
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 5-22-2015

FIREFOX ADD-ON FOR METAMORPHIC
JAVASCRIPT MALWARE DETECTION
Sravan Kumar Reddy Javaji
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Information Security Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Javaji, Sravan Kumar Reddy, "FIREFOX ADD-ON FOR METAMORPHIC JAVASCRIPT MALWARE DETECTION" (2015).
Master's Projects. 401.
DOI: https://doi.org/10.31979/etd.7vm7-uqn9
https://scholarworks.sjsu.edu/etd_projects/401

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F401&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F401&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F401&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F401&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F401&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/401?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F401&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

FIREFOX ADD-ON FOR METAMORPHIC JAVASCRIPT MALWARE

DETECTION

A Thesis

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Sravan Kumar Reddy Javaji

May 2015

© 2015

Sravan Kumar Reddy Javaji

ALL RIGHTS RESERVED

The Designated Thesis Committee Approves the Thesis Titled

FIREFOX ADD-ON FOR METAMORPHIC JAVASCRIPT MALWARE

DETECTION

by

Sravan Kumar Reddy Javaji

APPROVED FOR THE DEPARTMENTS OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

May 2015

Dr. Thomas Austin Department of Computer Science

Dr. Chris Pollett Department of Computer Science

Mr. Fabio Di Troia University of Sannio

ABSTRACT

Firefox Add-on for Metamorphic JavaScript Malware Detection

by Sravan Kumar Reddy Javaji

With the increasing use of the Internet, malicious software has more

frequently been designed to take control of users computers for illicit purposes.

Cybercriminals are putting a lot of efforts to make malware difficult to detect. In

this study, we demonstrate how the metamorphic JavaScript malware can effect a

victim’s machine using a malicious or compromised Firefox add-on. Following the

same methodology, we develop another add-on with malware static detection

technique to detect metamorphic JavaScript malware.

ACKNOWLEDGMENTS

I am very thankful to my advisor Dr. Thomas Austin for his continuous

guidance and support throughout this project and believing me. Also, I would like

to thank the committee members Dr. Chris Pollett and Mr. Fabio Di Troia for

monitoring the progress of the project and their valuable time.

v

TABLE OF CONTENTS

CHAPTER

1 Introduction . 1

1.1 Problem . 2

1.2 Proposed Solution . 3

1.3 A Browser Plugin for Detecting Malware 4

2 Background . 5

2.1 Encrypted Malware . 6

2.2 Polymorphic Malware . 7

2.3 Metamorphic Malware . 8

2.3.1 Register renaming . 8

2.3.2 Dead code insertion . 10

2.3.3 Subroutine permutation 10

2.3.4 Equivalent code substitution 11

2.3.5 Transposition . 11

2.3.6 Changing control flow . 12

2.3.7 Subroutine inlining and outlining 12

2.4 Transcriptase . 12

2.4.1 Permutator . 15

2.4.2 Variable/Function-Name randomization 16

2.4.3 Meta-Language Symbols 17

2.4.4 Code Derivation . 18

vi

vii

2.4.5 Variable/Function insertion 19

2.5 Rhino . 20

2.5.1 Architecture . 21

2.5.2 Modification . 24

3 Firefox Add-on Development . 27

3.1 Firefox vs Chrome . 28

3.2 SDK vs XUL . 29

3.3 Chrome Authority Usage . 31

3.4 Content Scripts . 32

4 Implementation . 35

4.1 Malicious add-on . 35

4.2 Transcriptase detection add-on . 37

4.2.1 Malware Detection Technique 38

4.2.2 Opcode Graph Similarity Technique 38

4.2.3 Opcode Graph . 39

4.2.4 Similarity Score Calculation 41

4.3 Transcriptase detection add-on architecture 43

4.4 JavaScript extraction from web page 45

4.5 Purpose of the Shell script . 48

4.6 Page validation and clean-up step 50

4.7 Performance improvements . 50

4.7.1 Fingerprinting web pages 51

4.7.2 Whitelisting websites . 51

viii

4.8 Using other detection techniques 52

5 Testing . 53

5.1 Generating Transcriptase variants 53

5.2 Similarity scores and add-on performance 55

5.2.1 Addition of 550 lines of dead code 55

5.2.2 Addition of 5500 lines of dead code 56

5.2.3 Addition of 15000 lines of dead code 57

5.3 Test for False Positive rate of the add-on 59

5.4 Splitting Transcriptase code . 59

6 Conclusion and Future Enhancements 70

APPENDIX

Code snippets . 75

A.1 Python parser . 75

LIST OF TABLES

1 System Specifications . 53

2 Scores table of benign web pages 61

3 Scores table of malware web pages 62

4 Scores table of benign web pages 63

5 Scores table of malware web pages 64

6 Scores table of benign web pages 65

7 Scores table of malware web pages 66

8 Summary of max and min Scores 67

9 Scores table for popular web pages 68

10 Splitting Transcriptase into several files 69

ix

LIST OF FIGURES

1 JavaScript Sample and its obfuscated version. 3

2 Annual Malware Growth . 6

3 Encrypted Malware Replication 7

4 Examples of a polymorphic virus. 8

5 Metamorphic malware with different signatures 9

6 Register Renaming Example . 9

7 Example of code metamorphosis of Evol virus 10

8 Example of subroutines permutation 11

9 Sample Java code . 12

10 Sample Java code after applying Transposition 12

11 Example of changing control flow 13

12 Subroutine inlining example . 13

13 Subroutine outlining example . 14

14 Meta-language instructions example 15

15 Permutator output . 16

16 Before Variable/Function-Name randomization 17

17 After Variable/Function-Name randomization 17

18 Meta-Language Symbols Example 18

19 Meta-Language Symbols processing Example 18

20 Block Diagram of Rhino Engine 21

21 Euclid’s GCD algorithm . 22

22 Abstract Syntax Tree . 23

x

xi

23 Sample byte code . 23

24 Sample Machine Code . 24

25 JavaScript compilation with Rhino 25

26 JavaScript compilation with modified version of Rhino 26

27 Communication among add-on and content script 33

28 Communication among add-on and content script using code . . . 34

29 Main Functionality of the malicious add-on 36

30 Size of sample JavaScript files before infection 36

31 JavaScript file sizes after infection 37

32 Sample opcode sequence . 39

33 Weight counts adjacency matrix for opcode sequence 40

34 Probability matrix for weights adjacency matrix 41

35 Opcode Graph . 42

36 Detection add-on architecture . 43

37 Transcriptase detection add-on directory structure 44

38 Add-on code to disable JavaScript load on web page 45

39 JavaScript to extract all the external script file URLs 47

40 command that invokes opcode.sh internally 48

41 add-on code to invoke opcode.sh 49

42 opcode.sh shell script code . 50

43 Batch script . 54

44 Transcriptase‘s 100 versions . 55

45 Benign Samples vs Malware Samples 56

xii

46 Benign Samples vs Malware Samples 57

47 Benign Samples vs Malware Samples 58

48 Graph showing min and max scores of split files 60

CHAPTER 1

Introduction

The arrival of the Internet has completely revolutionized our personal and

professional lives. With the rapid growth of the Internet, all the market sectors,

social networking services, advertising and non-commerical sectors are using this

technology in their workflow. As we become more dependent on the online

environment, we can see massive growth of opportunities for IT criminals to take

advantage of user systems.

Internet users often share sensitive information like bank account details or

other personal information, over the network. As personal computers and mobile

phones became an important part in most people‘s lives, these computers became a

hub of user‘s personal information. In this world of ubiquitous computers and

persistent threats from hackers, protecting your computer is a must. Several

websites are hacked to be used as distributors of malware, to infect the visitors

unknowingly with viruses and malware. A single visit to a such a hacked web page

is sufficient for an intruder to get control of a user‘s machine.

In late 2013, one of the bank‘s internal computers that are used by employees

to process and record daily transactions, had been infected with malware [7]. The

malware continuously monitored the bank‘s activities for several months, sending

back images and video feeds to cybercriminals about the bank‘s daily routines.

Then the cybercriminals impersonated bank officers, turned on several cash

machines and also transferred millions of dollars from banks into dummy accounts

of other countries.

1

Consider the fact that more than 6,600 benign websites are getting hacked

every single day [6]. These legitimate websites are turned into distributors of

malware by malicious hackers. Malicious code can be injected into legitimate

Javascript of a benign web page. When a user visits such a compromised website,

this malicious JavaScript will be executed in the victim‘s web browser. Execution of

such malicious JavaScript can infect the victim‘s personal computer. Most of the

times, malicious JavaScript redirects the victim‘s web browser to load more

malicious code from a remote server. This can be achieved through several means,

such as adding an HTML iframe element to a page. Always cybercriminals try to

obfuscate the malicious content from detection. HTML provides very few ways to

obfuscate the code such as adding an HTML iframe element to a page but the huge

number of methods in JavaScript makes it easy to heavily obfuscate the malicious

code into Javascript.

1.1 Problem

Malware is malicious software, specifically designed to gain access to the data

or to damage the resources without the knowledge of victim [4]. Researchers

developed various techniques for malware detection like signature based detection

and heuristic analysis. To overcome the malware detection techniques, malware

writers came up with different types of malwares among which metamorphic

malware is an advanced version. Metamorphic malware is capable of changing its

internal structure without altering its functionality from infection to infection. Due

to the metamorphic nature, such malware is very difficult to detect. With a huge set

of functions, JavaScript makes it possible for virus writers to develop malicious

JavaScript code with metamorphic feature. Transcriptase is such a case, which is

2

1 //sample.js
2 <script>
3 var x = 5;
4 var y = 6;
5 var z = x + y;
6 </script>

1 //sample_morphed.js - obfuscated version of sample.js
2 <script>
3 var y_renamed = 6;
4 var x_renamed = 5;
5 var z_renamed = x_renamed + y_renamed;
6 </script>

Figure 1: JavaScript Sample and its obfuscated version.

designed to infect other JavaScript files in the same folder [5].

1.2 Proposed Solution

In spite of the fact that malware can change their internal structure the

priority order of the important commands cannot be changed. Case in point,

consider a sample JavaScript code below,

From the code in Figure 1, it is clear that even though the variable names are

changed and the order of declaration of 𝑥 and 𝑦 (or 𝑥_𝑟𝑒𝑛𝑎𝑚𝑒𝑑 and 𝑦_𝑟𝑒𝑛𝑎𝑚𝑒𝑑)

are changed, the arithmetic operation always follows the declaration of those two

variables else the code may give syntactical errors or the wrong result.

So, we can make use of the opcodes statistical information to detect the

malware.

3

1.3 A Browser Plugin for Detecting Malware

Generally JavaScript malware will be injected into benign web pages. When a

user visits this infected website, the malicious JavaScript code will be executed in

the browser. To prevent this, we can develop an add-on which will monitor the

JavaScript content of every web page and the browser can disable the JavaScript

execution before the page gets loaded. The add-on will analyze the JavaScript in

the background and will enable the JavaScript load, if the web page is found to be

benign or else warn the user about malicious content without loading the JavaScript.

This procedure can secure the victim‘s computer from malware infection. For this

research, we can use the Transcriptase metamorphic JavaScript malware.

The remaining of the paper is organized as follows. In Chapter 2, we provide

background information on metamorphic malware and with an emphasis on

Transcriptase metamorphic JavaScript malware that forms the basis for the

research. Also in this chapter, we cover the Rhino Javascript engine. Chapter 3

outlines the details of Firefox add-on development. Then in Chapter 4, we discuss

two different static metamorphic detection techniques that we apply to detect the

metamorphic JavaScript malware. In Chapter 5, we present the accuracy and

performance details of Firefox add-on using opcode similarity detection technique.

Our experimental results for the original metamorphic JavaScript appear. Chapter

6 contains the conclusion and consideration for future work.

4

CHAPTER 2

Background

Malware is a software program intended to do pernicious activities on a

client‘s computer with the proposition of removing data and misusing assets without

his assent. Viruses and worms are the best known types of malware on account of

the way in which they spread, instead of their behavior. Malware is now and then

utilized widely against government or corporate websites to gather protected data or

to disturb their operations by large. Also, malware is regularly utilized against

people to steal data, for example, personal identification numbers or bank or credit

card details and passwords. As per a survey on data breaches led by Verizon in 2014

[9], Citadel is the preferred banking malware among attackers for stealing individual

information. And for stealing money from bank accounts, Zeus is the favorite

banking malware.

Figure 1 shows how the malware is swiftly growing in volume day-by-day. In

Figure 1, the x-axis specifies the year and the y-axis indicates the number of

malware samples generated in the specified year on the x-axis.

Virus writers are aware that signature-based detection with heuristic analysis

can be the basis of modern malware detection techniques. So, virus developers have

created numerous procedures and techniques to evade signature-based detection. In

January 2015, AV-TEST‘s CEO said, "Many of the new malware samples are just

variants of existing viruses. They have been modified so that they are no longer

detected and thus, AV signature updates are required" [10]. Some of the noteworthy

techniques used by virus writers to evade signature detection are encryption,

5

Figure 2: Annual Malware Growth [10]

polymorphism and metamorphism.

