

are evolved by hackers who occasionally use a copy-paste-modify programming style to

accelerate the generation of large number of malware, the effort spent in analyzing similar

pieces of malicious code has dramatically grown. One approach to remedy this situation is

to automatically perform similarity analysis on malware samples and identify the functions

they share in order to minimize duplicated effort in analyzing similar codes of malware

variants.

In this thesis, we present a framework to match cloned functions in a large chunk of mal-

ware samples. Firstly, the instructions of the functions to be analyzed are extracted from

the disassembled malware binary code and then normalized. We propose a new similarity
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metric and use it to determine the pair-wise similarity among malware samples based on

the calculated similarity of their functions. The developed tool also includes an API class

recognizer designed to determine probable malicious operations that can be performed by

malware functions. Furthermore, it allows us to visualize the relationship among func-

tions inside malware codes and locate similar functions importing the same API class. We

evaluate this framework on three malware datasets including metamorphic viruses created

by malware generation tools, real-life malware variants in the wild, and two well-known

botnet trojans. The obtained experimental results confirm that the proposed framework is

effective in detecting similar malware code.
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Chapter 1

Introduction

1.1 Motivation

Malicious software, commonly known as malware, is any software that is specifically de-

signed to gain access or disrupt to computer systems without the knowledge of their owners.

Examples of malware include viruses, trojan horses, worms, rootkits, and spyware. Hack-

ers are no longer using malware for fun or fame. Over the last few years, cyber criminals,

who are actively involved in a rich underground economy, have been using for-profit cat-

egory of malware to steal sensitive information, spread email spam and launch distributed

denial-of-service attacks.

With the heavy reliance of our society on computers and the rising popularity of the

Internet, the number of malware has increased significantly. According to recent reports,

20% of all of malware that ever existed was created in 2013 with 30 million new malware

threats in one year, or about 82,000 per day [51]. In many cases, hackers do not create new

malware from scratch; they develop malware variants from previous ones and use some

code obfuscation techniques that allow them to avoid detection by anti-malware and secu-

rity software. With the large number of malware variants encountered in the wild, efficient

analysis of malware is becoming increasingly critical objective for security researchers and
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organizations. Most often, when performing malware analysis, the analysts only have the

non-human-readable malware executables. Interactive disassemblers, such as IDA Pro [2],

are commonly used by analysts to dissect and understand malware samples. Despite the

fact that these tools can facilitate many tedious steps in the code analysis process, the

reverse engineering procedure of malware is still technically very involved and extremely

time consuming. When trying to analyze a large number of malware samples, the efficiency

of the reverse engineering process can be improved by noting that, in many occasions, mal-

ware writers use a copy-paste-modify programming style to accelerate the generation of

this large number of malware variants. Thus one way to speed up the analysis of malware

is to identify identical or similar code regions in order to save the effort of the analysts

and make them focus on new parts of the code that have not been analyzed before. On the

other hand, trying to manually search for similar pieces of codes among a large number of

malware samples is a time consuming process and successful identification of similar code

regions or functions depends heavily on the experience and knowledge of the analysts. In

this thesis, we investigate the problem of automated similarity analysis of malware codes.

In particular, the objectives of this thesis can be summarized as follows:

• Investigate methods and techniques that can be used to facilitate the process of mal-

ware similarity analysis.

• Design and implement a framework to automatically identify similarity between mal-

ware samples.

• Develop a tool for visualizing the relationship between malware samples and identi-

fying similarity between their functions.

1.2 Contributions

Our contributions can be summarized as follows:

2



• We proposed a new metric to measure pair-wise similarity between malware samples.

After identifying and extracting the functions within each sample, similarity scores

are first computed at the functions level and then these scores are used to determine

the degree of containment of each sample within the other. Finally, the containment

scores are used to determine an overall similarity between the considered samples.

• We designed and implemented a framework to automate the process of malware sim-

ilarity analysis. The tools developed within this framework also allow us to visualize

the relationship between functions inside malware codes and locate similar functions

importing the same API class.

• We evaluated this framework on three malware datasets including metamorphic viruses

created by malware generation tools, real-life malware variants in the wild, and two

well-known botnet trojans. As confirmed by our experimental results, the proposed

framework is effective in detecting similar malware code and in identifying similar

functions in malware variants.

1.3 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 provides a literature review

and background information on obfuscation techniques, reverse engineering and similarity

analysis techniques. In Chapter 3, we describe the implementation details of the proposed

framework including pre-processing of analyzed malware, similarity detection methods

at the function level and metrics used to evaluate the overall similarity between malware

samples. Chapter 4 presents our experimental results. Finally, Chapter 5 provides our

conclusions and suggestions for some possible future research directions.
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Chapter 2

Related Work and Background

In this chapter, we briefly review some related work and provide background knowledge

required to understand the work done in this thesis. First, we present a classification of

malware based on the techniques used by malware writers to avoid antivirus detection.

Then, some code obfuscation techniques are summarized and categorized. After discussing

the methods used by malware to escape generic scanning, we introduce steps and tools

used for reverse engineering of malware. We also examine metamorphic detection and

three intellectual property protection applications: clone detection, plagiarism detection,

and birthmark detection, and show how these techniques can be used for malware analysis.

Finally, we describe some malware similarity analysis algorithms.

2.1 Malicious Software

2.1.1 Malware Types

In their race with security researchers and anti-malware tools, hackers utilize several obfus-

cation techniques in order to circumvent detection techniqes. Depending on the conceal-

ment techniques, malware can be classified into three categories: encrypted, polymorphic,
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and metamorphic [58]. These three categories are discussed in the following subsections.

Encrypted Malware

Encryption is one of the simplest methods to avoid signature-based detection which is

widely used by antivirus software. An encrypted malware generally has encryption/de-

cryption engine, encrypted malware code, and a decryption key embedded in its code. The

malware uses the decryption engine with the associated key to decrypt the encrypted mal-

ware code before execution. After the infection process, the decrypted malware code is

re-encrypted with a newly generated key to evade simple signature analysis. This new

key then replaces the original decryption key in the maleware body. Figure 1 provides

a pictorial illustration of an encrypted malware before and after the decryption process.

Since the encryption/decryption engine usually remain the same, it is possible to detect this

category of malware by creating a signature of the encryption/decryption routines. The

Figure 1: Encryted malware before and after decryption

simplest method to encrypt malware is to XOR the body of the malware with a predefined

key stream. This approach is used not only to encrypt (or decrypt) the malware body but

also to hide specific strings such as monitored domain names, the attacker’s IP address, and

the initial communication key. Figure 2 illustrates a simple (non secure) XOR encryption

where a single secret byte is used to encrypt/decrypt the malware.
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decrypt_malware_code:
mov dh, dl ; clone the key
mov ecx, 3810 ; number of bytes to decrypt
loop_xor:
xor [eax], dl
inc eax
add dl,dh ; update key
loop loop_xor
retn

Figure 2: An example of a decryptor function

Polymorphic Malware

In order to overcome the weaknesses associated with encrypting malware with identical

encryption/decryption routines, malware writers developed polymorphic malware that has

encrypted malware code and morphed decryption code. Hence it is difficult to be detected

by antivirus scanner using a specific signature of the encryption/decryption engine. Variants

of a polymorphic malware keep their inherent functionality the same. The first polymorphic

malware is a virus, called 1260, which is a .COM infector developed by Mark Washburn

in 1990 [71]. Figure 3 illustrates how the structure of polymorphic malware changes from

one generation to the other, where G, D, and V donate the generations of polymorphic

malware, decryption engine, and malware body. The simplest polymorphic technique is

Figure 3: Polymorphic malware replication

to insert junk code or substitute instructions in the decryption engine [43]. However, this
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category of malware can be detected using code emulation techniques [62]. The encrypted

malware code will be revealed when polymorphic malware is executed in code emulators.

The decrypted body can then be used to create a signature for detection.

Metamorphic Malware

Unlike encrypted and polymorphic malware, metamorphic malware contains changing

body code without any decryptor. This category of malware employs a mutation en-

gine [48] that can change the entire malware body. The mutation engine performs code

obfuscation to generate a completely different variant with the same malicious behavior.

Professional metamorphic malware need to be implemented carefully by malware writer.

The metamorphic variants should be unpredictable in size and the operations of mutated

functions should remain efficient and correct [73].

2.1.2 Obfuscation Techniques

Metamorphic malware employs obfuscation techniques to generate different variants with

the same functionality in order to avoid signature-based detection. This section describes

some of the obfuscation techniques used by malware writers [57, 91].

Insertion of Junk Code

The insertion of junk code is simple and yet somewhat effective approach to modify mal-

ware body or size without affecting the function or program outcome. Malware writers can

insert single or a block of do-nothing operations between malicious instructions to confuse

antivirus software and some primitive reverse engineering tools. The junk code can be clas-

sified into two categories depending on whether they modify the content of CPU registers

or memory [8, 14]. Table 1 shows several examples of junk instructions belonging to the

first category in which the instructions are equivalent to no-operation such as nop. Figure 4
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shows an example for junk code inserted in one variant of the NGVCK metamorphic virus

family.

Figure 4: Example of junk code inserted in the metamorphic virus (A snapshot from IDA
Pro)

Instruction Operation
mov eax, eax eax eax
or ecx, 0 ecx ecx | 0
and ebx, -1 ebx ebx & -1
add edi, 0 edi edi + 0

Table 1: An example of no-operation instructions [14]

The second category of junk code performs operation on registers and memory. How-

ever, before it alters the outcome of the target function or program, undo instructions restore

the status of these affected registers or memory locations. Table 2 illustrates an example

for this category of junk code insertion.
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Instruction
push Reg1 ; push value of Reg1 into stack,
... ... ; before it affects outcome of function
pop Reg1 ; Reg1 must be restored
inc Reg2 ; increase value of Reg2 first,
... ... ; before any usage of Reg2

sub Reg2, 1 ; it must be restored to previous status

Table 2: An example for the second category of junk code [57]

Instruction/Subroutine Permutation

The permutation technique is another solution to modify the internal structure of malware

while keeping its original malicious functionality. This technique can perform obfuscation

in malware at two levels, namely instruction permutation [58] and subroutine permutation

[68]. The instruction permutation reorders instructions that have no dependency between

them. The re-ordered instructions make the functions or programs look dissimilar but keep

the functionality unchanged. Table 3 depicts an example for this technique where the two

columns of instructions produce the same result but in different order. Advanced instruction

permutation can use jmp to create different sequences of instructions.

Instruction Order 1 Instruction Order 2
mov edx, 0 add ecx, 03h
push eax mov edx, 0
add ecx, 03h push eax

Table 3: An example of instruction permutation

The subroutine permutation reorders subroutines instead of instructions. If a malware

consists of n subroutines, n! variants of the malware can be generated by this technique.

For example, the Win32/Ghost virus [14] with 10 subroutines employs this permutation to

generate 10! ⇡ 3.6 million variants of itself.
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Register Swapping

Register swapping is one of the simplest methods used by mutation engines of metamorphic

malware. This method simply replaces registers in the instructions with different equiva-

lent registers, but the mnemonics of the instructions are kept the same for all variants.

