6 research outputs found

    Reversible Peg Solitaire on Graphs

    Get PDF
    The game of peg solitaire on graphs was introduced by Beeler and Hoilman in 2011. In this game, pegs are initially placed on all but one vertex of a graph G. If xyz forms a path in G and there are pegs on vertices x and y but not z, then a jump places a peg on z and removes the pegs from x and y. A graph is called solvable if, for some configuration of pegs occupying all but one vertex, some sequence of jumps leaves a single peg. We study the game of reversible peg solitaire, where there are again initially pegs on all but one vertex, but now both jumps and unjumps (the reversal of a jump) are allowed. We show that in this game all non-star graphs that contain a vertex of degree at least three are solvable, that cycles and paths on n vertices, where n is divisible by 2 or 3, are solvable, and that all other graphs are not solvable. We also classify the possible starting hole and ending peg positions for solvable graphs

    Merging Peg Solitaire in Graphs

    Get PDF
    Peg solitaire has recently been generalized to graphs. Here, pegs start on all but one of the vertices in a graph. A move takes pegs on adjacent vertices x and y, with y also adjacent to a hole on vertex z, and jumps the peg on x over the peg ony to z, removing the peg on y. The goal of the game is to reduce the number of pegs to one. We introduce the game merging peg solitaire on graphs, where a move takes pegs on vertices x and z (with a hole on y) and merges them to a single peg on y. When can a configuration on a graph, consisting of pegs on all vertices but one, be reduced to a configuration with only a single peg? We give results for a number of graph classes, including stars, paths, cycles, complete bipartite graphs, and some caterpillars

    Peg Solitaire on Graphs In Which We Allow Merging and Jumping

    Get PDF
    Peg solitaire is a game in which pegs are placed in every hole but one and the player jumps over pegs along rows or columns to remove them. Usually, the goal of the player is to leave only one peg. In a 2011 paper, this game is generalized to graphs. In this thesis, we consider a variation of peg solitaire on graphs in which pegs can be removed either by jumping them or merging them together. To motivate this, we survey some of the previous papers in the literature. We then determine the solvability of several classes of graphs including stars and double stars, caterpillars, trees of small diameter, particularly four and five, and articulated caterpillars. We conclude this thesis with several open problems related to this study
    corecore