2.1 Encrypted Malware

The Cascade virus, which initially appeared in late 1986, was the first

malware that used encryption to scramble its contents [11]. The Cascade virus is

comprised of two parts. The first part is a decryptor and the second part is

encrypted malware code. The reason for encryption is to conceal the malware

signature, so as to evade signature identification. Later, this technique was adopted

by almost every encrypted malware. For the most part, virus writers use extremely

simple and weak encryption methods, for example, a repeated XOR with a fixed bit

pattern. Cascade malware also used XOR operation as encryption routine because

of its symmetrical and reversible feature. In the event that the encryption key of

malware was changed after every infection, the encrypted body signature also gets

changed. If in case the same decryptor was used, signature detection can make use

of the decryptor code‘s signature to detect the malware.

6

Figure 3: An Encrypting malware spreads without changing decryptor but the key
within decryptor varies from infection to infection. As the key value changes, the
encrypted virus body also changes [14].

2.2 Polymorphic Malware

Similar to an encrypted malware, polymorphic malware incorporates an

encrypted virus code and a decryptor. Additionally in a polymorphic virus, the

decryptor is morphed. During polymorphic malware propogation, not only is the

virus code encrypted, but the decryptor also varies from infection to infection. As

there is no fixed signature or no fixed decryptor to scan for, no two infections look

alike to be exploited by the antivirus program for detection purpose [14].

Polymorphic virus uses code obfuscation techniques, for example, including junk

codes or substitution of instructions, to mutate its decryptor [18]. Several

techniques are utilized to decrypt the polymorphic virus, such as, cryptanalysis

(also called x-ray), emulation and dedicated decryption routines [21].

The first polymorphic malware, 1260, was developed by Mark Washburn in

1990 [15]. And the first widespread polymorphic infection was caused by Tequila

and Maltese Amoeba virus, in 1991 [14].

7

1 MOV A,R1 MOV A,R1 MOV A,R1 MOV A,R1 MOV A,R1
2 ADD B,R1 NOP ADD #0,R1 OR R1,R1 TST R1
3 ADD C,R1 ADD B,R1 ADD B,R1 ADD B,R1 ADD C,R1
4 SUB #4,R1 NOP OR R1,R1 MOV R1,R5 MOV R1,R5
5 MOV R1,X ADD C,R1 ADD C,R1 ADD C,R1 ADD B,R1
6 NOP SHL #0,R1 SHL R1,0 CMP R2,R5
7 SUB #4,R1 SUB #4,R1 SUB #4,R1 SUB #4,R1
8 NOP JMP .+1 ADD R5,R5 JMP .+1
9 MOV R1,X MOV R1,X MOV R1,X MOV R1,X

10 MOV R5,Y MOV R5,Y
11 (a) (b) (c) (d) (e)

Figure 4: Examples of a polymorphic virus utilizing code obfuscation techniques. All
of the Figure 4 snippets perform the same operation, i.e., 𝑋 = (𝐴+𝐵 +𝐶 − 4). For
instance, the program snippet of Figure 4 (c) is functionally the same as Figure 4 (a)
in light of the fact that instructions like adding 0 to a register, ORing R1 with itself,
shifting R1 left 0 bits, and jumping to the next instruction all do nothing [19].

2.3 Metamorphic Malware

Virus writers took the next step and developed an advanced variant of

polymorphic malware, known as metamorphic malware. Generally, before infection,

polymorphic malware encrypt the virus code and morph the decryptor, while

metamorphic malware morph the whole virus code. According to Igor Muttik,

"Metamorphics are bodypolymorphics", since polymorphism is applied to the entire

virus body [22]. Metamorphic viruses utilizes several code morphing techniques that

constitute instruction reordering, data reordering, subroutine inlining, subroutine

outlining, register renaming, instruction substitution and dead code insertion [23].

Figure 5 illustrates the metamorphic malware with different signatures.

2.3.1 Register renaming

In December 1998, a metamorphic malware named Win95/Regswap was

developed by Vecna [22]. Regswap used register renaming technique to morph the

8

Figure 5: Metamorphic malware with different signatures [20].

Figure 6: code snippet extracted from two different versions of RegSwap [22].

virus code. In this technique, instructions gets modified to use different registers.

As just the register operands gets altered that too in some part of the code instead

of whole code, so the complexity of final modified code wouldn‘t be high. Figure 6

depicts how the register renaming technique transforms the code.

The bold areas in figure 6 illustrates the similarities of the two different code

versions. Thus, a wildcard string, such as 5?𝐵?, could be useful to detect the

9

1 C7060F000055 MOV [esi], 5500000Fh
2 C746048BEC5151 MOV [esi+0004], 5151EC8Bh
3 BF0F00055 MOV edi, 5500000Fh
4 893E MOV [esi], edi
5 5F POP edi ; garbage
6 52 PUSH edx ; garbage
7 B640 MOV dh, 40 ; garbage
8 BA8BEC5151 MOV edx, 5151EC8Bh
9 53 PUSH ebx ; garbage

10 8BDA MOV ebx, edx
11 895E04 MOV [esi+0004], ebx

Figure 7: Example of code metamorphosis of Evol virus with Dead code insertion
[23].

malware code [22].

2.3.2 Dead code insertion

Dead code can be a single instruction or a block of instructions, for example,

adding NOPs [23], adding 0 to a register, moving between same registers, ORing

register with itself, shifting register left 0 bits, jumping to next instruction,

incrementing a register immediately followed by decrementing the same register by

same value. Inserting dead code or do-nothing instructions is the easiest approach

to morph the virus code without modifying its functionality [23]. The Win32/Evol

virus, which was found around July 2000 [24], used dead code insertion to obfuscate

the signature of a code as illustrated in Figure 7.

2.3.3 Subroutine permutation

Code may contain several subroutines (or) functions and changing the order of

this subroutines may not impact the execution of code. Subroutine permutation

approach makes use of this advantage i.e., altering the order of subroutines, to

10

Figure 8: Example of subroutines permutation [23].

change its internal structure without modifying the functionality of code. A code

with 𝑛 different subroutines can generate 𝑛! different permutations of subroutines,

thus large number of versions of the same code can be generated [4].

2.3.4 Equivalent code substitution

Different variants of code can be generated by replacing instruction or block of

instructions with an equivalent code. In assembly language there are numerous

semantically equivalent instructions, for instance, ‘INC ecx’ is same as ‘ADD ecx, 1’,

‘XOR R1, R1’ is same as ‘MOV R1, 0’ [25].

2.3.5 Transposition

Morphed copies of virus code can also be created by changing the order of

instructions in the code provided that there is no dependency among instructions,

so this approach is also known as instruction permutation [23]. For instance, the

code in figure 9 can be transformed to figure 10, as the declaration order of variables

doesn‘t affect the arithmetic calculation [4].

11

1 int a=5;
2 int b=2;
3 int c=a+b;

Figure 9: Sample Java code [4].

1 int b=2;
2 int a=5;
3 int c=a+b;

Figure 10: Sample Java code after swapping instructions [4].

2.3.6 Changing control flow

The next code obfuscation method involves insertion of a conditional or

unconditional branch instruction after a block of instructions. Further, instruction

blocks referenced by this branching instructions can be permuted to change the

control flow [23]. Zperm malware used this approach to change the internal

structure of a code [25]. Figure 11 is an example of changing control flow.

2.3.7 Subroutine inlining and outlining

In subroutine inlining procedure, subroutine/function call replaces its code

[23]. Figure 12 illustrates the concept of Subroutine inlining.

On the other hand, code outlining changes a block of instructions into

subroutine (or function) and a subroutine call will be included for the newly created

subroutine. Figure 13 illustrates how the code outlining approach works.

2.4 Transcriptase

Transcriptase is a metamorphic virus implemented in JavaScript. Whenever

Transcriptase is executed, a morphed version of the malware virus gets prepended

12

1 ;Original Program
2 instruction 1 ; entry point
3 instruction 2
4 instruction 3
5 instruction 4
6 instruction 5

1 ;Modified Program
2 instruction 2
3 jump 3
4 instruction 4
5 jump 5
6 instruction 1 ; entry point
7 jump 2
8 instruction 3
9 jump 4

10 instruction 5

Figure 11: Example of changing control flow [25].

1 /* some instrictions */ /* some instrictions */
2 call S1 mov eax, ebx
3 call S2 add eax, 12h
4 /* some instrictions */ push eax
5 S1: mul ecx
6 mov eax, ebx mov edx, eax
7 add eax, 12h /* some instrictions */
8 push eax
9 ret

10 S2:
11 mul ecx
12 mov edx, eax
13 ret
14 (a) before transformation (b) after transformation

Figure 12: Subroutine inlining example [25].

to all the JavaScript files in the folder [4]. The infected JavaScript file will become

the variant of Transcriptase. By this way Transcriptase propagates and infects the

benign JavaScript files.

13

1 /* some instrictions */ /* some instrictions */
2 mov eax, ebx mov eax, ebx
3 add eax, 12h call S1
4 push eax mov edx, eax
5 mul ecx /* some instrictions */
6 mov edx, eax S1:
7 /* some instrictions */ push eax
8 add eax, 12h
9 mul ecx

10 ret
11 (a) before transformation (b) after transformation

Figure 13: Subroutine outlining example [25].

The metamorphic engine attached to Transcriptase is a self-hosted compiler,

which contains its own meta-language source-code. Transcriptase obtains

information of its code from meta-language and changes its internal structure.

The format of every line of the meta-code looks like [26]:

(Identifier|Restrictions)instruction

For instance, below are sample meta-instructions:

(200|)var b=0

(300|200)c+1(b)

An Identifier and Restrictions are used by the Permutation function to do

code obfuscation. The identifier is unique for every instruction in the entire code

and restrictions specify the instructions on which the corresponding instruction is

depending. The "instruction" contains the details used to create an actual code.

The compiler creates the new malicious JavaScript code with three steps:

1. Permutation and Variable/Function-Name randomization

14

1 (100|)var a=5
2 (200|)var b=-1
3 (300|)var x=8
4 (400|200)c+1(b) // instruction c+1(b) means increment b by 1: i.e. b++
5 (500|400,100)c+n(b,a) // instruction c+n(b,a) means increment b by a:

i.e. b+=a
6 (600|500)xWScript.Echo(x)

Figure 14: Meta-language instructions example [4].

2. Code Creation

3. Variable/Function insertion

2.4.1 Permutator

In this phase, the compiler parses through every meta-language instruction,

scope by scope (global scope for global instructions and sub-scope for

if/for/while/functions) and retrieves the identifiers and restrictions details for each

meta-instruction. Later these identifier and restriction details are used by the

compiler to perform the permutation of code.

If the restriction details are empty for all the meta-language instructions, then

it specifies that all the instructions in the code do not have any dependency

instructions. So, the entire code can be permuted in all the possible combinations.

For instance, if there are 𝑛 lines of code, then the permutator can create 𝑛!

variations of the original code.

For instance, consider the code specified in Figure 14 [4]. It contains

restriction details for some of the meta-instructions, which means that those

instructions have dependencies on other instructions. So all the combinations of the

code cannot produce the correct behaviour.

15

1 (200|)var b=-1
2 (400|200)c+1(b)
3 (100|)var a=5
4 (500|400,100)c+n(b,a) // instruction c+n(b,a) means increment b by a:

i.e. b+=a
5 (300|)var x=8
6 (600|500)xWScript.Echo(x)

Figure 15: Possible output of the permutator after parsing the code in Figure 14 [4].

From the code in Figure 14, instruction 400 depends on instruction 200,

because the variable "b" has to be defined before it can be incremented; instruction

500 depends on both the instructions 400 and 100; and instruction 600 depends on

instruction 300. Figure 15 contains the code, which could be one of the possible

output generated by the permutator [4]:

As the growth-rate of the permutation function is very fast, even for the large

number of instruction this technique works effectively [26].

2.4.2 Variable/Function-Name randomization

In this step, the keywords like "var", "while", "for", and "def" are searched

initially in the code by the compiler and the details of existing hard-coded names in

those instructions are retrieved. In other words, the details of all the variable names

and function names are gathered by the compiler. These names are replaced with

random names by the compiler and also all the valid occurrences of these

hard-coded names in the current scope are replaced.

For instance, consider the code in Figure 16. First, the compiler searches for

the "var", "function", and "def" keywords and the hard-coded names - num,

multiply, inputparam, and twiceval are retrieved. Then it replaces these hard-coded

16

1 var num=20;
2 function multiply(inputparam)
3 {
4 return 2 * inputparam;
5 }
6 def twiceval=multiply(num)

Figure 16: Before Variable/Function-Name randomization [26].

1 var ljkjuytbenst=20;
2 function trqwsdexcv(awsrsfagfqwxczv)
3 {
4 return 2 * awsrsfagfqwxczv;
5 }
6 def bxswdqtyzyqtc=trqwsdexcv(ljkjuytbenst)

Figure 17: After randomly changing the Variables/Function-Names of the code in
Figure 16 [26].

names with some random names like "ljkjuytbenst" or "awsrsfagfqwxczv". The

compiler also replaces all occurrences of the hard-coded names, for example, there

are two instances of "inputparam" present in the function, both these names are

replaced with the random name. One of the possible changes to the code during this

phase is shown in Figure 17.