The W95/RegSwap virus is a good representative for metamorphic malware that employs

this technique [71]. Figure 5 shows how register swapping is used in two variants of the

NGVCK metamorphic family. Malware variants produced with this technique can be de-

tected with wildcard-based scanning [71], which can skip bytes or byte ranges to detect the

common areas of the two code variants.

Figure 5: Example of register swapping in the metamorphic virus (A snapshot from IDA
Pro)

Instruction Substitution

Instruction substitution is another technique used to generate metamorphic malware. This

technique substitutes a single instruction or a block of instructions with some of their equiv-

alent instructions. For example, all the four instructions in Table 4 perform the same op-

eration of resetting the content of a register to zero. The malware writer tends to use com-

plicated replacement strategy to morph malware variants because well-constructed substi-

tutions in malicious code can make the process of understanding the malware harder and
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more time-consuming for security professionals and researchers. Table 5 shows other sub-

stitution patterns used in metamorphic malware [14, 88].

Equivalent Instructions
and Reg, 0
mov Reg, 0
xor Reg, Reg
sub Reg, Reg

Table 4: Example of different approaches for resetting a register to zero [57]

Original Instructions Equivalent Instructions
mov Reg, Imm push Imm

pop Reg
push Reg1 push Reg1

mov Reg1, Reg2 push Reg2

pop Reg1

mov Mem, Reg1

op Reg1, Reg2 op Mem, Reg2

mov Reg1, Mem

Table 5: Instruction substitution examples [14]

2.2 Reverse Engineering of Malware

2.2.1 Unpacking

Malware in the wild exists in binary form at the machine code level that computers can

run quickly and efficiently. Reverse engineering is one of the strongest weapons used

by malware analysts against malware writers. Reverse engineering of malware can help

security researchers to analyze malicious code, determine how dangerous they are, and

learn how to defeat them. Sometimes, at the beginning of this process, unpacking the
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malware is necessary if the malware was packed in order to evade signature-based antivirus

and prevent simple static analysis.

Identifying the Packer

The first step of unpacking is to detect whether the malware is packed. There are several

techniques we can use for this purpose [36]. The simplest way is to notice these signs from

the analyzed malware:

• The malware with large size has very small import table, and particularly if the only

imports are LoadLibraryA and GetProcAdress, which can be used to locate other

functions.

• After the disassembly process, only a small amount of code is recognized by the

automatic analysis and a large amount of data appears inside the executable.

• The disassembled malware shows section names that are strange or indicate a partic-

ular packer (such as UPX0, UPX1, and UPX2).

• The string table of disassembled malware is missing or it contains only garbage.

• The disassembled malware has abnormal section size, such as a .text section with a

Size of Raw Data equals 0.

• The malware is opened in some tools with a warning information related to a specific

packer, such as OllyDbg [92] and PEiD [70]. Figure 6 shows an example of packer

identification in PEiD, where a packed_malware file is packed with UPX version

0.896-1.02 or 1.05-2.90.
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Figure 6: A snapshot of the packed malware identified in PEiD

Unpacking Techniques

After identifying packed malware, we mainly have two methods for unpacking it: auto-

mated unpacking and manual unpacking. Compared to manual unpacking, the automated

unpacking is faster and easier but it only targets some specific identified packers.

Automated unpacking programs decompress or decrypt the packed malware and restore

it to its original state. These programs only work if the malware writer use packers that are

not designed to thwart analysis. One of the most commonly used malware packers is the

Ultimate Packer for eXecutables (UPX) [49], which is open source, free, and easy to use.

UPX can compress the malware and is designed for performance rather than security.

When automated unpacking fails, manual unpacking has to be performed on packed

malware. The two common methods to manually unpack a malware can be summarized as

follows:

• Locate the packing algorithm used by the malware and write a program to run it in

reverse. When running the algorithm in reverse, the program will undo each of the

steps of the packing program. This method is time-consuming since the program

written to unpack the malware will be specific to the used packing program.

• Run the packed malware in a safe environment, such as a virtual machine, so that

the unpacking stub loads the original malware, and then dump the process out of
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memory, and manually fix the PE header. In order to correct the PE header, we

have to reconstruct the import table and change the entry point value in the header

for pointing to the Original Entry Point (OEP). Debuggers with the memory dump

plug-in can be used for this method, e.g., OllyDbg [92] and Immunity debugger [31].

2.2.2 Disassembly

After obtaining the unpacked malware, different forms of analysis can be performed on the

original malicious code. Malware disassembly is the process of taking malware binary as

input and converting it back to its assembly code. Disassembly is a processor-specific pro-

cess, but some disassemblers support multiple CPU architectures. For malware analysts, a

high-quality disassembler is an important component in the toolkit to perform the analysis.

In this section, we briefly discuss two powerful disassemblers which are commonly used

by many malware analysts.

IDA Pro

IDA Pro [2] is probably the most popular disassembler used for reverse engineering of

malware. It supports most executable types, such as Portable Executable (PE), Executable

and Linking Format (ELF), Dalvik Executable (Dex), and Mach-O. IDA Pro can automat-

ically identify the data and code sections of a program. It is capable of auto-commenting

code, displaying graphical relationships between code jumps, and automatically recogniz-

ing imported APIs from standard library. A flowchart for each identified function of the

malware is produced by IDA Pro, which is essentially a logical graph that shows chunks

of disassembled code and provides a visual representation of how each conditional jump in

the code affects the function’s flow. Figure 7 shows an example for an IDA Pro-generated

flowchart for one function instance of the NGVCK metamorphic virus family, where each

box represents a code snippet or stage in the function’s flow and the boxes are connected
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by arrows that show the flow of the code based on whether the conditional jump is satisfied

or not. As an interactive disassembler, IDA Pro allows analysts to modify, manipulate, and

redefine all aspects of the disassembly process. For example, when performing the anal-

ysis, the analyst can add comments on instructions related to malicious operations, label

data that represents initial encryption key, and name a function that is used to infect DLL

files. All the analysis results can be saved in an IDA Pro database (.idb) to return to later.

IDA Pro also supports scripts or plug-ins written by analysts to extend its functionality.

Figure 7: A snapshot of the IDA Pro-generated flowchart for one function in the metamor-
phic virus

Hopper

Hopper [11] is a reverse engineering tool which can handle 32-bit or 64-bit programs for

both Windows and OS X. Hopper is perfectly adapted to the Mac OS X environment and

hence it is a desirable option for the analysis of Mac malware. Control flow graphs (CFGs)
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can be generated for identified functions during the disassembly process. Based on an

advanced understanding of the executable, Hopper provides a pseudo-code representation

of the functions identified in the executable. This pseudo-code can help the analyst to better

understand the malware behavior.

Figure 8: A snapshot of the disassembly code of BISCUIT backdoor obtained using Hopper

Figure 8 shows the pseudo-code of one function that is generated when we disassembled

and analyzed the BISCUIT malware which is a kind of Advanced Persistent Threat (APT)

backdoor. This malware provides the attackers with full access to infected hosts and is

capable of launching an interactive command shell, enumerating processes and servers on

Windows networks, and transferring files. In the pseudo-code, we can see that function

sub_401000 uses a command line to installs qmqrprxy.dll which replaces the legitimate

BITS (Background Intelligent Transfer Service) file, restarts BITS, and sets the attributes

of qmqrprxy.dll to system hidden.
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2.2.3 Features of Binary Code

Malicious codes in malware can be accessed after the disassembly process. A disassembler

with the capability of binary parsing can provide different representations of binary code

such as byte-level, instruction-level, and structure-level representation. In order to ana-

lyze the relationship between different malware, we need to define features of malicious

codes. Based on these three representations, different code features can be extracted from

malicious binaries for related tasks such as detecting similarity between malware and iden-

tifying malicious programs in the wild. In this section, we discuss some of the features

that are commonly extracted to be used for malware analysis from these three binary code

representations.

Byte-level Features

Most antivirus applications detect malware using signatures extracted from the byte level

representation of malicious binaries. A simple, and yet powerful, feature that we can extract

from the byte level representation is n-grams, which are sequences of bytes of length n. For

example, for n = 2 and 3, the sequence of bytes in malware binary(F6 E0 00 56 66 C3) can

be represented, respectively, as:

Bigrams: hF6 E0i, hE0 00i, h00 56i,...

Trigrams: hF6 E0 00i, hE0 00 56i, h00 56 66i,...

The frequency of the n-gram features extracted from binaries can be used to distinguish

different file types [42] and detect malware [44]. The main problem with this type of byte

code analysis is the lack of generalizations. For example, polymorphic and metamorphic

malware can change their byte level content due to mutation, recompilation, and code mod-

ification [66]. Another limitation of n-gram features is the loss of long-range information

within analyzed binaries. In other words, significant relationships between disparate code

cannot be extracted by short n-grams.
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Instruction-level Features

Compared to byte-level representation, the instruction-level representation of binary code

is more semantically meaningful for the human analyst. In the Intel IA-32 instruction set, a

single instruction can span up to fifteen bytes [23]. One analysis method based on instruc-

tions is to fingerprint malware using opcode distribution [12]. N-gram analysis can also be

applied to opcode sequences [35] in order to detect similarity between malware instances.

The code normalization process is always applied on disassembled instructions before per-

forming malware analysis. For example, in [90], the X86 instructions are normalized by

classifying them into 15 groups based on their functionalities when computing similarity

between functions inside malware code. In order to take into account the variations in

operands of instructions, a normalization process is implemented on constants, memory

addresses and registers of operands. Table 6 illustrates an example for the instructions

normalization process used in [19].

Disassembled Instructions Normalized Instructions
mov edi, edi mov REG, REG
push ebp push REG
push ebp, ebp push REG, REG
mov exa, dword ptr [ebp+8] mov REG, MEM

Table 6: An example of operands normalization

Structure-level Features

Although the normalization process can be done on instructions to reduce binary code vari-

ations, instruction-level representations are still sensitive to code modification such as in-

struction reordering and substitution. Using higher-level representation of the binary is one

solution. A method that uses control flow characteristics of functions to detect differences

between two versions of the same program was proposed in [28]. As a further extension
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to this method, new structural characteristics such as block size and specific instruction

information are incorporated in [63]. In order to detect polymorphic and metamorphic

malware using structural features of binaries, the authors in [40] proposed to fingerprint

malware based on k-subgraphs of program control flow graphs. For the generated sub-

graph, a fingerprint is derived using an adjacency matrix (see Figure 9), which is then used

for searching for similar structures in polymorphic worms. Besides the structural character-

istic, the fingerprint from [40] also includes information about the instructions by coloring

each node based on the instructions in the corresponding basic block.

Figure 9: Generating a fingerprint from a subgraph [40]

A malware classification technique based on dynamically constructed system call de-

pendence graphs was employed in [52]. The behavioral graph is extracted by tracing system

calls at runtime, which represents a set of dependent system call sequences. The similarity

between behavioral graphs is computed using the maximal common subgraph (MCS).
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2.3 Similarity Analysis

2.3.1 Applications

In this section, we first discuss three applications related to software protection where the

adversary copies important pieces of code from the victim’s program and incorporates orig-

inal or modified code into her program. In the three applications, the fundamental operation

is determining how two programs are similar to each other and whether one program is con-

tained within the other. In malware research, related techniques are applied to determine

similarity between malicious programs. Finally, some techniques that are used to solve the

metamorphic detection problem are presented.

