811 research outputs found

    Efficient Solving of Quantified Inequality Constraints over the Real Numbers

    Full text link
    Let a quantified inequality constraint over the reals be a formula in the first-order predicate language over the structure of the real numbers, where the allowed predicate symbols are \leq and <<. Solving such constraints is an undecidable problem when allowing function symbols such sin\sin or cos\cos. In the paper we give an algorithm that terminates with a solution for all, except for very special, pathological inputs. We ensure the practical efficiency of this algorithm by employing constraint programming techniques

    Delta-Complete Decision Procedures for Satisfiability over the Reals

    Full text link
    We introduce the notion of "\delta-complete decision procedures" for solving SMT problems over the real numbers, with the aim of handling a wide range of nonlinear functions including transcendental functions and solutions of Lipschitz-continuous ODEs. Given an SMT problem \varphi and a positive rational number \delta, a \delta-complete decision procedure determines either that \varphi is unsatisfiable, or that the "\delta-weakening" of \varphi is satisfiable. Here, the \delta-weakening of \varphi is a variant of \varphi that allows \delta-bounded numerical perturbations on \varphi. We prove the existence of \delta-complete decision procedures for bounded SMT over reals with functions mentioned above. For functions in Type 2 complexity class C, under mild assumptions, the bounded \delta-SMT problem is in NP^C. \delta-Complete decision procedures can exploit scalable numerical methods for handling nonlinearity, and we propose to use this notion as an ideal requirement for numerically-driven decision procedures. As a concrete example, we formally analyze the DPLL framework, which integrates Interval Constraint Propagation (ICP) in DPLL(T), and establish necessary and sufficient conditions for its \delta-completeness. We discuss practical applications of \delta-complete decision procedures for correctness-critical applications including formal verification and theorem proving.Comment: A shorter version appears in IJCAR 201

    Proof Generation from Delta-Decisions

    Full text link
    We show how to generate and validate logical proofs of unsatisfiability from delta-complete decision procedures that rely on error-prone numerical algorithms. Solving this problem is important for ensuring correctness of the decision procedures. At the same time, it is a new approach for automated theorem proving over real numbers. We design a first-order calculus, and transform the computational steps of constraint solving into logic proofs, which are then validated using proof-checking algorithms. As an application, we demonstrate how proofs generated from our solver can establish many nonlinear lemmas in the the formal proof of the Kepler Conjecture.Comment: Appeared in SYNASC'1

    Branch-and-Prune Search Strategies for Numerical Constraint Solving

    Get PDF
    When solving numerical constraints such as nonlinear equations and inequalities, solvers often exploit pruning techniques, which remove redundant value combinations from the domains of variables, at pruning steps. To find the complete solution set, most of these solvers alternate the pruning steps with branching steps, which split each problem into subproblems. This forms the so-called branch-and-prune framework, well known among the approaches for solving numerical constraints. The basic branch-and-prune search strategy that uses domain bisections in place of the branching steps is called the bisection search. In general, the bisection search works well in case (i) the solutions are isolated, but it can be improved further in case (ii) there are continuums of solutions (this often occurs when inequalities are involved). In this paper, we propose a new branch-and-prune search strategy along with several variants, which not only allow yielding better branching decisions in the latter case, but also work as well as the bisection search does in the former case. These new search algorithms enable us to employ various pruning techniques in the construction of inner and outer approximations of the solution set. Our experiments show that these algorithms speed up the solving process often by one order of magnitude or more when solving problems with continuums of solutions, while keeping the same performance as the bisection search when the solutions are isolated.Comment: 43 pages, 11 figure

    An introduction to interval-based constraint processing.

    Get PDF
    Constraint programming is often associated with solving problems over finite domains. Many applications in engineering, CAD and design, however, require solving problems over continuous (real-valued) domains. While simple constraint solvers can solve linear constraints with the inaccuracy of floating-point arithmetic, methods based on interval arithmetic allow exact (interval) solutions over a much wider range of problems. Applications of interval-based programming extend the range of solvable problems from non-linear polynomials up to those involving ordinary differential equations. In this text, we give an introduction to current approaches, methods and implementations of interval-based constraint programming and solving. Special care is taken to provide a uniform and consistent notation, since the literature in this field employs many seemingly different, but yet conceptually related, notations and terminology

    On the Complexity of Solving Quadratic Boolean Systems

    Full text link
    A fundamental problem in computer science is to find all the common zeroes of mm quadratic polynomials in nn unknowns over F2\mathbb{F}_2. The cryptanalysis of several modern ciphers reduces to this problem. Up to now, the best complexity bound was reached by an exhaustive search in 4log2n2n4\log_2 n\,2^n operations. We give an algorithm that reduces the problem to a combination of exhaustive search and sparse linear algebra. This algorithm has several variants depending on the method used for the linear algebra step. Under precise algebraic assumptions on the input system, we show that the deterministic variant of our algorithm has complexity bounded by O(20.841n)O(2^{0.841n}) when m=nm=n, while a probabilistic variant of the Las Vegas type has expected complexity O(20.792n)O(2^{0.792n}). Experiments on random systems show that the algebraic assumptions are satisfied with probability very close to~1. We also give a rough estimate for the actual threshold between our method and exhaustive search, which is as low as~200, and thus very relevant for cryptographic applications.Comment: 25 page

    A branch-and-prune solver for distance constraints

    Full text link
    corecore