2.4.3 Meta-Language Symbols

After rearrangement of the instructions and hard-coded names replacement,

the compiler generates a valid JavaScript code by parsing through every

meta-instruction. These meta-instructions contain meta-level symbols and each of

these symbols has specific meaning like number, element, object etc. While parsing

meta-instructions, compiler processes these meta-level symbols.

For example, consider the code in Figure 18. Here meta-symbol #n...n#

17

1 var number=#n1n#
2 var str=#"Hello VXers"#
3 var exp=#x1true1x#
4 x#O1WScript#.Echo(°+str+°)1O#

Figure 18: Meta-Language Symbols Example [26].

x#O1WScript#.Echo(°+str+°)1O#

could become

function SomeFunction(SomeArg){WScript.Echo(SomeArg);}
SomeFunction(str)

Figure 19: Meta-Language Symbols processing Example [26].

specifies any value present in between #n’s (i.e., in place of ...) specifies Number,

meta-symbol #"..."# specifies any value present in the place of dots (or ...)

specifies string, any value in #xN...Nx# specifies elements, the values between

#01... #. ...10# specifies Objects and the symbol "°+ ... +°" specifies that the

variable inside must be given as an argument for a function, if the instruction is

derived into a function [26].

Figure 19 illustrates how the meta-symbols with objects are processed.

2.4.4 Code Derivation

After processing all the meta-language symbols, the compiler generates

JavaScript code by parsing the meta-language instructions. During this phase,

compiler deals with some more meta-instructions that have specific properties as

mentioned below [26]:

while(initial$var1!var2?operator@action)NNN

18

1. "initial" specifies the code that is to be executed before the while loop

like variable declaration

2. "var1" and "var2" along with the "operator" specifies the while loop

condition.

3. "action" specifies the end of the loop instruction like counter increment.

4. "NNN" specifies total number of lines in the loop

cO(1||n||s)

This specifies general way of representing number/string arithmetic

instruction. "O" specifies operator like +, -, *, /. Below are some of the

meta-instructions that follow this format,

1. c+1(var1): increment var1 by 1

2. c+n(var1,var2): increment var1 by the number var2

3. c+s(var1,var2): concatenate var1 with the string var2

4. c-1(var1): decrement var1 by 1

5. c-n(var1,var2): decrement var1 by the number var2

6. c*1(var1): multiply var1 by 1

7. c*n(var1,var2): multiply var1 by the number var2

8. c/1(var1): divide var1 by 1

9. c/n(var1,var2): divide var1 by the number var2

2.4.5 Variable/Function insertion

Several variables and functions are defined during the compilation phase

because of meta-instructions and obfuscation. These variables are saved in special

19

arrays instead of being stored in the code. At the end of code derivation phase, they

are placed into the code .

Functions can be included between instructions in the global scope. Variables

can be included between instructions in the current scope, before they are used for

the first time [4]. This phase takes lot of time to complete, as the whole code is

checked for multiple times to find suitable positions for the variable/function

insertions [26].

2.5 Rhino

During 1997, Netscape began working on developing a variant of Netscape

Navigator written in Java [27]. In order to implement the navigator in Java, they

built a JavaScript engine entirely in Java, named Rhino. Rhino is open source

software and is currently maintained by Mozilla.

Most of the time, JavaScript is utilized as a part of HTML for making

interactive webpages. Anyhow, Rhino is not used to create or manipulate webpages;

it is an implementation of the core JavaScript. Rhino has the below aspects [27]:

1. Supports JavaScript 1.7 features

2. Allows direct scripting of Java

3. The Rhino Shell can execute the JavaScript code interactively or in batch

mode

4. The JavaScript Compiler can compile the JavaScript code into Java classes

5. The JavaScript Debugger for debugging scripts in Rhino

20

Figure 20: Block Diagram of Rhino Engine [29].

In this research, we use Rhino to translate the JavaScript code into Java

classes. The engine supports both compile mode and interpretive mode. During

compile mode, the engine first translates each JavaScript file to separate Java class

files. These .class files may be executed as Java programs using Rhino runtime

support routines. During interpretive mode, JavaScript is compiled and is stored as

internal representation of the compiled form instead of byte codes. During runtime

this compiled form is evaluated using rhino functions.

2.5.1 Architecture

The four basic blocks in the Rhino JavaScript engine are - the parser, the

byte-code generator, the interpreter and the JIT [4]. Figure 20 depicts the block

diagram of the Rhino Engine [29].

Parser: The input for this module is JavaScript code and the output

generated is the Abstract Syntax Tree (AST). The AST is a tree representation of

21

1 function gcd(a, b)
2 {
3 while (b != 0)
4 {
5 if a > b
6 a -= b
7 else
8 b -= a
9 }

10 return a
11 }

Figure 21: Euclid’s GCD algorithm.

the abstract syntactic structure of a program. For instance, Figure 21 represents the

AST for the GCD code in Figure 22 [30].

The non-leaf nodes in the AST specify the operations to be performed, for

instance, equal, comparison, arithmetic operation and so on. The leaf nodes in AST

specify operands in the source code, for instance, a and b variables [4].

Byte-Code Generator: The AST output generated from the parser acts as

input to the Byte-Code Generator which then converts the tree into byte code.

During the conversion process, the Byte-Code generator picks each code block in the

tree and translates it into bytecode. For instance, the byte code for the instruction

𝑐 = 𝑎− 𝑏 is shown in Figure 23 [4].

The bytecode in Figure can be interpreted as -

1. Load the values that are stored at offset 1 and offset 2 into registers

2. Subtract these loaded values

3. Store the result at offset 3.

22

Figure 22: Abstract Syntax Tree for the GCD code in Figure 21 [30].

1 iload_1
2 iload_2
3 isub 3
4 istore_3

Figure 23: Sample byte code for the instruction 𝑐 = 𝑎− 𝑏 [4].

Interpreter: The input for the interpreter is the byte code output of the

Byte-Code Generator. The byte code is then converted into machine level code

using the Just-in-time (JIT) compiler. During runtime, this generated machine code

gets executed. When the byte code in Figure 23 is given as input to the Interpreter,

it generates the machine code as shown in Figure 24.

23

1 MOV EAX 0xFF20
2 MOV EBX 0xFF24
3 SUB EAX EBX
4 MOV ECX EAX

Figure 24: Sample Machine Code generated for the byte code in Figure 23 [4].

2.5.2 Modification

For this research, we need the opcodes of JavaScript code, so we used the

version of Rhino that was modified by the author of [4].

Below changes were made in the modified version [4]:

1. The page load time is directly proportional to compiling time of JavaScript, so

Rhino was optimized to convert only small part of JavaScript files. Because of

this optimization, the original statistics of the JavaScript code that will be

used as part of analysis will get affected. In order to solve this problem the

engine was modified to compile JavaScript of any length.

2. Different optimization techniques were used to optimize class files for speed

execution. As these optimization techniques also affect the statistics of

JavaScript code, they were disabled.

3. Generally opcodes are generated by decompiling the class files. This method

consumes a lot of time as this process require the generation of class file and

again decompilation of these class files. As the class files generated are of no

use, the opcodes are extracted from the code during compilation itself. By

following this approach, the time used for decompilation of class files is saved.

4. As the opcodes are extracted before the class file is created, this modification

also solved the problem associated with class files optimization.

24

Figure 25: JavaScript compilation with Rhino.

5. The opcodes are tapped and redirected to the standard output. Thus all the

opcodes are printed on the screen. This output can also be saved in a file

using the unix redirect operator (>).

The below command is used to run the Rhino engine:

java -cp <path_to_rhino_js.jar> org.mozilla.javascript.tools.jsc.Main

<JavaScript_File_Path>

Figures 25 and 26 are the screenshots of compiling JavaScript code with the original

version and the modified version of Rhino respectively.

25

Figure 26: JavaScript compilation with modified version of Rhino.

26

CHAPTER 3

Firefox Add-on Development

An add-on is a piece of software that augments another application. Based on

the browser, different terms are used to refer to this software, like add-on, plug-in,

or extension. An add-on cannot be executed as stand-alone software. Add-ons are

used for different purposes like blocking advertisements and popups, downloading

videos, and also to integrate several social network sites.

Below are some of the applications of add-ons

1. An add-on can change the browser interface, which includes changing themes,

the look and feel of buttons, the menu bar, and tabs.

2. They are also capable of adding new features to the browser, like providing

easy usage of various softwares in the form of toolbars.

3. Add-ons can also modify the behavior of browsers, like customizing the search

option or page redirection.

4. Add-ons used as plug-ins let the browser support internet content. These

include Flash, Silverlight, and music players like QuickTime, real player,

online games, and many more.

5. On many browsers, online privacy is protected using add-ons. There are many

types of add-ons that help to control and secure browsing and avoid attacks

like preventing the user movements tracking on the browser.

27

Browser Extensions are supported by Microsoft Internet Explorer starting

with version 5 released in 1999. From 2004, Mozilla Firefox supports add-ons. The

Opera browser supports extensions starting with the desktop version 10 which was

released in 2009. Google Chrome and Safari added support for extensions in 2010.

Each browser has different variations in the browser extension syntax and they are

compatible to their browser alone i.e., an extension built for one browser doesn‘t

work on another. For using search engine tools irrespective of browsers, a project

named ‘Mycroft’ [13] has been proposed, which is a database of over 20,000 search

engine add-ons supported by multiple browsers.

3.1 Firefox vs Chrome

In new era, out of all the browser extensions, Firefox and Chrome are most

well known because of their popularity, security, and appearance. Below are some of

the notable comparisons between them regarding extensions:

1. Firefox has an outstanding extension base, i.e.,

https://addons.mozilla.org/en-US/firefox/, that offers more capable add-ons

compared to all other browsers.

2. Firefox add-ons are very powerful and can perform anything that a Firefox

process allows. Security features can be integrated into a Firefox add-on in a

much more effective manner than Chrome extensions. So, it is possible to

develop more advanced add-ons in Firefox, which would not be achievable on

different browsers. Unlike Firefox, Chrome does not trust extensions

completely and they provide very constrained APIs. For instance, without the

user‘s approval, extensions in Chrome can‘t access the resource present outside

of Chrome‘s sandbox, but a Firefox add-on can access the resource in the

28

filesystem without the user‘s permission.

For example, even though there are many Chrome extensions like ScriptSafe,

NoScript Lite, which are similar to Firefox’s "NoScript", till now no chrome

extension is able to provide all the features of Firefox’s NoScript because of

the Chrome’s constrained extension APIs.

3. By providing constrained extension APIs, Chrome presents a permission

system and restricts its extensions a bit more for security. Whereas in Firefox,

as the add-ons has more privileges, there are chances of infecting a victim‘s

machine. At worst, we may have to re-install the operating system to undo

the effect created by a malicious add-on. To avoid these potential issues and

to ensure that the add-ons are safe to install, they are manually reviewed

before they publicly appear in the Mozilla add-ons gallery.

To detect JavaScript malware, we have to generate opcodes for the JavaScript

code in the webpage and to save these opcodes we may need access to the user‘s

filesystem and also we need to execute some other external scripts to validate the

JavaScript code based on the saved opcodes. These tasks are only possible with the

powerful APIs provided by Firefox, so we decided to implement a Firefox add-on to

detect metamorphic malware.

3.2 SDK vs XUL

There are two main ways to build Firefox extensions. The traditional way is

using XPCOM (Cross Platform Object Model) and XUL (XML User Interface

Language). Much of Mozilla‘s documentation is focused on XUL add-ons, because

this has been around for many years. More details about XUL add-on development

29

can be found at [32]. The add-on SDK is the newer kind and was built under the

Jetpack Project. Jetpack‘s main agenda is to make it easy to build Firefox add-ons

by using HTML, CSS, and JavaScript [3].

It is advisable to use the Add-on SDK because of the advantages it provides

compared to XUL [33]:

1. Simplicity: High-level JavaScript APIs provided by the SDK like basic user

interface components and their functionality simplify all the common tasks in

add-on development.

2. Compatibility : Electrolysis [31], also called e10s, is the project under which

Firefox is being developed with a new multiple process architecture. The

API‘s provided by this SDK are designed to be forward-compatible with this

new architecture.

3. Security: It is not easy to build insecure add-ons using the SDK. Even the

insecure Add-on that was compromised can do much less damage to the

victim‘s machine.

4. No restarts required: To install extensions developed using the SDK, we do

not need to restart the browser.

5. Mobile Support: Add-ons can be developed for Firefox mobile using the

experimental support provided by SDK 1.5

However, XUL provides a huge number of options for the UI when compared

to the SDK, and that‘s the reason XUL is used for developing add-ons that require

a rich user interface.

30

In this research, all the add-ons are built using the SDK as it provides simple

APIs for developing most of the common tasks.

3.3 Chrome Authority Usage

Chrome Authority has nothing to do with Google Chrome. The Mozilla

Developer Network(MDN) defines "chrome" as any visible parts of a browser other

than the web pages, For instance, tabs, menu bar, and toolbars.

From the beginning of developing the SDK, it was assumed that developers

may need to access the underlying browser (or) XPCOM services. So, the add-on

SDK was developed to provide "chrome privileges" to the most powerful low level

APIs. The "chrome privileges" grants low-level APIs to access the Components

object that gives unrestricted access to the user system.