Clone Detection

Code duplication and then reuse by pasting with or without modification exist both in

software development and in malware development. For these two cases, clone detection

is employed for different purposes.

In the software development industry, the duplicated code is often the result of a copy-

paste-modify-style of programming; a programmer searches for existing code on the Inter-

net, copies a desirable one, specializes it as necessary, and pastes the copy to her program.

Clone detection is to identify similar pieces of code in given program(s).

Sæbj?rnsen et al. [13] proposed a practical clone detection algorithm for binary ex-

ecutables. First, the input binaries are disassembled and transformed to the intermediate

representation. Then, a normalization process creates abstract format for instructions. In

the clone detection process, the authors use exact clone detector that only returns identical

normalized instruction sequences and inexact clone detector that tolerates certain differ-

ence. In inexact clone detection, they adapted the basic approach implemented by Jiang et

al. [32], where the detector extracts feature vectors from normalized instruction sequences
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and groups similar vectors to find clones.

Compared to code duplication in software, the code reuse in the production of malware

happens when malware writers exchange source code among them to develop different mal-

ware variants. Here, a copy-paste-modify programming can help malware writers achieve

similar malicious functionality in their own malware. Clone detection targeting malware

can help the analysts save their effort in reanalyzing similar pieces of code belonging to

new malware variants by identifying the similarity between the new samples and the old,

already analyzed, ones.

Charland et al. [19] developed a prototype for a clone search system for malware anal-

ysis, which expands on the previous work presented in [13]. They implemented a flexible

normalization scheme and a new inexact clone detection method that can efficiently iden-

tify inexact clone pairs. The experimental results suggested that the implemented system

can effectively identify both exact and inexact clones in the assembly code of malware.

Rahimian et al. [59] performed clone-based analysis on Citadel and Zeus to quantify

the similarity between them. The analysis results show that these two malware share 526

exact binary clones and Citadel duplicates a significant amount of codes from Zeus. An

inexact clone is also detected in the RC4 function modified from the original one in Zeus,

which is used for encrypting the C&C traffic.

Plagiarism Detection

Plagiarism in programming most often happens in assignments for computer science classes

where a student may copy an already existing program and make changes to it in order to

hide the origin of the code. Common modifications consist of renaming of identifiers, re-

ordering of functions, and replacing of equivalent statements. As depicted in Figure 10,

in plagiarism detection, the detector makes pair-wise comparisons between all of the input

programs and orders them from the most to least similar.
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Figure 10: Plagiarism detection process

Most approaches used in plagiarism detection relied on the concept of n-grams that can

be considered as a group of n consecutive items from a sequence. This technique is also

applied to malware detection. Oprisa et al. [50] presented a unified approach to detect the

plagiarism cases in programming assignments and to cluster malicious samples for making

the analysis considerably simpler. As illustrated in Figure 11, they extracted features in

the form of opcode sequences from the binary code, where ⌃ represents a sequence of

symbols transformed from opcode. Then they employed four similarity metrics including

descriptional entropy, normalized compression distance, common n-grams, and weighted

common n-grams, to compute the similarity between two sequences. The proposed system

showed good results for the task of clustering malware.

Kim et al. [38] proposed a malware detection system which combines a genetic al-

gorithm (GA) and a metric-based method. Metric-based methods use a numerical vec-

tor to represent the characteristics of a program and work well in code plagiarism de-

tection [41]. The proposed system is illustrated in Figure 12 where Decision Algorithm

determines whether the input program is malicious or not, Malicious Core Finder uses a

genetic algorithm and extracts the malicious part of the program which is the most similar

to the given malware, Metric Calculator converts programs to numerical vectors contain-

ing various metrics, and finally Distance Calculator measures the distance between the

vectors.
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Figure 11: Transforming a program into a set of symbols [50]

Birthmark Detection

Birthmarking is also concerned with detecting similarities between programs, but it differs

in some respects from clone detection and plagiarism detection. First, we generally extract

birthmarks from executable code, such as X86 binary or bytecode. Second, birthmark de-

tection assumes of a much more active and competent adversary. In particular, in birthmark

detection, the assumption is that the adversary uses the following steps to copy code from

some program P into her own program Q [22]:

1. Copy one or more code sections from P into Q.

2. Compile Q, as necessary, into binary code or bytecode.

3. Apply semantics-preserving transformations, such as obfuscation and optimization,

to Q and distribute the resulting program.
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Figure 12: Overview of the malware detection system [38]

Birthmark detection is to extract properties of code that are invariant under obfuscation

or other transformations and determine if two programs are similar. As shown in Figure

13, the signatures bmP and bmQ are extracted from two programs P and Q to determine

their similarity.

Choi et al. [20] proposed a static API birthmark for Windows executables that utilizes

API calls identified by the disassembler. The birthmark system computes the birthmark

of the target function using call graphs of the underlying program. The birthmark is a

set of API calls of the function and its descendant functions, which correspond to the de-

scendant nodes of the function in the call graph. Based on the birthmarks extracted from

functions, the system computes similarity between functions using Dice’s coefficient and

24



Figure 13: Birthmark detection process [22]

concludes similarity between programs by finding the maximum weighted bipartite match-

ing. The proposed system was evaluated by comparing 49 Windows executables and the

results showed that it can distinguish similar programs and detect copies.

The similar birthmark technique is also used in malware detection. Cesare et al. [18]

developed a malware classification system which builds a birthmark of malware based on

the set of control flow graphs it has and compares birthmarks using distance metrics. In

order to match malware variant to existing malware, they first used structuring algorithm

to transform the control flow graphs into a structured graph that is used to obtain string

representation, as illustrated in Figure 14. Afterwards, the pre-filtering algorithm is applied

to provide a list of potentially related malware by computing distance between feature

vectors. Cesare et al. used k-subgraphs and q-grams of structured control flow to extract

features. The authors concluded that the q-gram feature based on structuring string is more

efficient and accurate.
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Figure 14: Structuring algorithm transforms CFG into string [18]

Metamorphic Detection

Metamorphic detection is applied to detect malware that employ metamorphic techniques

that make signature-based detection virtually impossible [14]. In what follows, we briefly

describe several techniques that were used to detect metamorphic malware with some suc-

cess. In [33], a technique based on Singular Value Decomposition (SVD) was applied to

the problem of metamorphic detection. The proposed method generates Singular Values

and Singular Vectors from the training malware set. The Euclidean distance between the

weights of each testing file and weights of all training files is computed by projecting files

on to singular space. This SVD-based technique proved to be effective in detecting three

metamorphic malware families (NGVCK, MWOR and G2).

A Hidden Markov model (HMM) approach for malware classification is proposed

in [7]. HMMs were trained for a variety of malware generators, including MWOR and
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NGVCK, and a variety of compilers. The scores generated from HMMs for over 9000

malware samples were used as input to a k-means clustering algorithm. The experimental

results showed that HMM is an effective tool to automatically classify malware.

A graph-based approach which uses function call graph for the metamorphic malware

detection is proposed in [25]. This method detects similar function pairs from two mal-

ware variants by computing the Cosine similarity based on opcodes and a graph coloring

technique. Similarity between two function call graphs with the common vertex pairs is

calculated based on common edges. The detection technique is tested on the NGVCK and

MWOR virus families and the results showed that it is better than the other graph based

technique proposed in [64].

Based on software similarity, Shanmugam et al. [68] proposed a method for detecting

metamorphic malware which use simple substitution ciphers. The opcode sequences of

malware samples are extracted for constructing digraph distribution matrices, which are

input to a hill climbing heuristic optimization search. The method computes similarity

score with recovered keys. Baysa et al. [9] applied a technique based on structural entropy

to metamorphic detection. This technique, which analyzes variations in the complexity of

data within a file, consists of two steps. First, it uses entropy measurements and Wavelet

analysis to segment the file. Then, the similarity of files is measured by computing the edit

distance between segmented sequences.

In [53], metamorphic detection was carried out using a similarity index technique based

on edit distance and pairwise sequence alignment. The edit distance between two opcode

sequences extracted from files is computed by replacing each opcode with a corresponding

symbol. In pairwise sequence alignment, a scoring matrix [45] is used to compute similarity

score between two files by aligning the corresponding opcode sequences.

Code emulation is a dynamic analysis technique in which malware is allowed to ex-

ecute in a simulated environment without actually impacting the host machine. In [56],
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a code emulator is designed specifically to detect dead code in virus files. The output of

the code emulator can be used to enhance HMM-based metamorphic detection by remov-

ing the unexecuted instructions/subroutines and the instructions that are produced by code

obfuscation techniques. The metamorphic viruses, which previously cannot be detected

using HMMs technique, are detected by un-morphing in the code emulator. In order to

improve HMM techniques, Toderici and Stamp [73] combined HMMs with the statistical

framework of the Chi-squared test to build a new method for metamorphic detection. The

hybrid detection model uses probabilistic scores from both the HMM and the Chi-squared

distance (CSD) detectors and optimizes the weight for these detectors by performing a grid

search. In the CSD detector, they modeled the behavior of the compiler that produces be-

nign programs by analyzing the instruction frequencies. Then, the Pearson �2 distance is

computed between the frequencies of opcodes used by the complier and the frequencies of

opcodes in the target file to determine whether it is infected. The results showed that the

proposed hybrid model was able to beat the scores of both the HMM and CSD detectors.

2.3.2 Metrics and Measures

The most common method to determine similarity between programs is to extract signals

from the target programs and then compare these signals. These signals take different forms

such as string sequences, feature vectors, sets of features, trees and graphs representing the

structure of programs. Based on the used form, we can compare two instances using a

suitable similarity metrics or measures.

String Similarity

String sequences can be compared using similarity metrics. Since sequences are common

feature structures in many areas, such as in computing similarity between documents, the

literature is rife with proposals for string similarity measures. In what follow we present
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three of the most commonly used similarity metrics and measures.

• Levenshtein (Edit) Distance The Levenshtein distance between two strings defines

the number of edit operations that must be performed to transform one string to the

other. An edit operation includes character insertion, deletion, and substitution. This

metric is suitable for comparing two strings with unequal length. Given two strings,

p and q, the Levenshtein distance is given by distancep,q(|p|, |q|) [81] where

distancep,q(i, j) =

8
>>>>>>><

>>>>>>>:

max(i, j) if min(i,j)=0,

min

8
>>>><

>>>>:

distancep,q(i� 1, j) + 1

distancep,q(i, j � 1) + 1

distancep,q(i� 1, j � 1) + 1(qi 6=qj)

otherwise

1(qi 6=qj) is the indicator function which is equal to 0 when pi = pj and equal to 1

otherwise. The similarity (in [0, 1]) between p and q using Levenshtein distance is

defined as [22]:

similarity(p, q) = 1� distancep,q

max(|p|,|q|)

• Longest Common Subsquence (LCS) The LCS [82] is used to find the longest

subsequence common to all sequences in given two strings P = {p1, p2, p3...pm} and

Q = {q1, q2, q3...qn}. The prefixes of P are P1,2,...m; the prefixes of Q are Q1,2...n.

Let LCS(Pi, Qj) represent the set of longest common subsequence of prefixes Pi

and Qj . This set of sequence is given by

LCS(Pi, Qj) =

8
>>>><

>>>>:

; if i = 0 or j = 0

LCS(Pi�1, Qj�1) + 1 if pi = qj

longest(LCS(Pi, Qj�1), LCS(Pi�1, Qj)) if pi 6= qj

The similarity between P and Q using LCS is defined as [26]
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similarity(P, Q) = |LCS(P,Q)|
max(|P |,|Q|)

• Normalized Compression Distance (NCD) The NCD is another method for mea-

suring the similarity between two strings. This metric approximates normalized in-

formation distance which is an information-theoretic measure for quantifying the

length of the shortest program that computes string p from string q. It is defined

as [21]:

NCD(p, q) = C(p,q)�min(|C(p)|,|C(q)|)
max(|C(p)|,|C(q)|)

where C is a compressor using any real world compression algorithm such as the

Lempel-Ziv-Welch [80] or the Huffman algorithm [76].

Vector Similarity

The most widely used method for detecting similarity between two objects is to compare

their corresponding feature vectors. The objects are mapped onto feature vectors in an

appropriate multidimensional feature space. Then the similarity between the two objects is

defined as the proximity of their feature vectors in the feature space.

• Minkowski Distance The Minkowski distance between two n-dimensional vectors,

A and B is given by

distance(A, B) =

✓
nP

i=1
| A

i

� B
i

|�
◆ 1

�

The Minkowski Distance can be considered as a generalization of both the Euclidean

distance and the Manhattan distance. When � = 1, it corresponds to the Manhattan

distance and when � = 2, it corresponds to the Euclidean distance.
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• Cosine Similarity Cosine similarity is a measure of similarity between two vectors

based on the cosine of the angle between them. The vectors A and B are usually the

term frequency vectors. The Cosine similarity between vectors A and B is given by

similarity(A, B) = A·B
||A|| ||B|| =

nP
i=1

Ai⇥Bi

s
nP

i=1
(Ai)2

s
nP

i=1
(Bi)2

This similarity score ranges between -1 to 1.

Set Similarity

The features extracted from documents or programs can also be treated as sets, such as the

sets of n-grams. Two sets can be compared using the following set measures:

• Jaccard Index The Jaccard index [78] is often used for comparing similarity be-

tween two data sets. Given two sets A and B, the Jaccard index is the result of

division between the number of features that are common to all, and the number of

properties as follows:

J(A, B) = |A\B|
|A[B|

• Containment Broder [15] defines the containment for comparing two documents.

The function f () computes sets of features from two document p and q, such as

fingerprints of "shingles" [86]. The containment(p, q) of p within q is defined as:

containment(p, q) = |f(p)\f(q)|
|f(p)|

Graph Similarity

Function call graphs are common features used for comparing two programs. The edit

distance also works on graphs, where the distance between two graphs is defined as the

minimum number of basic edit operations necessary to transfer one graph to another.

31



Given two graphs G1 and G2, G is common subgraph if there exists subgraph isomor-

phisms from G to G1 and from G to G2. If there exists no other common subgraph G’ of

G1 and G2 that has more nodes than G, G is the maximal common subgraph(mcs) [16]. The

similarity between G1 and G2 is defined as:

similarity(G1, G2) = |mcs(G1,G2)|
max(|G1|,|G2|)

where |G| is the number of nodes in G. The containment(G1, G2) of G1 within G2 is defined

as:

containment(G1, G2) = |mcs(G1,G2)|
|G1|

2.3.3 Similarity Detection Algorithms

Algorithms for identifying similarity between malware can be applied directly on the source

or binary code. More common, however, is to first convert the malware code to a more

convenient representation or characterize the code with features such as string sequences

or graphs and then compare them. Four primary algorithms for malware similarity analysis

are discussed in the following sections.

n-gram-Based Analysis

Comparing sets of n-grams of two document is a popular technique for detecting their

similarity. This basic method has been used for plagiarism detection of text documents

and source code, for clone detection of programming statements [69], and for birthmark

detection of executable code.

Wong and Stamp [88] presented a simple detection method based on a similarity index

and a detector based on hidden Markov models for metamorphic viruses. First, they em-

ployed the method in [47] which extracts the sequences of opcodes from two metamorphic
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variants, compares two sequences by matching all subsequences of trigram opcodes regard-

less of order, and computes similarity scores by determining the fraction of opcodes that

are covered by line segments in matching graph. Then they trained hidden Markov mod-

els by using the assembly opcode sequence of viruses of metamorphic families to detect

virus variants from same family. The results suggested that both of these methods detect

all testing metamorphic viruses accurately.

Figure 15: The n-gram features extracted from malware [74]

Walenstein et al. [74] described a method for searching database of malware for a

match. For searching for previous malware that match a new variant, they applied a feature

comparison approach where n-gram or n-perm features are extracted from mnemonic se-

quences of assembly instructions as shown in Figure 15. n-perms are exactly like n-grams

except that the ordering of the characters is not considered during the matching. Similarity

score between n-gram or n-perm feature vectors of malware are calculated using Cosine

similarity with inverse document frequency.
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API-Based Analysis

Programs interact with the system on which they run through a set of standard library types

and calls. There are several birthmarking algorithms that use standard library functions as

signatures. The main idea is that the way a program uses the standard libraries or system

calls is not only unique to that program but also difficult for the adversary to forge. The

work in [67] is an example for using API sequences to measure similarity between malware.

Han et al. [29] proposed a detection method for malware variants by measuring similar-

ity between control flow graphs related to API calls. The proposed method first extracts API

calls related graphs from malware samples and stores it in a database. Then, the API call

related graphs corresponding to the suspicious files are extracted. In order to compare with

the existing malware graphs, they used Jaccard Index [78] to measure the similarity. This

method was evaluated on 200 malware samples from different families and the obtained

results verified that API call related control flow graphs are different even if corresponding

malware variants have identical API calls.

Shankarapani et al. [67] presented two general malware detection methods: Static An-

alyzer for Vicious Executables (SAVE) which uses API call sequence for analysis, and

Malware Examiner using Disassembled Code (MEDiC) that uses assembly code for the

analysis. In MEDiC, the authors created a signature for each sequence of instruction based

on a procedure that matches malware with a threshold. In SAVE, they first mapped the

extracted API sequence to a string formed by 32-bit integers. In order to compare the API

sequences of malware, sequence alignment is applied on API sequence strings, and then

three similarity algorithms, including Cosine similarity, extended Jaccard coefficient, and

Pearson correlation [84], are used to measure similarity between sequences. SAVE cal-

culates similarity score using the mean value of the three measures and makes a decision

whether the test file is malware.
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Graph-Based Analysis

A program can be modeled by a graph-like structure. Functions can be represented as con-

trol flow graphs (CFG), dependencies between statements within a function as dependence

graph, and calls between functions as call graphs. The similarity between programs can

then be computed over their corresponding graph representations.

Xu et al. [90] proposed a similarity computing method between malware variants us-

ing function-call graphs and their opcodes. The function matching process uses function

opcode information and function-call graph to locate all of the common function pairs be-

tween two function-call graphs. This process consists of four steps: matching external

functions that have identical name, matching the local functions that call the same ex-

ternal functions, matching the local functions based on their opcodes, and matching the

local functions according to their matched neighbors. The authors also used the maximum

common vertices and edges to compute the similarity between two function-call graphs

of malware with all matched vertices obtained in function matching. The limitation of

this method is that the incomplete function-call graph constructed from encrypted malware

makes the similarity score incorrect.

Runwal et al. [65] presented a method for measuring similarity of executables based

on opcode graphs. This technique was applied to detect metamorphic malware and the

obtained results show that it outperforms the detection method based on hidden Markov

models in [88]. For construction of opcode graphs, this technique extracts the opcode se-

quence in which each distinct opcode is a node in a directed graph. The directed edge is

then inserted from a node/opcode to each possible successor node/opcode with a weight

that represents the probability of the successor node. Based on constructed opcode graph,

Runwal et al. mapped the weighted directed graphs to the edge-weight matrices and com-

puted similarity score between executable files using the following formula:
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score(A, B) = 1
N2

 
N�1P
i,j=0

| aij � bij |
!

where A = {aij} and B = {bij} are the edge-weight matrices corresponding to the executable

files.

Tree-Based Analysis

A program in source form is hierarchical, i.e., tree-structured. Nested statements in struc-

tured programming languages form trees, classes without multiple inheritance form a tree

in languages, and operators and operands in an expression form a tree. An abstract syn-

tax tree (AST) is a preferable program representation when transforming a program code

into a form that is close to source. The AST abstracts away from any parsing process and

only keeps the information that is in the original program. Revolver [34], proposed by

Figure 16: Data structures used by Revolver [34]

Kapravelos et al., is a tool to identify similarities between malicious JavaScript programs

and to interpret their difference in order to detect evasions. Revolver extracts ASTs of the

JavaScript code contained in benign and malicious web pages to generate AST representa-

tions that are later transformed into a normalized node sequence. As shown in Figure 16,

the normalized node sequence is the sequence of node types obtained by performing a pre-

order visit of the tree, which is used for sequence summary by storing the number of times
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each node type appears in the corresponding AST. The similarity measurement used by Re-

volver is based on the pattern matching algorithm proposed by Ratcliff et al. [60] which can

find the longest contiguous common subsequence(LCCS) between two node sequences.

Curtdinger et al. [24] presented Zozzle which is a detector for JavaScript malware using

classification of hierarchical features of JavaScript abstract syntax tree. Zozzle used naïve

Bayesian classifier that is trained with extracted features including the context in which it

appears and the text of the AST node. To limit the number of features and improve the

performance of the classifier, Zozzle extracts features only from the nodes of expressions

and variable declarations in the AST, and uses the �2 statistic to perform feature selection.

Curtdinger et al. evaluated Zozzle using 1.2 million pre-categorized code samples and their

results suggest that it is fast and accurate tool for detecting JavaScript malware.
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Chapter 3

Automated Malware Similarity Analysis

In this chapter we present a framework for automated malware similarity analysis. As

shown in Figure 17, the proposed framework includes four main components: (i) a pre-

processing module, (ii) a function-level similarity detection module, (iii) a similarity scor-

ing module for the whole maleware sample, and (iv) a visualization module. First, the

pre-processing module disassembles the binary samples into assembly files and generates

functions with imported APIs. The similarity detection is performed on abstract function

regions to determine the similarity between functions. Then, similarity scores between

samples are calculated based on the proposed similarity metric. Finally, the interactive vi-

sualizer is used to illustrate the relationship between cloned functions of analyzed samples.