With chrome privileges, an add-on can perform any function the browser is

capable of. These privileges can be obtained by the add-on using the "chrome"

module as shown below [1]:

var {Cc, Ci} = require("chrome");

The "chrome" module returns a Components object, which can be unpacked using

the destructuring assignment feature provided by Mozilla JavaScript to obtain the

Components.* aliases:

1. Cc, otherwise called Components.classes

2. Ci, otherwise called Components.interfaces

3. Cu, otherwise called Components.utils.

31

4. Cr, otherwise called Components.results.

5. Cm, otherwise called Components.manager.

It is not advisable to use chrome authority in the add-on code unless it is required

because the add-ons that uses chrome authority require extra security review before

they are made available for distribution to the public.

3.4 Content Scripts

The add-on‘s main code, including "main.js" and other modules in "lib", can

use the SDK high-level and low-level APIs, but can‘t access web content directly.

Whereas content scripts can‘t use the SDK‘s APIs, but can access web content.

So if we have to build an Add-on that works based on the content of the web

page, then we have to make use of the content scripts to access the web page

contents. Content scripts are placed in the data subdirectory and they can be

loaded into Add-on using contentScript or contentScriptFile option.

Communicating with the add-on:

To enable add-on scripts and content scripts to communicate with each other,

each end of the conversation has access to a port object.

1. port.emit() is used to send messages from one side to the other

2. port.on() is used to receive messages sent from the other side

Messages are asynchronous i.e., after sending the message, sender continues

processing without waiting for a reply from the recipient.

The add-on code in Figure 28 adds a button to Firefox. When the user clicks

32

Figure 27: Communication among add-on and content script [1].

this button, add-on attaches a content script to the active tab, sends the

addon-message to content script. When content script receives add-on message, it

will retrieve the first paragraph from the loaded web page and send it to add-on

along with script-response message. As soon as the add-on receives a response

from content script, it logs the first paragraph.

33

1 //main.js
2 var tabs = require("sdk/tabs");
3 var buttons = require("sdk/ui/button/action");
4 var self = require("sdk/self");
5

6 buttons.ActionButton({
7 id: "attach-script",
8 label: "Attach the script",
9 icon: "./icon-16.png",

10 onClick: attachScript
11 });
12

13 function attachScript() {
14 var worker = tabs.activeTab.attach({
15 contentScriptFile: self.data.url("content-script.js")
16 });
17 worker.port.on("script-response", function(response) {
18 console.log(response);
19 });
20 worker.port.emit("addon-message", "Message from the add-on");
21 }

1 // content-script.js
2 self.port.on("addon-message", getFirstPara);
3

4 function getFirstPara() {
5 var paras = document.getElementsByTagName("p");
6 if (paras.length > 0) {
7 var firstPara = paras[0].textContent;
8 self.port.emit("script-response", firstPara);
9 }

10 }

Figure 28: Communication among add-on and content script using code [1].

34

CHAPTER 4

Implementation

This chapter focus on the implementation details of two add-ons:

1. a malicious add-on, which can infect the victim‘s filesystem.

2. a Transcriptase detection add-on, which can detect the metamorphic malware

embedded in the web page.

4.1 Malicious add-on

Generally browsers like Firefox, Chrome, and Opera do not allow access to the

client filesystem using JavaScript. Even though creating a file is possible in IE using

ActiveX objects, the client must enable ActiveX scripts on their system for the

ActiveX object related code to execute properly [17].

Firefox add-ons are very powerful because of the high-level APIs that the

SDK provides. The SDK has a file I/O module which provides access to the client‘s

filesystem.

A malicious add-on was created to demonstrate the way that a victim‘s

machine may get infected by a malicious add-on. The basic functionality of this

add-on is it provides the statistic value i.e., the total JavaScript bytes in the page

loaded by the user, as shown in Figure 29.

The user expects this functionality and installs the malicious add-on, but this

add-on also has hidden functionality. Whenever it finds that web page content has

Transcriptase in it, it finds all the JavaScript files present in the filesystem and

35

Figure 29: Main Functionality of the malicious add-on

Figure 30: Size of sample JavaScript files before infection

prepends them with Transcriptase code and thus it infects the victim‘s filesystem.

Figure 30 shows the size of our sample JavaScript files before infection and

figure 31 shows the size of these files after infection. There is a huge difference in file

36

Figure 31: JavaScript file sizes after infection

sizes before and after infection. This infection will remain unknown to the user until

the infected files are checked.

4.2 Transcriptase detection add-on

As discussed in Section 2.4, the Transcriptase virus uses different techniques

to change its internal structure in order to evade the signature based detection

strategy. The Transcriptase detection add-on can detect the Transcriptase malware

included in the webpage and notifies the user about the presence of malware

without loading the JavaScript malware.

37

4.2.1 Malware Detection Technique

Despite the fact that metamorphic malware continuously changes its internal

structure to stay undetected, still for maintaining its functionality malware places

similar instructions (that implements the functionality) somewhere in the code.

Thus, all the morphed copies maintain the same statistical distribution of

instructions. Different malware detection strategies are designed to make use of

these statistical properties like Hidden Markov Models, Opcode Graph Similarity,

Simple Substitution Distance, and Singular Value Decomposition.

As mentioned in [4], if the files are having highly similar opcode statistics,

then Opcode Graph Similarity and Singular Value Decomposition can classify them

better than the Hidden Markov Model and Simple Substitution Distance. Opcode

Graph Similarity and Singular Value Decomposition are very sensitive to deadcode,

but from the results mentioned in [4] these strategies won‘t be able to distinguish

between benign code and virus code only after adding 5000 and 9000 deadcode

functions into the virus code respectively. And it is extremely uncommon for a web

page to have this much dead code. Adding to this, the ROC curves in [4] shows that

Opcode Graph Similarity performs better than Singular Value Decomposition with

less than 1000 dead code function insertions.

We used Opcode Graph Similarity technique in the Transcriptase detection

add-on.

4.2.2 Opcode Graph Similarity Technique

In [2], Anderson introduced a malware detection technique which is based on

analysis of graphs that are constructed using the opcodes of the malware code and

test code. In this technique, initially opcodes are extracted from the malware code

38

and a weighted directed graph is built using the sequence of opcodes. Similarly, a

graph is built for the code to be tested. The Manhattan distance between these two

weighted graphs specifies the test file score [4].

4.2.3 Opcode Graph

A weighted directed graph built using the sequence of opcodes is known as the

‘Opcode Graph’. Each node of this graph specifies a distinct opcode in opcode

sequence. A directed edge exists from 𝑛𝑜𝑑𝑒𝐴 to 𝑛𝑜𝑑𝑒𝐵, if 𝑛𝑜𝑑𝑒𝐵‘s opcode follows the

𝑛𝑜𝑑𝑒𝐴‘s opcode in the opcode sequence. The weight of the edge from 𝑛𝑜𝑑𝑒𝐴 to

𝑛𝑜𝑑𝑒𝐵 specifies the total number of times that 𝑛𝑜𝑑𝑒𝐵‘s opcode follows 𝑛𝑜𝑑𝑒𝐴‘s

opcode in the entire code.

1 PUSH
2 MOV
3 SUB
4 AND
5 MOV
6 TEST
7 JZ
8 INT
9 MOVZX

10 AND
11 MOV
12 MOVZX
13 OR
14 MOV
15 MOV
16 CALL
17 LEAVE
18 RETN
19 ALIGN
20 PUSH

21 MOV
22 MOV
23 PUSH
24 PUSH
25 SUB
26 MOV
27 MOV
28 CALL
29 AND
30 SUB
31 CALL
32 MOV
33 CALL
34 MOV
35 XOR
36 MOV
37 MOV
38 MOV
39 CALL
40 MOV

Figure 32: Sample opcode sequence.

Figure 32 shows the sample opcode sequence. The adjacency matrix in

39

A
LI

G
N

A
N

D

C
A

LL

IN
T

JZ LE
AV

E

M
O

V

M
O

V
ZX

O
R

P
U

SH

R
E

T
N

SU
B

T
E

ST

X
O

R

ALIGN 0 0 0 0 0 0 0 0 0 1 0 0 0 0
AND 0 0 0 0 0 0 2 0 0 0 0 1 0 0
CALL 0 1 0 0 0 1 3 0 0 0 0 0 0 0
INT 0 0 0 0 0 0 0 1 0 0 0 0 0 0
JZ 0 0 0 1 0 0 0 0 0 0 0 0 0 0

LEAVE 0 0 0 0 0 0 0 0 0 0 1 0 0 0
MOV 0 0 4 0 0 0 5 1 0 1 0 1 1 1

MOVZX 0 1 0 0 0 0 0 0 1 0 0 0 0 0
OR 0 0 0 0 0 0 1 0 0 0 0 0 0 0

PUSH 0 0 0 0 0 0 2 0 0 1 0 1 0 0
RETN 1 0 0 0 0 0 0 0 0 0 0 0 0 0
SUB 0 1 1 0 0 0 1 0 0 0 0 0 0 0

TEST 0 0 0 0 1 0 0 0 0 0 0 0 0 0
XOR 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Figure 33: Weight counts adjacency matrix for opcodes in Figure 32.

Figure 33 specifies the weights of the edges formed between these opcodes. For

instance, we can find that intersection entry between the CALL row and MOV

column has a weight value of 3, which means there are three occurrences of a MOV

instruction immediately followed by a CALL instruction in the opcode sequence i.e.,

at line numbers 15, 27, and 32 in Figure 32.

All the weight counts in Figure 33 are converted into probability values by

dividing each row entry by the corresponding row sum. Figure 34 shows the weight

probabilities for the Figure 33. Each weight probability specifies the probability of

occurrence of a particular opcode, immediately after the selected opcode [4].

Figure 35 shows the opcode graph for the probability matrix in Figure 34

40

A
LI

G
N

A
N

D

C
A

LL

IN
T

JZ LE
AV

E

M
O

V

M
O

V
ZX

O
R

P
U

SH

R
E

T
N

SU
B

T
E

ST

X
O

R

ALIGN 0 0 0 0 0 0 0 0 0 1/1 0 0 0 0
AND 0 0 0 0 0 0 2/3 0 0 0 0 1/3 0 0
CALL 0 1/5 0 0 0 1/5

3/5 0 0 0 0 0 0 0
INT 0 0 0 0 0 0 0 1/1 0 0 0 0 0 0
JZ 0 0 0 1/1 0 0 0 0 0 0 0 0 0 0

LEAVE 0 0 0 0 0 0 0 0 0 0 1/1 0 0 0
MOV 0 0 4/14 0 0 0 5/14

1/14 0 1/14 0 1/14
1/14

1/14
MOVZX 0 1/2 0 0 0 0 0 0 1/2 0 0 0 0 0

OR 0 0 0 0 0 0 1/1 0 0 0 0 0 0 0
PUSH 0 0 0 0 0 0 2/4 0 0 1/4 0 1/4 0 0
RETN 1/1 0 0 0 0 0 0 0 0 0 0 0 0 0
SUB 0 1/3

1/3 0 0 0 1/3 0 0 0 0 0 0 0
TEST 0 0 0 0 1/1 0 0 0 0 0 0 0 0 0
XOR 0 0 0 0 0 0 1/1 0 0 0 0 0 0 0

Figure 34: Probability matrix for weights adjacency matrix in Figure 33.

4.2.4 Similarity Score Calculation

After creating probability matrices for the malware file and the test file,

similarity between two files is calculated by taking the Manhattan distance between

two probability matrices. Consider 𝐴 as the probability matrix of file 1 and each

element in 𝐴 is denoted as 𝐴𝑖,𝑗 where 𝑖 and 𝑗 specifies 𝑖𝑡ℎ row and 𝑗𝑡ℎ column

respectively. Similarly 𝐵 is the probability matrix of file 2 and each element in 𝐵 is

denoted as 𝐵𝑖,𝑗. Similarity between matrix 𝐴 and 𝐵, is calculated as below [8],

Similarity score = 1
𝑁2 (

∑︀𝑁−1
𝑖,𝑗=0 |𝑎𝑖,𝑗 −𝑏𝑖,𝑗 |2)

where N is total number of distinct opcodes present in the combination of

both files.

Before using the similarity score, we have to determine the threshold score

which distinguishes between benign files and malware files. The threshold value is

41

Figure 35: opcode graph for the probability matrix in Figure [8].

determined as follows [8],

1. Construct opcode graphs for all the variants of metamorphic malwares.

2. Construct opcode graphs for all the benign files.

3. Calculate the similarity scores for all pairs of malwares.

4. Calculate the similarity scores for every benign file against malware from step

1.

5. Determine a threshold value using the scores calculated in steps 3 and 4.

42

4.3 Transcriptase detection add-on architecture

Figure 36: Detection add-on architecture

Figure 36 shows the detection add-on architecture. Each component in the

architecture is made up of one or more files. Figure 37 depicts the directory

structure of detection add-on.

1. "content-script.js" uses jQuery code to find the JavaScipt content in web page,

so included "jquery-1.10.0.min.js" file in the "/data" directory to enable this

functionality. content-script.js represents "Content Script" component.

2. The Java files in the add-on are used to download the files, and to calculate

the similarity score. All these files are placed in the "/data/java" directory.

"Java Downloader" is a combination of DownloadThread, DownloaderApp,

43

Sravans−MacBook−Pro:TranscriptaseDetectionAddon sravan2j$ tree
.
|−− data
| |−− content−script.js
| |−− icon−16.png
| |−− icon−32.png
| |−− icon−64.png
| |−− java
| | |−− CheckOpcodes.class
| | |−− DownloadThread.class
| | |−− DownloaderApp.class
| | |−− GetScore.class
| | |−− ImageDownloader.class
| | |−− Lock.class
| |−− javaext.js
| |−− jquery−1.10.0.min.js
| |−− js.jar
| |−− malware_opcodes.txt
| |−− opcodes.bat
| |−− opcodes.sh
|−− lib
| |−− main.js
|−− package.json
|−− test

|−− test−main.js

4 directories, 17 files

Figure 37: Transcriptase detection add-on directory structure

ImageDownloader, and Lock class files. CheckOpcodes and GetScore class files

represents "opcode graph similarity detector".

3. "js.jar" helps the add-on to use the Rhino JS engine.

4. "opcode.sh" is a shell script to invoke Java files. As shell scripts won‘t work on

Windows, the "opcode.bat" file is included to invoke Java files on Windows.

5. The "malware_opcodes.txt" file specifies "Malware opcodes" component. This

44

file contains the opcodes of Transcriptase family malware which is required to

validate web page JS content using the opcode graph similarity technique.

More details about these files and the architecture components are covered in

subsequent sections.

4.4 JavaScript extraction from web page

As soon as the user enters a web page link, the browser loads the JavaScript

content along with HTML and CSS on the page. Before extracting the JS from web

page, we have to disable JS load in the browser to prevent the execution of JS

malware code.

Enabling/disabling JS feature deals with browser preferences. The preferences

system of Mozilla browser can be accessed using XPCOM interfaces like

𝑛𝑠𝐼𝑃𝑟𝑒𝑓𝑆𝑒𝑟𝑣𝑖𝑐𝑒 and 𝑛𝑠𝐼𝑃𝑟𝑒𝑓𝐵𝑟𝑎𝑛𝑐ℎ. The below code is used to disable

JavaScript code,

1 var prefSrv = this.prefService = Cc["@mozilla.org/preferences-service;1"]
2 .getService(Ci.nsIPrefService);
3 var PBI = Ci.nsIPrefBranch2;
4 this.mozJSPref = prefSrv.getBranch("javascript.").QueryInterface(PBI);
5 this.mozJSPref.setBoolPref("enabled", false);

Figure 38: Add-on code to disable JavaScript load on web page.

The code in Figure 38 is interpreted as follows: Line 1 in the above code

retrieves the preference services of Mozilla. nsIPrefBranch2 interface, in line 2,

allows the add-on to listen to the changes to preferences. Line 3 retrieves the

"javascript" preference and queues nsIPrefBranch2 interface using QueryInterface().

Later, setBoolPref() method is used to disable the JS by setting "false" to

45

"enabled". Similarly the below line of code enables JS load,

1 this.mozJSPref.setBoolPref("enabled", true);

After disabling JavaScript, as explained in Section 3.4, the content script i.e.,

"content-script.js", is used to extract JS. "content-script.js" uses jQuery element

selector to find all the <script> elements and extract the JavaScript instructions

contained in <script> tags as shown below:

var code="";

$("script").each(function(){

code=code+$(this).html();

});

Sometimes, JavaScript code is also placed in an external file and the location of the

external JavaScript file is specified in the web page using a src attribute of a

<script> element as shown below:

<script src="external_javascript.js"></script>

There is a chance that this external files may contain JavaScript malware code, so

using the code in Figure 39, all the external file‘s URLs are extracted from the web

page. Following is the explanation of the code snippet in Figure 39:

1. "window.location.protocol" returns the protocol of the current web page URL

along with colon(:). For instance, "http:", "https:", "ftp:".

"window.location.host" returns the host name of the web page. For instance,

the hostname of

"http://www.somewebsite.com/tryit.jsp?filename=sample_code" is

46

1 var baseUrl = window.location.protocol + "//" + window.location.host + "/";
2 var Urls = "";
3 var regex = new RegExp("^(?:[a-z]+:)?//", "i");
4 $("script[src]").each(function(){
5 var sourceurl = $(this).attr("src");
6 if(!regex.test(sourceurl))
7 {
8 Urls=Urls+baseUrl;
9 }

10 Urls=Urls+(sourceurl.replace(/^\/+/, ""))+"\n";
11 });

Figure 39: JavaScript to extract all the external script file URLs

"www.somewebsite.com". So, line 1 creates a base URL of the web page.

2. line 4 uses a jQuery element selector to retrieve the external file locations

defined in src attribute of <script> tag.

3. line 6 uses regex to test whether the external files location is relative or

absolute path.

4. Line 8 contains the logic for prepending the base URL to an external file

location, if the external file location is relative path.

5. Finally, the "Urls" variable contains all the external local URLs, and these

URLs will be saved in a temporary file.

Later, the add-on invokes the 𝑜𝑝𝑐𝑜𝑑𝑒𝑠.𝑠ℎ file as shown in Figure 41, which

performs the following two functions:

Creates a temporary file

"TmpD" returns the temporary directory location of the OS. In line 1,

"opcodes.tmp" filename is concatenated to temporary directory path and

47

getFile() method returns a nsIFile object referring to

"<TMP_DIR>/opcodes.tmp" location. Then createUnique() method creates

the requested temporary file.

Invokes opcode.sh

The nsIProcess interface is used to execute a process. nsIProcess requires

executable name to execute and if the executable file requires any parameters

then these parameters need to be passed as args[] to the nsIProcess.

1. Line 3 and 4 creates a nsIFile object referring to executable "/bin/sh".

2. Line 5 and 6 creates an instance of process and initializes it to "/bin/sh"

executable.

3. Line 7 and 8 adds both "opcode.sh" file path and temporary file path to

"args" array. Then the process is executed using run() which executes

the below command internally,

$ /bin/sh
/Users/sravan2j/Downloads/TranscriptaseDetectionAddon/data/opcode.sh
/tmp/opcodes.tmp

Figure 40: command that invokes opcode.sh internally

4.5 Purpose of the Shell script

The opcodes.sh code, shown in Figure 42, performs the following three

functions:

1. Line 1 executes following Java files - 𝐷𝑜𝑤𝑛𝑙𝑜𝑎𝑑𝑇ℎ𝑟𝑒𝑎𝑑.𝑐𝑙𝑎𝑠𝑠,

𝐷𝑜𝑤𝑛𝑙𝑜𝑎𝑑𝑒𝑟𝐴𝑝𝑝.𝑐𝑙𝑎𝑠𝑠, 𝐼𝑚𝑎𝑔𝑒𝐷𝑜𝑤𝑛𝑙𝑜𝑎𝑑𝑒𝑟.𝑐𝑙𝑎𝑠𝑠, and 𝐿𝑜𝑐𝑘.𝑐𝑙𝑎𝑠𝑠, to download

48

1 Cu.import("resource://gre/modules/FileUtils.jsm");
2

3 // create a temporary file
4 var file = FileUtils.getFile("TmpD", ["opcodes.tmp"]);
5 file.createUnique(Ci.nsIFile.NORMAL_FILE_TYPE, 0600);
6

7 var file = Cc["@mozilla.org/file/local;1"].
8 createInstance(Ci.nsILocalFile);
9 file.initWithPath("/bin/sh");

10

11 var process = Cc["@mozilla.org/process/util;1"]
12 .createInstance(Ci.nsIProcess);
13 process.init(file);
14

15 var args =
["/Users/sravan2j/Downloads/TranscriptaseDetectionAddon/data/opcode.sh"];

16 // append temporary file path to parameters
17 args.push(tmpFile.path);
18 process.run(true, args, args.length);

Figure 41: add-on code that creates temporary file and invokes opcode.sh with tem-
porary file

all the external scripts. This java files uses multi threading approach to

download all the external scripts in parallel which reduces the total download

time.

2. After the above step, the entire JavaScript content will be saved in the

/tmp/JSStatements.js file. Line 2 takes the JSStatements.js file as input and

generates opcodes for the JavaScript code in JSStatements.js using the Rhino

JS engine. The output of this step is the "/tmp/opcodes.txt" file.

3. Line 3 executes CheckOpcodes java code which calculates the similarity score

using the opcode similarity technique, between malware_opcodes.txt and the

opcodes.txt file. The output of this step is redirected to "$1", which refers to

the arguments passed to opcodes.sh. The bash command in Figure 40 shows

49

that the /tmp/opcodes.tmp file is passed as an argument while calling

opcode.sh.

1 java -Xmx500m -cp "." data/DownloaderApp data/externalUrls.txt
2 java -cp "./data/js.jar" org.mozilla.javascript.tools.jsc.Main

/tmp/JSStatements.js > /tmp/opcodes.txt
3 java -cp "./data" CheckOpcodes data/malware_opcodes.txt /tmp/opcodes.txt >

$1

Figure 42: opcode.sh shell script code

4.6 Page validation and clean-up step

The add-on gets the similarity score from the opcodes.tmp file. If the score is

less than the threshold value i.e., 0.01, then the web page is considered as a

malicious page or else it is a benign page.

1. If the page is benign, then it enables JavaScript and reloads the web page.

2. If the page is malicious, then the web page won’t be loaded; instead a prompt

is displayed to the user regarding the malware.

At the end, all the temporary files created will be removed as part of the clean-up

step.

4.7 Performance improvements

As the add-on performs lot of steps to validate the web page, the execution

time will be more. So, instead of validating every web page every time, we can skip

the validation during the following scenarios:

50

4.7.1 Fingerprinting web pages

The hashcode of the benign web page should be saved in the user directory. In

the future, when user visits the same web page and if the internal content of the

page is not changed from the last visit, then the hash code of the page remains the

same as the one that was saved on user‘s machine. In this case, we can safely skip

the validation of the web page.

The disadvantage with this approach is that it consumes the user‘s system

memory as it saves the hashcode for every web page the user visits.

We can also improve this approach by saving the hash codes in the cloud

repository. Whenever any user visits the web page, the add-on connects with the

cloud repository and checks if this web page was already validated by any user

earlier or not. If it was validated, is the web page hash code the same? And what is

the validation result? If the hash code is not in the cloud, then it will be validated

by the current user‘s plugin and the result will be stored in the cloud, so that this

data will be useful for other users. Because of this approach, the user‘s system

memory will be saved and also at any point of time, the web page is validated only

once by any user. Necessary security measures should be taken inorder to prevent

the attacks like man-in-the-middle attack, cloud data tampering.

4.7.2 Whitelisting websites

Some popular websites are highly secured and regularly monitored, like

Google, Facebook, Amazon etc. These websites can be added to benign page list by

the user, so that they won‘t be validated by the add-on.

The disadvantage of this approach is that it involves a risk of infection if the

51

whitelisted web pages are infected by malware.

4.8 Using other detection techniques

Currently this add-on uses only opcode graph similarity detection. Other

detection techniques can be used in the add-on by simply changing line 3 of

opcode.sh, shown in 42, to execute a program that implements another detection

technique instead of executing the CheckOpcodes program. The new program

should accept "malware_opcodes.txt" and "/tmp/opcodes.txt" as input files and

the similarity score should be saved in the "/tmp/opcodes.tmp" file. No other

changes are required.

52

CHAPTER 5

Testing

To check the accuracy and performance of the add-on, we used malware web

pages and benign web pages. To create malware samples, we generated different

variants of Transcriptase malware. For benign web pages, we retrieved the

JavaScript dead code from http://tools.w3clubs.com/jojo/.

Entire testing is performed on a system with the configuration specified in

Table 1:

Table 1: System Specifications

System Model MacBook Pro (Retina, 13-inch, Mid 2014)

Processor 2.8 GHz Intel Core i5

RAM 16 GB 1600 MHz DDR3

Storage 120 GB

Firefox version 36.0.4

SDK version Add-on SDK 1.17

Rhino version Rhino 1.7R4, modified to output opcodes during JS compilation

Java version 1.7.0_71

5.1 Generating Transcriptase variants

Transcriptase was written in JScript, so in a windows system it can be

executed by simply double clicking it. From my observation, the generation of each

version takes around 15 minutes.

As explained in Section 2.4, Transcriptase carries its source code as meta

53

instructions and on each execution it creates different variant of its JS source, then

prepends that JS code to all the JavaScript files in its directory. So, I followed the

below steps to create 100 versions:

1. Created an empty JavaScript file in the Transcriptase directory.

2. Executed Transcriptase, which infects the new empty JavaScript file and

converts it to another variant of Transcriptase.

3. Move the older version Transcriptase (or creator Transcriptase) to different

folder.

4. Then created an empty JavaScript file in the current folder where the new

Transcriptase variant exists.

5. Executed the new variant to infect the empty JavaScript file. Go to Step 3 if

the required number of variants aren‘t generated.

The code in Figure 43 automates the above mentioned steps.

1 FOR %%A IN (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
97 98 99 100) DO (

2 transcriptase.js
3 REN transcriptase.js "var%%~nA.*"
4 MOVE "var%%~nA.*" "C:\Users\Sravan\Downloads\Transcriptase\versions"
5 REN empty.js transcriptase.js
6 COPY "C:\Users\Sravan\Downloads\Transcriptase\template\empty.js" .
7)
8 PAUSE

Figure 43: Batch script that automates the Transcriptase variants generations

54

Figure 44: Transcriptase‘s 100 versions.