3.1 Pre-Processing Module

The pre-processing step consists of disassembling the binary samples, normalizing function

regions, and recognizing respective imported APIs.
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Figure 17: Overview of the proposed framework

3.1.1 Disassembly

We use an interactive disassembler, namely IDA Pro [2], to handle the disassembly pro-

cess of all input malware samples with the aid of a plug-in that we developed to facili-

tate the automation of the rest of the process. Since IDA Pro does not involve unpacking

functionality, we expect that every malware sample is unpacked before submission to our

framework. An assembly language instruction usually consists of a mnemonic followed

by a sequence of operands. The mnemonic represents the specific operation performed by

the instruction. The operands can be partitioned into three categories: memory references

(e.g., "[edi+4Ch]"), register reference (e.g., "ebx"), and constant values (e.g., "20h"). The

developed plug-in extracts the instructions of all functions in each analyzed sample. The

normalization process is applied to function regions which are sequences of instructions

inside the disassembled functions.
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3.1.2 Normalization

The work in [61] does not involve a normalization step prior to applying fuzzy hashing [39]

on function regions. The lack of this process makes it somewhat difficult to recognize the

similarity between two function regions that might be identical except for some of the used

operands. Overcoming this problem is particularly important since, as described in chapter

2, malware writers can apply obfuscation on assembly instructions to avoid detection by

simple signature-based anti-malware. For example, register in the operands of an assembly

language instruction can be substituted with equivalent ones. In order to account for this

situation, we normalize the instructions before applying similarity detection on function

regions.

Reg32
eax ebx ecx edx esi edi esp ebp eip eflags
Reg16
ax bx cx dx si di sp bp ip flags cs ds
ss es fs gs
Reg8
ah al bh bl ch cl dh dl
Mem
[0x805b634] [ebx] [bp+598h] [esp+24h+var_24] etc.
Value
0 3 455h 1F0001h etc.
Dummy
word_4022EF dword_44475B sub_444808
loc_4456FE locret_40109E unk_402564 etc.

Table 7: An example for operands normalization

One basic method for code obfuscation is to insert random number of "nop" instruc-

tions in the program’s assembly code. For this reason, the first step in the normalization

process is to discard the "nop" instructions. Then, we normalize the operands of the other

mnemonics on the basis of three categories including memory, constant value, and register.
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For memory references, we normalize them to Mem which abstracts specific memory refer-

ences information. For constant values, Value is used to substitute for them. For registers,

the abstract replacement depends on the number of bits they can hold. Accordingly, Reg8,

Reg16, and Reg32 are used to substitute for the registers. In addition to general operands,

there are dummy names that are used to denote subroutines, program locations and data

which are automatically generated by IDA Pro [2]. We generalize these names to Dummy.

Table 7 illustrates some examples for our operand normalization process. Figure 18 shows

an example for a function region before and after the normalization step.

(a) Before Normalization (b) After Normalization

Figure 18: An example for a normalized function produced by our system

3.1.3 API Class Recognizer

Windows APIs are crucial to any program, including malware, which runs on Microsoft

Windows systems. Without APIs, hackers need to write tremendous lines of codes in mal-

ware. Examination of imported APIs is a basic component in malware analysis which
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provides significant clues about malicious activities performed by the malware. The an-

alysts can gain useful information about the functionality of malware by studying the list

of imported APIs. For example, GetTickCount is a very common API used for detecting

debuggers. LookupPrivilegeValueA and AdjustTokenPriviledges are generally used for ac-

cessing the Windows security tokens. RegSetVauleExA, RegCreateKeyA and RegCloseKey

are used to access and modify registry keys.

API Classes API Examples
Cryptography EncryptFileA, CryptGenKey
Hashing CryptCreateHash, CryptSignHashA
File DeleteFileA, fwrite
OSInformation GetUserNameA, GetComputerNameA
String lstrcmpA, _stricmp
Registry RegDeleteKeyA, RegOpenKeyA
Winsock GetAddrInfoW, gethostname
WinINet InternetCreateUrlA, InternetOpenW
Directory GetSystemDirectoryA, RemoveDirectoryA
Memory LocalAlloc, memcpy
Bitmap BitBlt, LoadBitmapA
Thread CreateThread, ExitThread

Table 8: Examples of API classes

The API class recognizer is designed to determine probable malicious operations by

functions in malware. This process provides extra information that indicates similarity be-

tween behaviors of functions in order to augment the other syntactic similarity measures.

Based on previous experimental result [54,55] on top maliciously used API calls and basic

API classification [30], we manually clustered 2231 APIs that are frequently used by mal-

ware into 64 groups according to their functionality and malicious usage. Table 8 provides

an example for our API classification. Based on basic imported APIs that are identified by

IDA Pro, we implement an API class recognizer as a plug-in script for IDA Pro in which

generic functions are automatically renamed with the corresponding API class names. The
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disassembled function regions are labeled with the class names of their corresponding im-

ported APIs. The function format after normalization and API labeling is shown in Table

9 where the malware sample A is dissected into five function regions donated by FA�1

to FA�5. After pre-processing and normalization, each abstract function region contains

recognized API classes and normalized instructions.

Abstract Function Regions of Malware Sample A
FA�1(None){normalized instructions}
FA�2(APIclass2,APIclass3){normalized instructions}
FA�3(APIclass1){normalized instructions}
FA�4(None){normalized instructions}
FA�5(APIclass1,APIclass2,APIclass4){normalized instructions}

Table 9: The format of abstract function regions

3.2 Similarity Detection at the Function Level

We have two approaches to find similar functions among malware samples: exact matching

of abstract function regions, and inexact matching of feature vectors that represent struc-

tural characteristics of the abstract function regions.

3.2.1 Exact Matching

The exact matching method, adapted from [13], identifies the exact cloned function pairs

among the abstract functions by comparing the normalized assembly language instructions.

Two functions are considered as exact match if all normalized instructions in the two func-

tion regions are identical and follow the same sequence. Functions that have identical hash

values are efficiently detected by this exact matching module.

Algorithm 1 illustrates the process of exact matching. At first, the algorithm initializes

an empty hash table H for each malware. Each entry in the hash table contains a hash value
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v with a corresponding unique identifier of the function. In Lines 3-8, the algorithm iterates

through each abstract function region f , generates a hash value v and adds v to H for the

corresponding abstract function region. In Lines 9-12, the algorithm iteratively compares

the hash values in each hash table and builds an array of pairs of exact matching functions,

denoted by EF .

Algorithm 1 Exact Matching on Abstract Fucntion Regions (EMAFR)
Input: Set of abstract function regions in malware1 F1

Set of abstract function regions in malware2 F2

Output: Set of exact abstract function region pairs EF
1: EF  ;;
2: H1  ;;
3: H2  ;;
4: foreach function f 2 F1 do
5: v hash(f ); // hash() computes hash value v for function f
6: H1(f ) H1(f ) [ v;
7: foreach function f 2 F2 do
8: v hash(f );
9: H2(f ) H2(f ) [ v;
10: for i = 0 | H1(f ) | do
11: for j = 0 | H2(f ) | do
12: if vi == vj
13: EF  EF [ (fi,fj);
14: return EF ;

3.2.2 Inexact Matching

Hackers may modify codes in malware functions to avoid signature-based detection or to

add new malware functionalities. Inexact match aims to find cloned function pairs by com-

puting a similarity score between feature vectors that represent their structural properties.

The similarity score between the pairs of function regions is then used to derive similarity

between malware samples.

The first step of inexact matching is to collect features and build a feature vector for
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each abstract function region. The features used to characterize abstract function regions

can be classified into five categories. The first category includes all distinct mnemonics

of instructions. The second category includes types of operands. The combination of the

mnemonic and the type of the first operand is the third category. The fourth category

includes the combinations of the type of the first and second operands. The last category

includes the combinations of the mnemonics and the type of the first and second operands.

Algorithm 2 shows how to collect possible features from abstract function regions.

Algorithm 2 Feature Collection for an Abstract Function Region (FCAFR)
Input: Abstract function region F
Output: Set of features S
1: S  ;; // initialize unique set of feature
2: foreach instruction ins in function F do
3: S  S [ mnemonic(ins); // mnemonic() extracts mnemonics
4: foreach operand o 2 operands(ins) do
5: S  S [ type(o); // type() get type of operand
6: ops operands(ins); // operands() extracts operands
7: if length(ops) � 1 then
8: S  S [ (mnemonic(ins), type(ops0));
9: if length(ops) � 2 then
10: S  S [ (type(ops0), type(ops1));
11: S  S [ (mnemonic(ins), type(ops0), type(ops1));
12: return S;

As depicted in Figure 19, the normalized function is scanned by sliding a fixed length

window. For each region contained inside the sliding window, we count the number of

occurrences of each feature and construct a feature vector for the abstract function region

as shown in Algorithm 3.

Throughout our experiments, we set the default size of the window to 5, which is

smaller than the size of most analyzed functions in our malware dataset. Functions with

less than 5 lines are ignored when calculating the overall similarity between large mal-

ware samples. The reasons for skipping these short functions is that the similarity scores
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Figure 19: A sliding window applied to a function

between the functions with very few number of lines are relatively high because the gen-

erated feature vectors from these functions tend to be almost the same, which can affect

overall scores between samples.

Algorithm 3 Construct Feature Vector (CFV)
Input: Abstract function region F

Window size w (default 5)
Stride s (default 1)

Output: Feature vector V
1: S  FCAFR(F ); // see Algorithm 2
2: V  {0}; // initialize V with size kSk
3: if length(F ) � w then
4: for k = 0 to length(F ) - w do
5: currentRegion F[k,k+w);
6: foreach feature f in currentRegion
7: V  V + Count(f ); //Count() computes feature frequence
8: k k + s;
9: return V ;

After generating feature vectors for abstract function regions, the inexact matching

module calculates the Bray-Curtis dissimilarity [75], dBCD, which is a modified Manhattan
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measure [83]. Based on our experimental results, this similarity function can better mea-

sure the actual relationship between functions. The similarity score between two functions

is then given by 1-dBCD, where the outcome is neatly bounded in [0,1]. More precisely,

given two vectors, X = (x1, x2, ..., xn) and Y = (y1, y2, ..., yn) constructed from two abstract

function regions, the Bray-Curtis dissimilarity and similarity score between them can be

calculated as follows:

dBCD(X,Y) =

n�1P
k=0

| xk � yk |

n�1P
k=0

(xk � yk)

(1)

SimilarityScore(X,Y) = 1� dBCD (2)

3.3 Similarity Scoring between Malware Samples

In this step, we aggregate similarity scores calculated on the function level (for functions

contained in two malware samples) to evaluate the similarity between the two samples. This

process starts by pairing functions from the two samples using the results obtained from

the function similarity matching explained in the previous sections. Then we calculate an

overall similarity score between the two malware samples.

3.3.1 Pairing of Similar Functions

Given two malware samples, A and B, with N and M functions, respectively, the number of

compared function pairs is N⇥M. Thus, N⇥M similarity scores can be generated from the

function similarity detection module as explained in the previous section. High similarity

scores between functions (e.g., above 0.5) may indicate that these functions share similar

pieces of codes but does not always justify that the two functions should be paired together
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when comparing the similarity between malware samples. For example, in some situations,

one function inside sample A may have a large similarity score to several functions inside

malware sample B. Using simple measures such as taking the average of all function level

pair-wise scores as a measure of the similarity between the two samples does not lead to

good results because such scoring can make similarity between samples high even if they

are not similar. In order to reduce the influence of these similarity scores on concluding

similarity between samples, we first filter similarity scores between functions by selecting

the appropriate function to be paired together. If two samples are malware variants, they

share similar or identical functions and therefore these functions can be detected as ap-

propriate function pairs in which two functions have mutually maximum similarity score

among all function comparisons. In other words, similar functions belonging to two mal-

ware variants are detected in our selection process by identifying the best matching function

pairs as illustrated by the following example.