5.2 Similarity scores and add-on performance

Included console.log() functions in the add-on to log the following details -

opcode similarity score and the add-on execution time taken to validate the web

page. The below sub section deals with comparison of these details for benign and

malware web pages. For testing the add-on, we used 100 samples of benign web

page and morphed malware web pages. Malware web pages are morphed by adding

randomly generated junk code to it.

5.2.1 Addition of 550 lines of dead code

For this experiment, we used benign web page samples with 550 lines of junk

code and also added the same amount of randomly generated junk code to malware

55

web pages. Tables 2 and 3 contain the details of scores and execution time for the

benign and malware samples, respectively. From the table values, we can see that

the scores for benign web pages are in the order of 10−3 whereas the scores for

malware web pages are in the order of 10−4. The graph in Figure 45 clearly shows

that the add-on is able to distinguish malware web pages and benign web pages

correctly. Only 3 out of 100 malware samples have score similar to benign web

pages.

Figure 45: Benign samples scores vs malware samples scores with the addition of 550
lines of dead code

5.2.2 Addition of 5500 lines of dead code

This experiment is same as the above experiment except that here 5500 lines

of dead code was included in malware and benign web pages instead of 500 lines.

Tables 4 and 5 contains the details of scores and execution time for this experiment.

From the table values, we can see that the scores for benign web pages and malware

56

web pages are still in the order of 10−3 and 10−4, respectively. The graph in

Figure 46 clearly shows that even after adding 5500 lines of code, the add-on is able

to distinguish malware web pages and benign web pages correctly. Only 3 out of 100

malware samples have scores similar to benign web pages.

Figure 46: Benign samples scores vs malware samples scores with the addition of 5500
lines of dead code

5.2.3 Addition of 15000 lines of dead code

Here, 15000 lines of dead code were included in malware and benign samples.

From the tables 6 and 7, it is clear that scores of malware web pages are varied by a

very negligible value when compared to previous experiments. So as shown in

Figure 47, the add-on is still able to distinguish malware web pages and benign web

pages correctly.

As mentioned in Section 4.2.4, the scores of malware files and benign files can

57

Figure 47: Benign samples scores vs malware samples scores with the addition of
15000 lines of dead code

be compared to calculate the threshold score value of the opcode similarity

technique. From the tables 2, 3, 4, 5, 6, and 7, except 9 malwares all other malware

scores are in between 0.000369822260 and 0.000369822750. The 9 exception

malware scores are between 0.001423994000 and 0.001423994700. And the benign

web page scores are between 0.001479288900 and 0.001479291400. The same

information is represented with table 8

The threshold value can be any value between 0.00142 and 0.00147. If the

lower percentage of false negative rate is acceptable, then the threshold score can be

chosen between 0.00036 and 0.00147. In case of malware detection, it is always

better to have fewer false negatives, so I use 0.00145 as the threshold score value

for the add-on.

58

5.3 Test for False Positive rate of the add-on

I tested the add-on on popular web sites to detect the "false positive" rate of

the add-on. The popular web site links are retrieved from [34].

The table 9 contains the scores and execution time details. All the scores in

the table are more than the chosen threshold value (i.e., 0.00145), which means that

the add-on validated all the web pages as benign web pages i.e., add-on has zero

false positive rate.

5.4 Splitting Transcriptase code

Transcriptase can be split into several external JS files and then the external

files can be included in a web page. So, the following experiment was performed to

calculate the scores of split files by dividing Transcriptase into a various number of

files.

The code was split based on functions count. The experiment was started by

dividing the Transcriptase code into two files with almost equal number of functions

and then continued till the split files count reaches 76. A parser was developed in

Python to detect the valid start and end point of the JavaScript functions and to

properly split the Transcriptase code. Thus the resultant split files are syntactically

correct. Corresponding parser code is shown in Appendix A, Section A.1.

Table 10 shows the results for various splits. The "Max" and "Min" column

specify the maximum and minimum similarity score among the split files,

respectively. The "count" column specifies the number of files the Transcriptase

code was split into.

Figure 48 is a graphical representation of the Table 10 values. The graph

59

clearly shows that even when the code was split, the minimum score among the

split files is always less than threshold which means that there always

exists at least one split file with score a less than threshold score. Thus, it

is possible to detect the malware even by testing all the external files separately. So,

we can validate all the external scripts parallely to increase the performance of the

add-on.

Figure 48: Graph showing min and max scores of Transcriptase split files.

60

Sc
or

e

T
im

e
(m

ill
is

ec
on

ds
)

Sc
or

e

T
im

e
(m

ill
is

ec
on

ds
)

Sc
or

e

T
im

e
(m

ill
is

ec
on

ds
)

Sc
or

e

T
im

e
(m

ill
is

ec
on

ds
)

0.00147929 1136 0.00147929 1135 0.00147929 1482 0.0014792903 1232

0.00147929 1172 0.0014792896 1124 0.0014792896 1304 0.0014792907 1115

0.00147929 1150 0.0014792907 1113 0.00147929 1245 0.00147929 1308

0.00147929 1125 0.0014792903 1178 0.0014792907 1274 0.0014792896 1159

0.0014792893 1080 0.0014792896 1133 0.0014792896 1235 0.00147929 1125

0.00147929 1223 0.0014792903 1133 0.0014792903 1242 0.0014792903 1228

0.0014792896 1125 0.00147929 1134 0.0014792903 1246 0.0014792896 1180

0.0014792903 1132 0.0014792893 1106 0.0014792903 1250 0.0014792893 1131

0.001479291 1120 0.00147929 1142 0.0014792903 1257 0.00147929 1136

0.0014792903 1198 0.0014792896 1159 0.0014792903 1255 0.0014792907 1132

0.0014792903 1134 0.0014792896 1125 0.0014792903 1214 0.0014792896 1141

0.0014792907 1131 0.0014792907 1122 0.0014792903 1152 0.00147929 1134

0.0014792903 1108 0.00147929 1176 0.0014792896 1116 0.0014792896 1124

0.00147929 1110 0.0014792903 1134 0.0014792907 1138 0.0014792903 1410

0.00147929 1124 0.0014792893 1113 0.00147929 1105 0.0014792907 1123

0.0014792893 1122 0.00147929 1168 0.0014792907 1093 0.00147929 1150

0.0014792907 1116 0.00147929 1135 0.0014792903 1175 0.0014792903 1175

0.0014792896 1117 0.0014792907 1118 0.0014792907 1121 0.0014792903 1116

0.0014792903 1198 0.0014792903 1148 0.0014792903 1127 0.0014792893 1125

0.00147929 1122 0.0014792907 1102 0.0014792903 1167 0.0014792896 1143

0.00147929 1137 0.0014792893 1144 0.0014792903 1105 0.0014792903 1223

0.00147929 1204 0.0014792896 1098 0.0014792907 1113 0.0014792903 1120

0.0014792907 1130 0.00147929 1152 0.0014792896 1111 0.0014792907 1140

0.00147929 1104 0.0014792903 1129 0.00147929 1140 0.00147929 1213

0.0014792903 1119 0.00147929 1215 0.00147929 1149 0.00147929 1119

Table 2: Table illustrating the scores and add-on execution time for 100 benign web
pages, in four columns (i.e., 25 samples per column). Benign webpages are generated
with 550 lines of dead code.

61

Sc
or

e

T
im

e
(m

ill
is

ec
on

ds
)

Sc
or

e

T
im

e
(m

ill
is

ec
on

ds
)

Sc
or

e

T
im

e
(m

ill
is

ec
on

ds
)

Sc
or

e

T
im

e
(m

ill
is

ec
on

ds
)

0.00036982258 7897 0.00036982243 6707 0.00036982258 7888 0.0003698225 6642

0.00036982258 6875 0.001423994 7493 0.00036982243 8133 0.00036982234 7355

0.00036982258 6284 0.0003698224 6041 0.0003698224 8576 0.00036982235 7489

0.0014239943 6430 0.00036982266 7119 0.00036982258 7785 0.00036982266 7072

0.00036982234 7629 0.0003698225 7223 0.00036982243 8536 0.00036982258 6941

0.00036982238 7682 0.00036982258 7159 0.00036982234 7118 0.0003698225 7372

0.00036982266 7774 0.0003698225 8297 0.0003698225 7138 0.00036982243 7832

0.00036982266 8075 0.00036982243 6949 0.00036982243 6917 0.00036982258 7158

0.0003698225 6127 0.00036982243 8550 0.00036982243 6475 0.00036982258 6603

0.00036982258 7312 0.0003698225 7157 0.00036982243 8109 0.0003698224 8482

0.00036982258 8038 0.0003698225 7532 0.00036982258 7013 0.00036982243 7718

0.00036982258 10123 0.0003698224 6904 0.00036982258 6740 0.00036982258 6723

0.00036982236 8091 0.0003698225 6679 0.0003698225 7239 0.00036982258 8046

0.00036982245 6392 0.00036982258 7031 0.0003698225 7138 0.0003698225 7845

0.00036982238 6518 0.00036982258 6438 0.00036982258 6088 0.00036982258 7862

0.00036982251 7121 0.00036982266 8230 0.00036982243 7529 0.00036982258 9817

0.00036982243 6309 0.0003698225 9986 0.0003698224 8031 0.0003698224 7804

0.00036982258 8646 0.0003698225 6958 0.0003698224 7753 0.0003698225 9849

0.00036982243 6706 0.00036982243 10166 0.0014239943 6494 0.0003698225 9302

0.00036982258 6617 0.0003698225 8358 0.00036982258 6815 0.00036982256 7239

0.00036982241 6502 0.00036982251 6129 0.00036982266 8174 0.00036982263 7652

0.00036982232 7289 0.00036982249 6732 0.00036982275 8314 0.0003698225 7261

0.0003698224 7236 0.00036982258 7730 0.00036982266 7465 0.00036982258 6398

0.00036982258 7746 0.00036982258 7719 0.00036982266 7113 0.0003698225 8812

0.00036982243 7267 0.00036982258 7992 0.00036982258 6757 0.00036982243 8357

Table 3: Table illustrating the scores and add-on execution time for 100 malware web
pages, in four columns (i.e., 25 samples per column). Malware webpages are morphed
with 550 lines of dead code.

62

Sc
or

e

T
im

e
(m

ill
is

ec
on

ds
)

Sc
or

e

T
im

e
(m

ill
is

ec
on

ds
)

Sc
or

e

T
im

e
(m

ill
is

ec
on

ds
)

Sc
or

e

T
im

e
(m

ill
is

ec
on

ds
)

0.0014792907 2287 0.0014792903 1937 0.00147929 2379 0.0014792903 3148

0.00147929 2447 0.0014792893 2813 0.0014792896 1966 0.0014792907 2210

0.00147929 2215 0.0014792903 2153 0.0014792903 2728 0.0014792903 2094

0.0014792907 2376 0.0014792903 2604 0.00147929 2167 0.0014792903 2068

0.00147929 2188 0.0014792914 2221 0.0014792903 2022 0.0014792907 2462

0.0014792903 2661 0.00147929 2152 0.0014792907 2383 0.0014792893 2060

0.0014792907 1989 0.0014792903 2404 0.0014792903 2033 0.00147929 2074

0.00147929 2137 0.00147929 2260 0.00147929 2463 0.0014792903 2254

0.0014792903 2001 0.0014792907 2110 0.0014792903 2535 0.0014792893 2564

0.0014792907 2003 0.0014792893 2226 0.0014792903 2026 0.0014792903 2084

0.00147929 2646 0.0014792903 2134 0.0014792907 2030 0.0014792903 2406

0.0014792903 1969 0.0014792903 2115 0.0014792907 1944 0.0014792903 2437

0.0014792903 1972 0.0014792903 2003 0.0014792893 2239 0.0014792889 2317

0.0014792903 1937 0.0014792893 1989 0.0014792893 2270 0.0014792903 2001

0.0014792903 1992 0.00147929 2599 0.00147929 1954 0.0014792903 1933

0.0014792896 2612 0.0014792893 2277 0.0014792907 1961 0.00147929 1994

0.0014792903 2092 0.0014792896 1971 0.0014792893 2240 0.0014792903 1967

0.0014792907 2453 0.0014792903 2388 0.0014792907 2280 0.00147929 2279

0.0014792903 2028 0.00147929 1983 0.00147929 1966 0.0014792903 1968

0.00147929 2018 0.0014792903 1996 0.0014792903 1985 0.001479291 1978

0.0014792903 2010 0.0014792903 1990 0.00147929 1978 0.0014792907 1946

0.0014792896 1981 0.0014792903 2034 0.00147929 1995 0.0014792903 1980

0.0014792893 1967 0.00147929 1980 0.0014792907 1987 0.00147929 1942

0.0014792903 1938 0.0014792903 2005 0.00147929 1962 0.00147929 1989

0.0014792896 2324 0.0014792903 2103 0.0014792907 2497 0.0014792903 1985

Table 4: Table illustrating the scores and add-on execution time for 100 benign web
pages, in four columns (i.e., 25 samples per column). Benign webpages are generated
with 5500 lines of dead code.

63

Sc
or

e

T
im

e
(m

ill
is

ec
on

ds
)

Sc
or

e

T
im

e
(m

ill
is

ec
on

ds
)

Sc
or

e

T
im

e
(m

ill
is

ec
on

ds
)

Sc
or

e

T
im

e
(m

ill
is

ec
on

ds
)

0.00036982243 8233 0.00036982243 8232 0.0003698225 8499 0.00036982258 7472

0.0003698225 7442 0.0014239947 8681 0.0003698225 7973 0.00036982226 8276

0.0003698225 7297 0.0003698225 6720 0.0003698224 8310 0.00036982235 8916

0.0014239941 7827 0.0003698225 7818 0.00036982258 7843 0.00036982243 7925

0.00036982258 7850 0.00036982258 8466 0.00036982258 7476 0.00036982258 7405

0.00036982247 8132 0.00036982243 7717 0.00036982234 7933 0.0003698224 8014

0.00036982258 8478 0.0003698225 9749 0.00036982258 7844 0.0003698225 8181

0.0003698225 8910 0.00036982243 7992 0.00036982234 9089 0.0003698225 7358

0.0003698224 7029 0.0003698225 7495 0.00036982243 7412 0.00036982266 7505

0.00036982234 8039 0.00036982258 7474 0.0003698225 9174 0.00036982275 8958

0.00036982234 7937 0.00036982243 7743 0.0003698225 7246 0.00036982258 8510

0.00036982258 8008 0.00036982266 7970 0.0003698225 7440 0.0003698225 7740

0.00036982243 8012 0.00036982266 8106 0.00036982258 8472 0.00036982258 8390

0.00036982257 7884 0.00036982258 7892 0.0003698224 7832 0.00036982258 8352

0.00036982241 8593 0.0003698225 7070 0.0003698225 6720 0.00036982243 8671

0.00036982249 8147 0.0003698225 7188 0.00036982243 8236 0.0003698224 8519

0.0003698225 7143 0.00036982232 8449 0.00036982258 8064 0.0003698225 6830

0.0003698225 8747 0.00036982266 7731 0.00036982243 8323 0.0003698224 8421

0.00036982258 7226 0.00036982258 8379 0.0014239943 7039 0.00036982243 8282

0.00036982258 7001 0.00036982243 9518 0.00036982251 7213 0.00036982249 7813

0.00036982249 6871 0.00036982249 9287 0.00036982243 9476 0.00036982252 8132

0.00036982243 7892 0.00036982252 8936 0.00036982266 8468 0.0003698224 7930

0.0003698225 7989 0.0003698224 8250 0.00036982243 8304 0.0003698225 7418

0.00036982234 7814 0.0003698224 8658 0.00036982258 7766 0.0003698225 9372

0.0003698225 8370 0.00036982258 8248 0.00036982258 7644 0.00036982266 8933

Table 5: Table illustrating the scores and add-on execution time for 100 malware web
pages, in four columns (i.e., 25 samples per column). Malware webpages are morphed
with 5500 lines of dead code.

64

Sc
or

e

T
im

e
(m

ill
is

ec
on

ds
)

Sc
or

e

T
im

e
(m

ill
is

ec
on

ds
)

Sc
or

e

T
im

e
(m

ill
is

ec
on

ds
)

Sc
or

e

T
im

e
(m

ill
is

ec
on

ds
)

0.0014792903 3241 0.001479291 3301 0.0014792903 3274 0.0014792903 3484

0.0014792903 3180 0.00147929 3162 0.00147929 3355 0.0014792896 3342

0.00147929 3172 0.0014792896 3134 0.00147929 3345 0.0014792903 3415

0.0014792893 3291 0.0014792903 3150 0.00147929 3185 0.0014792896 3409

0.001479291 3161 0.0014792896 3545 0.0014792907 3184 0.0014792896 3536

0.0014792903 3178 0.00147929 3104 0.00147929 3445 0.00147929 3540

0.0014792907 3182 0.00147929 3167 0.0014792896 4519 0.0014792903 3794

0.00147929 3378 0.0014792896 3307 0.00147929 3448 0.0014792896 3786

0.00147929 3575 0.0014792907 3192 0.0014792907 3361 0.0014792896 3696

0.00147929 3563 0.0014792896 3131 0.00147929 3181 0.0014792896 3513

0.0014792903 3271 0.0014792903 3216 0.0014792903 3383 0.0014792903 3405

0.0014792907 3188 0.0014792889 3320 0.0014792903 4725 0.0014792907 3608

0.0014792903 3122 0.0014792896 3137 0.0014792903 3602 0.00147929 3275

0.00147929 3467 0.0014792903 3225 0.0014792907 3217 0.0014792893 3439

0.0014792903 3197 0.0014792903 3328 0.00147929 3464 0.00147929 3700

0.0014792907 3149 0.0014792903 3329 0.00147929 3159 0.0014792907 3230

0.0014792893 3139 0.00147929 3201 0.0014792903 4870 0.00147929 3221

0.0014792893 3100 0.0014792896 3171 0.0014792896 3244 0.0014792907 3199

0.00147929 3206 0.0014792903 4664 0.00147929 3292 0.0014792896 3239

0.0014792903 3139 0.00147929 3105 0.00147929 3417 0.00147929 3133

0.0014792896 3159 0.0014792893 3177 0.0014792903 3341 0.0014792903 3300

0.001479291 3102 0.00147929 3467 0.00147929 4321 0.0014792903 3420

0.0014792903 3267 0.0014792903 3426 0.00147929 3587 0.0014792896 5329

0.00147929 3359 0.00147929 3421 0.0014792893 3333 0.0014792907 3614

0.0014792903 3412 0.00147929 3400 0.001479291 3289 0.0014792903 3450

Table 6: Table illustrating the scores and add-on execution time for 100 benign web
pages, in four columns (i.e., 25 samples per column). Benign webpages are generated
with 15000 lines of dead code.

65

Sc
or

e

T
im

e
(m

ill
is

ec
on

ds
)

Sc
or

e

T
im

e
(m

ill
is

ec
on

ds
)

Sc
or

e

T
im

e
(m

ill
is

ec
on

ds
)

Sc
or

e

T
im

e
(m

ill
is

ec
on

ds
)

0.00036982258 9192 0.0003698224 9179 0.0003698225 9225 0.00036982266 8274

0.00036982258 9105 0.0003698225 7719 0.0003698225 9240 0.00036982258 8962

0.0003698225 9104 0.00036982258 8207 0.0003698225 9458 0.00036982263 9132

0.0003698225 9303 0.00036982243 9510 0.00036982266 8810 0.0003698225 8588

0.00036982258 8568 0.00036982258 9779 0.00036982243 8545 0.0003698224 8185

0.00036982241 9942 0.0003698225 9537 0.0014239943 8158 0.0003698224 8915

0.00036982266 9502 0.00036982266 9766 0.00036982258 8540 0.00036982266 9395

0.0003698224 9791 0.0003698225 8802 0.0003698225 9080 0.00036982258 8165

0.0003698225 7951 0.00036982243 10122 0.00036982258 9233 0.00036982234 8113

0.0003698225 8565 0.0003698225 9180 0.0003698224 8556 0.0003698225 9760

0.0003698225 8059 0.00036982234 8254 0.0003698224 9702 0.0003698224 9330

0.0003698225 8889 0.00036982258 8146 0.00036982258 9082 0.00036982258 8756

0.0003698225 8884 0.00036982258 7851 0.0003698225 9281 0.0003698225 9336

0.00036982235 9126 0.00036982258 8672 0.00036982258 8465 0.0003698225 8828

0.00036982251 9631 0.00036982258 7948 0.00036982258 9770 0.00036982258 9277

0.0003698226 8128 0.00036982266 8689 0.00036982258 9211 0.0003698225 9478

0.00036982243 7919 0.0003698225 8264 0.00036982243 9809 0.00036982258 7847

0.0003698225 9433 0.0003698225 8562 0.0003698224 9109 0.00036982266 9312

0.0003698225 8202 0.00036982258 8119 0.001423994 9592 0.00036982266 8933

0.00036982243 8400 0.00036982266 8845 0.0014239942 1070 0.00036982249 9612

0.00036982252 9783 0.00036982266 8845 0.00036982266 9750 0.00036982258 8495

0.00036982258 8811 0.00036982266 8845 0.00036982243 9469 0.0003698224 8855

0.00036982275 10339 0.0003698225 9078 0.0003698224 8303 0.00036982258 7895

0.0003698225 8925 0.00036982258 9246 0.00036982258 8821 0.0003698224 10477

0.00036982243 9367 0.0003698224 8687 0.00036982258 8830 0.00036982243 8510

Table 7: Table illustrating the scores and add-on execution time for 100 malware
web pages, in four columns (i.e., 25 samples per column). Malware web pages are
morphed with 15000 lines of dead code.

66

Table 8: Table illustrating the max and min scores for all the sample files, after
comparing the scores from the tables 2, 3, 4, 5, 6, and 7.

Min Score Max Score

291 malware samples 0.000369822260 0.000369822750

9 exceptional malware samples 0.001423994000 0.001423994700

300 benign samples 0.001479288900 0.001479291400

67

Table 9: Table contains scores and add-on execution time details for popular web
pages.

Web page Score Time (Milli seconds) Result

https://www.google.com/ 0.025195263 2189 Benign page

https://www.facebook.com/ 0.08652405 3190 Benign page

http://www.baidu.com/ 0.051652893 4442 Benign page

http://www.twitter.com/ 0.8132002 4076 Benign page

http://www.taobao.com 0.29001402 3401 Benign page

http://www.qq.com/ 0.014076417 3177 Benign page

https://www.linkedin.com 0.0916255 4309 Benign page

https://live.com 0.30142236 1379 Benign page

http://www.sina.com.cn/ 0.04421566 2513 Benign page

http://us.weibo.com/gb 0.210642001 2921 Benign page

http://www.hao123.com/ 0.046390533 5314 Benign page

http://www.bing.com/ 0.30142236 1323 Benign page

http://www.apple.com/ 0.0625 5505 Benign page

http://www.aliexpress.com/ 0.06497499 1794 Benign page

http://www.imdb.com/ 0.041259766 8022 Benign page

http://www.alibaba.com/ 0.0047562416 3206 Benign page

http://www.ask.com/ 0.051652893 4611 Benign page

https://www.netflix.com 0.0625 10046 Benign page

http://www.naver.com/ 0.30142236 2504 Benign page

http://diply.com/ 0.05702829 8612 Benign page

https://mail.google.com 0.30142236 1713 Benign page

http://www.youku.com/ 0.051652893 4044 Benign page

http://www.flipkart.com/ 0.018838914 1604 Benign page

https://www.amazon.com/ 0.100754 2839 Benign page

http://www.wikipedia.org/ 0.094681033 1914 Benign page

68

Table 10: Splitting Transcriptase into several files

Count Min Max Count Min Max

1 3.70E-04 3.70E-04 20 1.68E-18 0.018838914

2 1.28E-18 1.16E-17 21 1.81E-17 0.018838914

3 1.77E-19 1.39E-17 22 1.69E-19 0.018838914

4 6.17E-19 1.75E-17 23 9.64E-20 0.018838914

5 4.41E-20 3.84E-04 24 7.37E-19 0.018838914

6 5.36E-18 0.00153787 26 1.61E-19 0.01883891

7 4.57E-19 3.84E-04 27 2.27E-17 0.018838914

8 2.19E-18 0.00153787 29 9.72E-19 0.018838914

9 1.86E-17 0.00153787 31 3.85E-18 0.018838914

10 1.69E-19 0.003460208 33 6.35E-18 0.018838914

11 1.73E-18 0.00615148 35 4.33E-18 0.018838914

12 3.91E-18 0.003460208 38 4.37E-18 0.018838914

13 5.64E-20 0.00615148 42 8.12E-18 0.018838914

14 5.47E-19 0.003460208 46 4.41E-20 0.018838914

15 1.88E-18 0.00615148 51 5.21E-18 0.018838914

16 8.01E-20 0.009611688 57 1.96E-17 0.018838914

17 1.26E-18 0.013840835 65 3.84E-04 0.024605926

18 5.07E-19 0.009611691 76 3.84E-04 0.024605926

19 8.01E-19 0.018838914

69

CHAPTER 6

Conclusion and Future Enhancements

The aim of this research was to build a Mozilla add-on to detect metamorphic

JavaScript malware embedded in a web page. For this purpose, I implemented an

add-on using the Mozilla add-on SDK. Internally, the add-on uses the Rhino

JavaScript engine to generate opcodes for the JavaScript content of a web page. As

the opcode graph similarity technique performs better while classifying the files with

similar opcode statistics, this technique was used in the add-on as a malware

detection technique. Test results from chapter 5 show that a threshold score value

0.00145 is able to classify the Transcriptase malware family viruses and benign web

pages properly even after adding significant amount of junk code. A similar

approach can be used for all the different types of metamorphic malware.

Test results also show that execution time for the add-on is around 1 to 4

seconds for benign web pages and 6 to 11 seconds for malware web pages. Even

though the execution overhead seems significant, the user is able to view the HTML

and CSS content of the page properly during the add-on execution period. As

discussed in Section 4.7.1, future enhancements for this thesis can include extending

the add-on to use the cloud to increase the add-on performance. This enhancement

requires efficient security measures, so that an intruder can’t eavesdrop/tamper with

the information passed to and from cloud.