Figure 20: An example of functions comparisons

Example 1 Figure 20 shows a comparisons between three functions of sample A and

three functions of sample B. The similarity scores between these functions are calculated

using the inexact matching algorithm and given in Table 10. In Figure 20, the 3⇥3 function

comparison pairs are indicated by the dotted lines with the corresponding similarity scores.
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Table 10: An example of similarity score matrix

Among the three comparisons between FA�1 and the other three functions of sample B, the

maximum score is 82.3% and corresponds to FB�1. Among the three function comparisons

between FB�1 and the other three functions of sample A, the maximum score is also 82.3%,

and corresponds to FA�1. Thus, FA�1 and FB�1 are selected to be paired together when

calculating the overall similarity between A and B as indicated by the solid line in the

figure. Following same process, the pair (FA�2, FB�3) is selected. As shown in Table 10,

we can transform the 3⇥3 similarity scores to a matrix in which the similarity scores of the

selected function pairs are marked at the intersection of red rectangles and the intersection

of blue rectangles. The score for the selected pair in the intersection area of rectangles of

the same color is higher than any score in the corresponding row and column. If the above

function pairing approach leads to a situation where one function is included into more than

one function-pairs, our algorithm proceeds by choosing only one pair from these function

pairs at random.

3.3.2 Similarity Measures between Malware Samples

The objective of this process is to determine similarity between samples using scores cal-

culated by inexact matching on the function level. We start by calculating some measures

that indicate that containment relationship between the analyzed sample pairs.
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Containment Score This score reflects the reuse of the code of one sample into the

other. For example, given two malware samples A and B, the containment score for A,

ContainmentScoreA, is used to reflect how much code of A is used in B. With similarity

scores of selected function pairs, we can use the following formula to calculate Contain-

mentScore for A and B with n selected function pairs:

ContainmentScoreA =
nX

k=1

Sk ·WAk
(3)

ContainmentScoreB =
nX

k=1

Sk ·WBk
(4)

where Sk represents the similarity sore of the kth selected function pair. WAk
and WBk

donate the weight values for the function of A and B in the kth selected pair respectively.

Here, the weight value is proportional to the size of the corresponding function divided by

the total size of functions of the sample. In this way, longers functions contribute more to

the containment score.

Similarity Score

Based on the containment score calculated for each sample, the last step of similarity

scoring is to derive a single numerical value which determines the overall similarity be-

tween samples. Since the containment score is influenced by the size of the sample, taking

the average between the containment scores of two samples with very different number of

functions does not accurately reflect their similarity. Instead, we use weighted average of

the containment scores using the following formula:

SimilarityScoreAB =
ContainmentScoreA ·NB + ContainmentScoreB ·NB

NA +NB
(5)

where NA and NB represent the number of functions of sample A and sample B, respec-

tively.
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3.4 Visualization Module

To facilitate the use of the developed framework, we implemented a web interface that

can be used to show all the data generated by the three analysis modules and visualize the

relationship between analyzed samples. Malware samples can be uploaded via a Drop-Box

in the web interface to perform similarity analysis. The similarity results are stored in a

database that allows the analysts to query for a specific sample or function and retrieve a

list of similarity scores. Finally, using the information stored in the graph database, we

visualize relationships between similar functions of the samples in the system.

3.4.1 Querying Similarity Results

Figure 21: Main page of the system GUI

As depicted in the example shown in Figure 21, after pre-processing of submitted sam-

ples, the basic information including names of samples, MD5 hash values for samples,

number of functions, and the creation times of the samples will be shown in the page of
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samples information. All the information regarding functions of each sample can be ex-

amined by clicking the name of the sample on the web page. The page of malware sample

detail provides number of line for each function and the API class name identified by the

API Class Recognizer. The analysts can also access the original and normalized instruc-

tions of the corresponding functions as shown in Figure 22.

Figure 22: A snapshot of the original and normalized function

The containment scores and similarity scores between samples are listed on the page

of malware samples similarity in descending order of the similarity score. The similarity

scores between individual functions may in many cases be more valuable to the analyst

than the overall similarity score between samples. The function similarity details can help

analyst identify which functions are similar in the two samples. The function pairs with

inexact matching scores higher than a prespecified threshold (default is 70%) are listed

in descending order and the exactly matched ones are marked in the list. The name of

the function in the listed pairs can be clicked to access the original instructions of the

corresponding function.
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3.4.2 Relationship Graph for Malware Samples

We not only store all sample information and similarity detection results in traditional

database, but also upload this data to a graph database (Neo4j [3]) that is used to visu-

alize the relationships between samples and functions. The analysts also can locate specific

functions with high similarity scores, or functions importing unusual API classes by using

existing functionality of the graph browser and the underlying graph query language.

As indicated in Table 11, we use three labels for the nodes of samples, the nodes of

functions and the nodes of API classes in the graph. There are three types of relationship

between nodes defined in the associated graph. The PART_OF label represents the rela-

tionship between the sample and the function that belongs to it. The CALL label represents

the relationship between the function and the API class imported by it. The Sim_Score

label represents the range of similarity score between similar functions.

Node labels
Sample Function API

Relationship types
PART_OF CALL Sim_Score

Table 11: Node labels and relationship types of graphs
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Figure 23: An example of a graph showing relationships between two samples

The Relationship Visualizer can be used to show all nodes and relationships between

nodes in the graph database. For example, using the result of similarity analysis on two

malware samples, the nodes of samples and functions are constructed with different colors

and the relationships with labels showing the similarity scores are linked between similar

functions. As shown in Figure 23, the exact similarity score between any two functions can

be displayed by clicking the corresponding link between them.
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Figure 24: An example of a graph showing relationships between eight samples

When performing similarity analysis on samples with a lot of functions, we can hide

the functions without similarity relationship by using graph query language. In Figure 24,

only the nodes of functions that have similar functions to match and the nodes of samples

that the functions belong to are shown. Using the web interface and the graph application,

the analyst is able to locate the functions shared by malware variants and perform manual

analysis on assembly code to understand the common malicious functionality of malware

variants.
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Chapter 4

Experimental Results

In order to evaluate the effectiveness of our proposed framework, we performed three ex-

perimental studies using metamorphic virus families created by malware generators, mal-

ware variants downloaded from the Internet, and two botnet Trojans. In particular, in the

first experiment, our framework is applied to a metamorphic malware detection problem in

which metamorphic viruses created by the malware generators are detected and analyzed.

In order to evaluate the ability of the developed framework to measure the similarity be-

tween real-life malware variants, we tested it against the malware mutant set used in [90].

Finally, in the third experiment, we used our framework to analyze and study the similarity

between two complex botnet trojans, namely Zeus and Citadel.

All our experiments were performed on a virtual machine running 32-bit Windows XP

with 4GB of RAM. IDA Pro 6.1 was utilized during the automatic disassembly process

used in our framework. We used PEiD [70] to check whether the malware samples were

packed. If so, several tools, such as UPX [49] and Immunity debugger [31] were used to

unpack the analyzed malware samples.

It should be noted that the disassembly process of our framework relies on IDA Pro to

do automatic function identification and this may not always work correctly. The incom-

plete or incorrect disassembly of malware samples may have an effect on the number of
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recovered functions and their associated assembly instructions.

4.1 Metamorphic Viruses Detection

The metamorphic virus generates copies of itself using code obfuscation techniques. Tra-

ditional signature detecting methods cannot easily detect obfuscated virus variants. In this

test, we apply our framework to the metamorphic virus detection problem. The metamor-

phic viruses used in this experiment are created by several malware generation tools and

some of these viruses have been active in the wild on real computer systems.

To detect metamorphic viruses, we first need to choose a similarity-scoring threshold

which we obtained as follows. First, we evaluate the range of similarity scores for the

metamorphic virus families by calculating the similarity scores for all pairs of the virus

variants. Then we evaluate the range of similarity scores for the metamorphic viruses

versus a set of representative benign files by calculating the similarity scores for all pairs.

Finally, we determine the threshold by analyzing the obtained experimental results. If the

two distributions of similarity scores in the two ranges are disjoint, namely the lowest score

in the first range is higher than the highest score in the second range, any threshold between

these two extremes can be used for ideal detection without false positives or false negatives.

In addition, we also performed similarity analysis between benign files and between viruses

from different metamorphic families.

4.1.1 Dataset

The families of metamorphic viruses used for testing were produced using the Next Gener-

ation Virus Creation Kits (NGVCK), Second Generation Virus Generator (G2), and Virus

Creation Lab for Win32 (VCL32) as following:

• Next Generation Virus Creation Kits 20 virus variants generated by NGVCK.
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These viruses can infect Win32 PEs and Win32 DLLs. An obfuscation technique

is used in this creation kit to generate variants that are different in structure and

assembly code. The viruses of this family are shown to be the most metamorphic

among the viruses generated and tested in [88].

• Second Generation Virus Generator 20 virus variants generated by G2 that was

written by the underground group Phalcon-Skism. These viruses are COM/EXE

infectors and body-polymorphic which makes them look different while keeping the

same functionality.

• Virus Creation Lab for Win32 20 virus variants generated by VCL32 that was

created by the group "29A". These viruses specifically infect Windows files and are

claimed to be metamorphic. The assembly codes of each virus are different because

of the generator options. Changing the configuration of this generator can add or

delete functions from virus, which is a challenge for our similarity detection that is

based on similarity between functions.

To obtain the binaries corresponding to the above virus samples, we assembled their

.asm files using Borland Turbo Assembler, TASM 5.0. We randomly selected 10 Cygwin

utilities files as representatives of benign files throughout this experiment. Some of these

Cygwin files have also served as representative of benign programs in previous works in-

cluding [10, 64, 88].

4.1.2 Analysis Results

First, we applied the similarity analysis on the family of NGVCK viruses, which was re-

ported as the most metamorphic family among the ones tested in [88]. Compared to the

other two metamorphic families, the viruses of the NGVCK family have a far lower degree

of similarity. Figure 25 (a) shows the similarity results where the red points correspond
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to the similarity scores between virus comparison pairs. The similarity scores between

virus-benign pairs are represented by the blue points. Unlike G2 and VCL32, NGVCK

viruses also differ significantly in size which is a result of inserting random number of junk

instructions in the virus body. We also notice that the maximum similarity score between

NGVCK viruses, which is 84.47%, is less than any maximum scores for the other two virus

families. The maximum similarity score between the NGVCK virus family and benign files

is 37.71%. Thus we can take this minimum score from the virus pair comparisons and set

it as the threshold without any false positive detection.

Figure 25: Similarity scores between metamorphic viruses and benign programs

The results in [88] showed that, among the consider generators, the G2 family has

the highest average similarity score between its variants. The experimental results using

this virus family is shown in Figure 25 (b). The G2 viruses are almost identical to one

another and the similarity scores are all above 95%. We can see that the separation between
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virus comparison pairs and virus-benign comparison pairs is largest among these three

metamorphic families. The G2 viruses can be detected with no false positives or false

negatives using our framework.

The last tested virus family is VCL32. As shown in Figure 25, while some of the

similarity scores of virus comparison pairs within this family are higher than 90%, the

minimum score is about 44.17%. However, if we take this score as the detection threshold,

all the virus variants can still be detected with false positive rate of 0%.

In addition to the above experiments, we also measured similarity between the represen-

tative benign files.The maximum and average score of benign comparison pair is 44.69%

and 16.56%, respectively. We assumed that the benign files belong to different families

based on their functionalities. Since they are Cygwin utilities files, it is possible that they

have common functions. However, only three pairs of files have similarity higher than 30%

and there are identical functions detected in each of these pairs such as the functions related

to DLL (Dynamic-link) library and CRT (C run-time) library.
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Figure 26: Box plot of similarity scores between virus families
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After the experiment of detecting metamorphic virus, we apply our framework to dis-

tinguish the different metamorphic virus families by calculating similarity score between

viruses of different families and setting a threshold. The distribution of similarity scores

between virus families is shown in Figure 26, where the red point represents the average

similarity score for each virus family comparison and the horizontal black line indicate the

median score. The color box goes from the 25th percentile to the 75th percentile of the

similarity scores in each virus family comparison (this is known as the inter-quartile range

(IQR) [77]). The vertical black lines start from the edge of the color box and extend to

the furthest score point that is within 1.5 times the IQR. If there are any score points that

are past the ends of the vertical black lines, they are considered outliers and displayed with

dots. The minimum, maximum and average similarity scores in Figure 26 are summarized

in Table 12. We can see that the average similarity scores between viruses of the same fam-

ily are significantly higher than the ones between viruses of different families. If we set the

minimum sore from the VCL32 virus pair comparisons as the threshold, 2% of NGVCK-

VCL32 virus pair scores become higher than the threshold. The reason for this is that very

few comparisons between functions of NGVCK and VCL32 viruses have similarity score

between 50% and 60%, which contributes the similarity score between viruses in these two

families.

% NGVCK vs.
NGVCK

G2 vs.
G2

VCL32 vs.
VCL32

NGVCK vs.
G2

NGVCK vs.
VCL32

VCL32 vs.
G2

Min 59.55 95.54 44.17 3.97 9.71 5.62
Max 84.47 99.79 97.92 14.14 48.10 18.23

Average 70.76 97.85 72.82 11.27 26.30 8.62

Table 12: Similarity scores between families of metamorphic viruses

Based on the results reported in [88], the NGVCK viruses use different types of code

obfuscation techniques. We selected three of the NGVCK viruses for in-depth analysis and

the relationship between them is shown in Figure 27. Our framework detected 6 functions
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shared by these three virus samples which is depicted by the circle in the middle of dia-

gram. Between any two viruses, there are also function pair comparisons with similarity

score higher than 80%. Two function pair comparisons between sub_402880 and sub_-

4457E2, and between sub_403080 and sub_4454C0 are illustrated in Figure 28 and Figure

29, respectively. Here, the function names such as sub_402880 are automatically gener-

ated by IDA Pro during the disassembly process. The analyst can rename these functions

with other strings. The similarity scores between these two pairs are 84.42% and 79.13%,

respectively.

Figure 27: Visualization of realtionship between three NGVCK viruses

Both function sub_402880 and function sub_4457E2 are used for file alignment during

the virus infection process. The instructions of sub_4457E2 with red rectangle are junk

instructions that are not related to the function’s outcome and their only purpose is to make
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Figure 28: Comparison between sub_402880 and sub_4457E2

the virus variants look different. The function sub_4457E2 replaces the instruction of sub_-

402880 "sub edx, edx" with the instruction "mov edx, 0"; both instructions result in clearing

the register edx. Both sub_403080 and sub_4454C0 are used to get entry point in memory

during the infection procedure. We can see that the first three instruction regions, a, b, and

c, apply the technique of register swapping to make operands different among functions.

The instruction regions in comparison c are both equivalent to the instruction "mov eax/edx,

1". In the last comparison region , d, the "mov register, memory data" is equivalent to "push

memory data" followed by "pop register".

Figure 29: Comparison between sub_403080 and sub_4454C0
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4.2 Measuring Similarity between Real-life Malware Vari-

ants

The majority of malware floating around are variants of already known malware. Mal-

ware writers reuse their old malicious code in the new malware variants, which is easier

compared to trying to developing new effective, mostly bug-free malware from scratch.

Different from the experiment reported in the previous section, the malware variants con-

sidered in this experiment are collected from the Internet rather than generated by us. In

particular, in this section, we evaluate our framework using five families of malware vari-

ants that were downloaded from VX Heaven [6] and compare similarity results with the

previous work reported in [90]. The experiment consists of computing similarity between

malware variants and distinguishing the different malware families.

4.2.1 Dataset

In order to validate the performance of the proposed technique on a large variety of mal-

ware, we use different types of malware for testing including viruses, worms, backdoors,

trojan horses and rootkits. The information related to each malware family can be briefly

summarized as follows:

• Virus.Sality We use 6 malware variants that belong to Sality [85], which is a fam-

ily of polymorphic viruses that spread by infecting Windows executable files. A

computer infected with Sality becomes a bot that has capabilities of relaying spam,

infecting web servers, and stealing sensitive information via peer-to-peer networks.

Sality variants evolve with new malicious functionalities such as rootkit and Trojan

components, which makes Sality one of the most effective and resilient malware to

date [27]. The number of functions in variants of Sality disassembled by IDA Pro

ranges from 157 to 220 functions.
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• Virus.Champ 10 viruses are selected from Champ family [5], which is a dangerous

family of non-memory resident parasitic polymorphic Win32 viruses which spread

by infecting executable files. The number of disassembled functions in the tested

variants did not change a lot and ranged from 45 to 47.

• Email-Worm.Klez The Klez family [79] used for testing includes 9 variants. Klez is

an Internet worm which is capable of spoofing email addresses and launching auto-

matically when a victim previews an e-mail containing it. Klez spawned a significant

number of variants with increasingly clever self-distribution mechanisms. For this

family, the number of functions, identified by IDA Pro ranges from 174 to 239.

• Backdoor.DarkMoon 8 variants of DarkMoon [1] are used for evaluating our method.

DarkMoon is a popular remote access Trojans (RAT) used in targeted attacks such as

distributed denial of service (DDoS) attacks. These DarkMoon variants open back-

door on different ports on the compromised computers and steal personal informa-

tion via keylogging. Among these five malware families, DarkMoon variants have

the largest number of statically disassembled functions, which ranges from 301 to

399 functions.

• Rootkit.KernelBot [4] 8 variants of this rootkit. These programs are used to hide

Windows registry entries and processes with the purpose of camouflaging malicious

programs running on compromised computers. The number of functions recovered

by IDA Pro ranges from 13 to 19. This small number of recovered functions might

not be the actual number of functions within this rootkit but rather the ones that IDA

Pro was able to recover because the other ones were obfuscated with techniques that

IDA Pro was not able to handle.
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4.2.2 Analysis Results

We first compute similarity between variants belonging to Sality family to test our method.

In Table 13, the similarity matrix shows the similarity scores between each one of the 15

pairs of these variants. Throughout the results presented in this section, the values (100%)

in the main diagonal denote the cases when the variants are compared with themselves.

The experimental results using our method are shown below the main diagonal, and the

similarity scores above the main diagonal are results reported in [90]. Compared to these

previous results, the maximum score in our proposed method, between variants Salitya

and Salityc is 98.89% which is lower than 99.32% reported in [90]. However, our method

improves the minimal score between Salityc and Salityf , from 53.75% to 67.24%. The

average similarity score in our method is 80.85%, which is higher than 76.44% reported

in [90] which shows that our method performs better for this malware family.

% Salitya Salityc Salityd Salitye Salityf Salityg

Salitya 100 99.32 99.31 66.46 60.61 81.73
Salityc 98.89 100 98.87 65.96 53.75 87.79
Salityd 96.57 96.34 100 68.02 60.48 83.55
Salitye 68.78 68.6 70.2 100 89.70 66.46
Salityf 67.36 67.24 68.53 96.88 100 64.62
Salityg 88.37 88.34 86.95 75.46 74.17 100

Table 13: Similarity scores between Sality variants

Table 14 shows the similarity scores between variants of the Klez family. The Symbol

"N/A" in the table indicates that the corresponding variant pair is not compared in [90]

and hence its corresponding score is absent. In the common 16 variant comparisons, most

similarity scores are higher than 90%, both in the previous work and in ours. The minimal

and average score computed by our method are 87.85% and 94.59% which are higher

than 79.73% and 93.40% computed in the previous work. We also applied our method to

compare between other variants which are not covered in previous work. The similarity

scores between Klez variants (a-d) and Klez variants (f-j) are lower than the scores of the
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common comparisons and the minimal score is 68.86%. This is probably because variants

from Klezf and Klezj have more new functions updated by the malware author as compared

to previous versions. Based on the gap between similarity scores, this family can be split

into two branches, one containing Klez variants a, b, c, d and a second one with f, g, h, i, j,

which is similar to the conclusion reported in [17].

% Kleza Klezb Klezc Klezd Klezf Klezg Klezh Klezi Klezj
Kleza 100 94.40 99.35 79.73 N/A N/A N/A N/A N/A
Klezb 93.32 100 94.84 90.75 N/A N/A N/A N/A N/A
Klezc 96.18 93.65 100 81.45 N/A N/A N/A N/A N/A
Klezd 87.85 90.93 88.13 100 N/A N/A N/A N/A N/A
Klezf 70.04 70.03 69.75 72.8 100 98.98 93.04 93.09 99.10
Klezg 69.61 69.61 69.33 72.4 97.51 100 92.92 92.97 98.98
Klezh 68.86 68.86 68.57 71.18 95.54 95.25 100 99.06 92.81
Klezi 68.87 68.87 68.58 71.19 95.55 95.27 97.82 100 92.87
Klezj 70.04 70.03 69.75 72.8 97.79 97.51 95.54 95.55 100

Table 14: Similarity scores between Klez variants

The similarity scores between the variants of DarkMoon family is given in the matrix

shown in Table 15 where "DM" represents DarkMoon. As mentioned in the above experi-

ments, we also compare the similarity results computed by our proposed method with the

previous results in [90]. The minimal similarity score, between DMab and DMat, is im-

proved by our method from 55.52% to 70.16%. Half of the scores of comparison pairs are

lower than the corresponding results in [90]. However, the average similarity score of the

DarkMoon family is 81.75%, which is higher than 80.75% reported in [90].