Future enhancements also include eliminating the burden of validating some

external JavaScript files by storing their links as white lists. For instance, several

web pages may have JavaScript code to display Google Ads, as Google is secured

70

and regularly monitored, we can safely consider all the external Google Ads related

JavaScript files as benign files. This approach may also involve some risk if any of

the web page in the white list is attacked.

Different malware detection techniques can be added to the add-on to increase

the detection rate. As discussed in Section 4.8, the add-on provides simple way to

include other detection techniques.

71

LIST OF REFERENCES

[1] Vold, Erik, Will Bamberg, Kosmodrey, and Aviav. Add-on SDK Tutorials.
Mozilla Developer Network. Web. Retrieved 25 Sept. 2014, from
https://developer.mozilla.org/en-US/Add-ons/SDK/Tutorials

[2] Anderson, B., Quist, D., Neil, J., Storlie, C., & Lane, T. (2011). Graph-based
malware detection using dynamic analysis. Journal in Computer Virology, 7(4),
247-258.

[3] Jetpack. MozillaWiki. Web. Retrieved 16 Dec. 2014, from
https://wiki.mozilla.org/Jetpack

[4] Musale, M., Austin, T. H., & Stamp, M. (2014). Hunting for metamorphic
JavaScript malware. Journal of Computer Virology and Hacking Techniques,
1-14.

[5] Ferrie, Peter. READ THE TRANSCRIPT. Virus Bulletin. (May 2013).
https://www.virusbtn.com/pdf/magazine/2013/201305.pdf

[6] Protecting The Reputation Of Your Online Business, StopTheHacker. (Feb.
2012).
https://www.stopthehacker.com/wp-content/uploads/2012/02/
Protecting-The-Reputation-Of-Your-Online-Business4.pdf

[7] Sanger, David E., and Nicole Perlroth. Bank Hackers Steal Millions via
Malware. The New York Times (14 Feb. 2015). Web. Retrieved 17 Feb. 2015,
from
http://www.nytimes.com/2015/02/15/world/bank-hackers-steal-
millions-via-malware.html?_r=0

[8] Runwal, N., Low, R. M., & Stamp, M. (2012). Opcode graph similarity and
metamorphic detection. Journal in Computer Virology, 8(1-2), 37-52

[9] Sophisticated Malware Forecasted to Escalate in 2015, Experts Report. (2 Feb.
2015). Retrieved 24 Feb. 2015, from
https://www.allclearid.com/blog/sophisticated-malware-forecasted-
to-escalate-in-2015-experts-report

[10] SilverRhino, Kevin G. Coleman. Cybersecurity Is No Longer an Option. C4ISR
& Networks. (12 Jan. 2015). Web. Retrieved 7 Feb. 2015, from
http://www.c4isrnet.com/story/military-tech/blog/net-
defense/2015/01/12/coleman-cybersecurity-imperative/21632093/

72

https://developer.mozilla.org/en-US/Add-ons/SDK/Tutorials
https://wiki.mozilla.org/Jetpack
https://www.virusbtn.com/pdf/magazine/2013/201305.pdf
https://www.stopthehacker.com/wp-content/uploads/2012/02/Protecting-The-Reputation-Of-Your-Online-Business4.pdf
https://www.stopthehacker.com/wp-content/uploads/2012/02/Protecting-The-Reputation-Of-Your-Online-Business4.pdf
http://www.nytimes.com/2015/02/15/world/bank-hackers-steal-millions-via-malware.html?_r=0
http://www.nytimes.com/2015/02/15/world/bank-hackers-steal-millions-via-malware.html?_r=0
https://www.allclearid.com/blog/sophisticated-malware-forecasted-to-escalate-in-2015-experts-report
https://www.allclearid.com/blog/sophisticated-malware-forecasted-to-escalate-in-2015-experts-report
http://www.c4isrnet.com/story/military-tech/blog/net-defense/2015/01/12/coleman-cybersecurity-imperative/21632093/
http://www.c4isrnet.com/story/military-tech/blog/net-defense/2015/01/12/coleman-cybersecurity-imperative/21632093/

[11] Schiffman, Mike. A Brief History of Malware Obfuscation. Cisco Blog RSS.
Cisco. (15 Feb. 2010). Web. Retrieved 18 Nov. 2014, from
http://blogs.cisco.com/security/a_brief_history_of_malware_
obfuscation_part_1_of_2

[12] Runwal, N. (2011). Graph technique for metamorphic virus detection.

[13] Mycroft Project: Search Engine Plugins - Firefox IE Chrome. Web. Retrieved
13 Feb. 2015, from http://mycroftproject.com/

[14] Nachenberg, C. (1996). Understanding and managing polymorphic viruses. The
Symantec Enterprise Papers, 30, 16.

[15] Sharma, A., & Sahay, S. (2014). Evolution and detection of polymorphic and
metamorphic malwares: A survey. ArXiv Preprint arXiv:1406.7061,

[16] Stamp, M. (2011). Information security: principles and practice. John Wiley &
Sons.

[17] Creating a File on Client Side Using JavaScript. Stack Overflow. Web.
Retrieved 12 Dec. 2014, from http://stackoverflow.com/a/3950151

[18] Li, X., Loh, P. K., & Tan, F. (2011). Mechanisms of polymorphic and
metamorphic viruses. Paper presented at the Intelligence and Security
Informatics Conference (EISIC), 2011 European, 149-154.

[19] Tanenbaum, Andrew S. Modern Operating Systems. Second ed. Englewood
Cliffs, NJ: Prentice Hall, 1992. Print. Chapter 9, pp. 617-637.

[20] Worthman, Ernest. The Next Big Threat: AI Malware. Semiconductor
Engineering. (7 July 2014). Web. Retrieved 14 Jan. 2015, from
http://semiengineering.com/the-next-big-threat-ai-malware/

[21] Stepan, A. E. (2005). Defeating polymorphism: Beyond emulation. Paper
presented at the Proceedings of the Virus Bulletin International Conference.

[22] Ször, P., & Ferrie, P. (2001). Hunting for metamorphic. Paper presented at the
Virus Bulletin Conference.

[23] Desai, P., & Stamp, M. (2010). A highly metamorphic virus generator.
International Journal of Multimedia Intelligence and Security, 1(4), 402-427.

[24] Orr. The Viral Darwinism of W32.Evol. VX Heaven. (Jan. 2006). Web.
Retrieved 16 Oct. 2014, from http://vxheaven.org/lib/vor00.html

[25] Santanam, R. (2010). Cyber security, cyber crime and cyber forensics:
Applications and perspectives: Applications and perspectives IGI Global

73

http://blogs.cisco.com/security/a_brief_history_of_malware_obfuscation_part_1_of_2
http://blogs.cisco.com/security/a_brief_history_of_malware_obfuscation_part_1_of_2
http://mycroftproject.com/
http://stackoverflow.com/a/3950151
http://semiengineering.com/the-next-big-threat-ai-malware/
http://vxheaven.org/lib/vor00.html

[26] Metamorphism and Self-Compilation in JavaScript. VX Heaven. (Dec. 2012).
Web. Retrieved 04 Dec. 2014, from http://vxheaven.org/lib/vsp45.html#c1

[27] Greg Brail, Norris Boyd, Svein Atle, and Hannes Wallnöfer. Rhino
Documentation. Mozilla Developer Network. Web. Retrieved 06 Oct. 2014, from
https://developer.mozilla.org/en-US/docs/Rhino_documentation

[28] Transcriptase JavaScript Malware source.
http://spth.virii.lu/Transcriptase.rar

[29] Prabhu, Amar. Working of Rhino JavaScript Engine. (2 Nov. 2012). Web.
Retrieved 21 Oct. 2014, from
http://www.quora.com/How-does-a-JavaScript-engine-work

[30] Abstract Syntax Tree. Wikipedia. Wikimedia Foundation. Web. Retrieved 09
Jan. 2015, from http://en.wikipedia.org/wiki/Abstract_syntax_tree

[31] Electrolysis/Firefox. MozillaWiki. Web. Retrieved 12 Feb. 2015, from
https://wiki.mozilla.org/Electrolysis/Firefox

[32] Eric Shepherd, Kris Maglione, and Will Bamberg. XUL Tutorial. Mozilla
Developer Network. Web. Retrieved 3 Sept. 2014, from
https://developer.mozilla.org/en-US/Add-ons/Overlay_Extensions

[33] Will Bamberg, and Erik Vold. SDK and XUL Comparison. Mozilla Developer
Network. Web. Retrieved 12 Sept. 2014, from
https://developer.mozilla.org/en-US/Add-ons/SDK/Guides/SDK_vs_XUL

[34] List of Most Popular Websites. Wikipedia. Wikimedia Foundation. Web.
Retrieved 4 Apr. 2015, from
http://en.wikipedia.org/wiki/List_of_most_popular_websites

74

http://vxheaven.org/lib/vsp45.html#c1
https://developer.mozilla.org/en-US/docs/Rhino_documentation
http://spth.virii.lu/Transcriptase.rar
http://www.quora.com/How-does-a-JavaScript-engine-work
http://en.wikipedia.org/wiki/Abstract_syntax_tree
https://wiki.mozilla.org/Electrolysis/Firefox
https://developer.mozilla.org/en-US/Add-ons/Overlay_Extensions
https://developer.mozilla.org/en-US/Add-ons/SDK/Guides/SDK_vs_XUL
http://en.wikipedia.org/wiki/List_of_most_popular_websites

APPENDIX

Code snippets

A.1 Python parser

Listing A.1: The parser code detects the valid start and end point of the JavaScript

functions and properly splits the Transcriptase code.

1 with open("transcriptase.js", "r") as ins:

2 total_functions = 1000

3 line = ins.read()

4 k = sys.argv[1]

5 required = (int)(total_functions/k)

6 cnt,braces,rbraces,sbraces,brackets_match,func_ind = 0,0,0,0,0,0

7 skip, eachfun_done = False, False

8 data, skip_char = ’’, ’’

9 function_start = True

10 func = [’f’,’u’,’n’,’c’,’t’,’i’,’o’,’n’]

11 for c in line:

12 if cnt == required and eachfun_done == True:

13 cnt = 0

14 eachfun_done = False

15 #write data into a file

16 data=’’

17 if (c==’\textquotedblleft’ or c=="\textquoteleft") and skip==False:

18 skip = True

19 data = data+c

20 skip_char = c

75

21 continue

22 if skip == True:

23 data = data+c

24 if skip_char == c:

25 skip = False

26 skip_char = ’’

27 continue

28 if c == ’(’:

29 rbraces+=1

30 elif c == ’)’:

31 rbraces-=1

32 if c == ’[’:

33 sbraces+=1

34 elif c == ’]’:

35 sbraces-=1

36 if c == ’{’:

37 if function_start==True:

38 function_start=False

39 braces+=1

40 elif c == ’}’:

41 braces-=1

42 if braces == 0 and sbraces ==0 and rbraces == 0:

43 if function_start==False:

44 eachfun_done = True

45 else:

46 data = data +c

47 continue

76

48 if func[func_ind] == c:

49 func_ind+=1

50 else:

51 func_ind=0

52 if func_ind == 8:

53 total_functions+=1

54 cnt+=1

55 function_start=True

56 eachfun_done = False

57 func_ind=0

58 data+=c

59 if data != "":

60 cnt = 0

61 eachfun_done = False

62 #write data into a file

63 data=’’

77

	San Jose State University
	SJSU ScholarWorks
	Spring 5-22-2015

	FIREFOX ADD-ON FOR METAMORPHIC JAVASCRIPT MALWARE DETECTION
	Sravan Kumar Reddy Javaji
	Recommended Citation

	Introduction
	Problem
	Proposed Solution
	A Browser Plugin for Detecting Malware

	Background
	Encrypted Malware
	Polymorphic Malware
	Metamorphic Malware
	Register renaming
	Dead code insertion
	Subroutine permutation
	Equivalent code substitution
	Transposition
	Changing control flow
	Subroutine inlining and outlining

	Transcriptase
	Permutator
	Variable/Function-Name randomization
	Meta-Language Symbols
	Code Derivation
	Variable/Function insertion

	Rhino
	Architecture
	Modification

	Firefox Add-on Development
	Firefox vs Chrome
	SDK vs XUL
	Chrome Authority Usage
	Content Scripts

	Implementation
	Malicious add-on
	Transcriptase detection add-on
	Malware Detection Technique
	Opcode Graph Similarity Technique
	Opcode Graph
	Similarity Score Calculation

	Transcriptase detection add-on architecture
	JavaScript extraction from web page
	Purpose of the Shell script
	Page validation and clean-up step
	Performance improvements
	Fingerprinting web pages
	Whitelisting websites

	Using other detection techniques

	Testing
	Generating Transcriptase variants
	Similarity scores and add-on performance
	Addition of 550 lines of dead code
	Addition of 5500 lines of dead code
	Addition of 15000 lines of dead code

	Test for False Positive rate of the add-on
	Splitting Transcriptase code

	Conclusion and Future Enhancements
	Code snippets
	Python parser