Table 16 shows the results corresponding to the mutations of KernelBot rootkit family

where KernelBot is donated by "KB". According to this matrix, all the similarity scores

calculated by our method are higher than 73.87%. For the previous results [90], 4 scores

of variant comparison pair are lower than 50%. Overall, the average similarity score calcu-

lated by our method is 81.88% which is far better than 68.53% reported in [90].
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% DMab DMad DMae DMah DMai DMar DMat DMaw

DMab 100 75.09 78.25 70.34 69.41 75.08 55.52 71.57
DMad 84 100 92.77 92.14 91.42 86.99 74.92 78.01
DMae 83.69 91.76 100 90.86 88.04 92.08 65.57 83.26
DMah 81.51 90.34 91.85 100 95.46 91.36 76.41 76.81
DMai 79.01 87 88.51 89.44 100 94.38 76.54 78.25
DMar 80.09 87.17 89.42 89.62 93.49 100 73.04 82.24
DMat 70.16 72.42 72.79 72.38 75.19 75.2 100 85.10
DMaw 73.17 74.45 76.42 75.01 78.21 79.12 87.65 100

Table 15: Similarity scores between DarkMoon variants

% KBa KBah KBak KBal KBas KBat KBaw KBaz

KBa 100 95.00 65.88 73.91 64.16 63.77 95.89 89.86
KBah 89.5 100 62.92 70.83 48.85 60.27 90.91 84.93
KBak 84.66 77.79 100 91.09 48.42 58.97 63.41 71.79
KBal 84.9 80.81 97.09 100 45.10 54.12 69.66 65.88
KBas 81.15 75.92 78.66 78.6 100 78.48 48.19 53.16
KBat 84.19 74.88 76.44 76.19 81.21 100 60.61 67.74
KBaw 98.61 87.89 80.47 83.24 79.6 82.66 100 87.88
KBaz 88.07 78.62 77.21 74.67 73.87 77.09 88.57 100

Table 16: Similarity scores between KernelBot variants
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The last tested malware family is Champ and the similarity results are shown in Ta-

ble 17, where "C" means Champ. We can see that all scores of Champ variant compar-

isons except the comparisons containing C7001 with the method in [90] are higher than the

scores evaluated by our method. However, the minimal score obtained using our approach,

67.27%, is still higher than 62.58% which is the smallest score computed by the previous

method.

% C C5430 C5447 C5464 C5477 C5521 C5536 C5714 C5722 C7001

C 100 92.40 92.40 97.67 95.29 95.91 94.55 100 97.65 62.58
C5430 91.28 100 100 94.74 97.04 96.47 91.46 92.40 93.49 66.67
C5447 91.28 97.09 100 94.74 97.04 96.47 91.46 92.40 93.49 66.67
C5464 90.97 94.02 94.02 100 97.65 98.25 93.33 97.67 96.47 65.03
C5477 90.86 95.82 95.82 93.66 100 99.41 93.25 95.29 95.24 67.08
C5521 90.86 95.82 95.82 93.66 95.45 100 92.68 95.91 94.67 66.67
C5536 91.09 89.96 89.96 89.71 89.62 89.62 100 93.33 96.93 62.82
C5714 94.46 91.2 91.2 91.3 90.85 90.85 91.74 100 97.65 62.58
C5722 93.34 90.68 90.68 90.79 90.34 90.34 92.83 93.96 100 64.60
C7001 68.01 70.62 70.62 70 70.2 70.2 67.27 67.59 68.51 100

Table 17: Similarity scores between Champ variants

In order to evaluate the ability of the proposed method to distinguish between different

malware families, 150 non-variant pairs are randomly selected from all variants of the five

malware families. Figure 30 shows the distribution of similarity scores of all comparison

pairs, where the x-axis represents the comparison pairs, and the y-axis represents the scores

of each pair. We use red points to donate pairs belonging to the same malware family

and blue points to donate pairs belonging to different families. The results show that all

the similarity scores between variants belonging to different families are lower than 25%.

The maximum score of non-variant pairs is 24.04%. In the comparisons between malware

variants, the minimal score is 67.24%. Compared to the results in [90], there is no overlap

between these two types and hence a threshold can be set to easily distinguish between

these different malware families. The distribution of similarity scores between the five

families is shown in Figure 31, where the red point represents the average similarity score

69





4.3 Botnet Trojans Analysis

Zeus [87] and Citadel [46] are two notorious botnet trojans that infect computers and steal

personal information. The Citadel Trojan is an offspring of the Zues Trojan [72], i.e.,

the Cidatel Trojan has reused some of the source code of Zeus. In this section, we apply

similarity analysis on these two Trojans using our proposed framework.

4.3.1 Dataset

As one variant of the Zeus-family, Citadel shares some of its code with Zeus. The similarity

between these two malware has been analyzed in previous works including [59, 72].

The main features of Zeus can be summarized as follows [37]:

• Steals data in HTTP forms, such as banking account information.

• Modifies the HTML pages of the target websites within the web browser.

• Redirects target web pages to ones controlled by the attacker.

• Uploads files from the victim’s computer.

• Downloads and executes arbitrary programs.

The new features of Citadel can be summarized as follows [46]:

• Uses modified encryption for bot communications with C&C servers.

• Detects if it is running within a virtual machine or sandbox.

• Changes the behavior of domain names resolution on infected computers.

• Covers a much larger range of Windows functions to be hooked.

• Manipulates the infected computer as a bot to participate a distributed denial of ser-

vice (DDoS) attack.
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4.3.2 Analysis Results

Using our framework, the similarity score between these two trojan is evaluated to 74.17%,

which is almost same as the results reported in [72]. We also confirmed the relationship

between the two bots by calculating their containment scores which are 91.52% for Zeus

and 61.75% for Citadel. Compared to the previous results reported in [59] using binary

clone analysis, the same conclusion was reached, namely Citadel copied most of its func-

tions from Zeus and improved itself by adding new functions. 465 unique exact matching

function pairs are detected by our similarity analysis.

Trojan # of Function # of Function with API Class # of Unique API Class
Zeus 2.1.0.1 605 262 45

Citadel 1.3.5.1 845 395 47

Table 18: Statistics extracted from Zeus and Citadel

Table 18 shows the number of analyzed functions, number of functions with API classes,

and the number of unique API Classes for these two Trojans. A function with API Class

is one which imports APIs that are identified by our API class recognizer. The numbers

of unique API classes identified in Zeus and Citadel are almost the same; Citadel has two

additional API classes, Directory and Pipe.

Figure 32 shows the component categories of APIs identified in these two trojans. For

simplicity, we only show the API class whose frequency in these two trojans is higher than

10. The bar graph stacks are proportional to the number of functions labeled with the same

API class. As depicted in the figure, the API classes identified in these two trojans are very

similar. The difference is that Citadel imports more API related to string and file operations.

For String class, Citadel has 74 functions with this label but Zeus only has only 17. For

File class, Citadel has 46 functions with this label while Zeus has 7. The Others consists

of the API classes identified in less than 10 functions, such as Authorization, Hashing, and
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Figure 32: The API classes identified in Zeus and Citadel

Cryptography, and SystemShutdown.

Based on previous analysis of Zeus and Citadel [59, 89], we know that these two Tro-

jans use cryptographic methods such RC4 to encrypt configuration files and stolen data.

Compared to the encryption methods applied in Zeus, Citadel provides better security by

using AES instead of RC4 to encrypt configuration files from the C&C server. In what

follows, we focus on cryptographic functions in these two Trojans.

To identify the functions related to encryption algorithms and locate similar ones be-

tween Zeus and Citadel, we query the functions that have CALL relationship with API class

Hashing and Cryptography and also have similarity relationship with any function of the
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Figure 33: Visualization of cryptographic function pairs

other trojan from our graph database. Based on previous analysis [59], we also add func-

tions that do not call any specific APIs but perform encryption or decryption operations as

shown in Figure 33. The exact similarity scores and API information from Figure 33 are

summarized in Table 19.

Zeus Citadel SimialrityScore API Class
Crypto_Hash_sub_40C1A3 CRY_HAS_MD5 100%(Exact Matching) Cryptography, Hashing

sub_412DA5 Decrypt_String_by_Index 100%(Exact Matching) None
Crypto_sub_41ABF9 CRY_sub_41E934 95.73% Cryptography

sub_40C37A Modified_RC4_Crypt 74.74% String

Table 19: Similarity scores and API classes of selected cryptographic functions in Zues
and Citadel

In Table 19, the functions Crypto_Hash_sub_40C1A3 and CRY_HAS_MD5 in the first

function comparison pair performs MD5 hashing operation. Here, we rename the functions

in IDA Pro to indicate the specific operation performed by them such as HAS, represent-

ing hashing operation. The imported APIs identified and classified into Cryptography and
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Hashing API classes by the API class recognizer consist of CryptAcquireContextW, Cryp-

tReleaseContext, CryptCreateHash, CryptHashData, CryptGetHashParam, and CryptDe-

stroyHash. We can see that Citadel completely copies its MD5 function implementation

from Zeus. There are a few strings in Zeus and Citadel that are stored in an encrypted

format. When the functions read these encrypted strings, they call sub_412DA5 and De-

crypt_String_by_Index to decrypt them and store them in a buffer on the stack. These two

function are also identical among Zeus and Citadel. Crypto_sub_41ABF9 and sub_41E934

are related to Cryptography since they both have imported the API CryptUnprotectData

that usually decrypts and does an integrity check of data. sub_40C37A performs RC4

encryption in Zeus while Modified_RC4_Crypt is a special crafted RC4 function with ad-

ditional XOR operation for Citadel. Although the RC4 function of Citadel is modified a

lot from the original RC4 function of Zeus, our framework detects that the similarity score

between them is about 74.74% and only one function sub_40C37A from Zeus is similar to

Modified_RC4_Crypt with a score higher than 70% .
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Chapter 5

Conclusions and Future Work

In order to reduce unnecessary redundant analysis of similar malware code, in this thesis

we presented a framework for automated malware similarity analysis. Our goal is to de-

tect similarity between malware samples by matching duplicated, and possibly obfuscated,

functions among them. We applied a function matching method that is capable of per-

forming accurate similarity detection on compared functions. In addition, the API classes

imported by the target analyzed functions are extracted and classified in order to provide

more insight into the activities performed by the malware. With similarity identified on the

function level, a novel similarity metric is used to conclude similarity between malware

samples. The calculated similarity results are stored in a graph database for visualizing the

relationship between analyzed malware samples and for querying specific functions that

facilitate the analysts’ job. The implemented GUI enhances the usability of the developed

system and allows the analysts to identify and browse malicious code in similar functions.

In order to evaluate effectiveness of the proposed framework, three experiments were

conducted, including detection of metamorphic viruses created by malware generation

tools, identification of malware variants in the wild, and analysis of two botnet trojans.

The obtained experimental results show that our framework is capable of detecting mal-

ware variants and effective in identifying similar functions shared by them.
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It should be noted that our framework has several limitations. For example, it assumes

that submitted malware samples are correctly unpacked. It also assumes that submitted

malware samples can be reverse engineered into assembly code by IDA Pro. Furthermore,

the relationship graph in the visualization module can handle limited number of nodes

( 235). In addition to addressing these limitations, we can further develop the prototype

framework implemented in this thesis in the following three directions:

1. Control Flow Graph (CFG): Functions can be represented as CFGs that express the

relationships between (basic) blocks of instructions. In addition to syntactic match-

ing, structural matching on the function level can also be done using the information

extracted from these CFGs.

2. Function Profiling: The process of function profiling is to determine probable ma-

licious activities that can be performed by functions inside the malware code based

on the assembly instructions of these functions. By analyzing the imported APIs,

our API Class Recognizer can provide basic information about the function’s opera-

tions. However, profiling functions without APIs or with unidentified APIs is still a

challenging task that requires further investigation.

3. Data Constants Collection: Interactive dissemblers, such as IDA Pro that is used

in our framework, allow us to access data constants in the disassembled malware.

These extracted data constants, such as referenced strings, can be compared during

similarity analysis at the function level. If the same referenced string appears in two

functions, this information can be used to improve the performance and accuracy of

the overall similarity detection process.
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