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msp 

Merging peg solitaire on graphs 
John Engbers and Ryan Weber 

(Communicated by Anant Godbole) 

Peg solitaire has recently been generalized to graphs. Here, pegs start on all but 
one of the vertices in a graph. A move takes pegs on adjacent vertices x and y, 
with y also adjacent to a hole on vertex z, and jumps the peg on x over the peg on 
y to z, removing the peg on y. The goal of the game is to reduce the number of 
pegs to one. 

We introduce the game merging peg solitaire on graphs, where a move takes 
pegs on vertices x and z (with a hole on y) and merges them to a single peg on y. 
When can a confguration on a graph, consisting of pegs on all vertices but one, be 
reduced to a confguration with only a single peg? We give results for a number 
of graph classes, including stars, paths, cycles, complete bipartite graphs, and 
some caterpillars. 

1. Introduction 

Peg solitaire on graphs has recently been introduced as a generalization of peg 
solitaire on geometric boards [Avis and Deza 2001; Beeler and Hoilman 2011]. 
Peg solitaire on graphs is played on a simple connected graph G and begins with 
a starting confguration consisting of pegs in all vertices but one; the remaining 
vertex is said to have a hole. A move involves fnding vertices x , y, and z with x 
and y adjacent and y and z adjacent with pegs on x and y only, and jumping the 
peg from x over y and into z (while removing the peg at y); see Figure 1. 

If there is some starting confguration of pegs and some combination of moves 
that reduces the number of pegs to one, we say the graph is solvable; if the graph is 
solvable for every starting confguration then we say the graph is freely solvable. 

Recently, several variations on peg solitaire were introduced. One variant, called 
fool’s solitaire [Beeler and Rodriguez 2012] tries to maximize the number of pegs 
left in the game when no more moves can be made. A second variant, called 
reversible peg solitaire [Engbers and Stocker 2015], asks which graphs are solvable 
if both moves and reverse moves are allowed. 

MSC2010: 05C57. 
Keywords: peg solitaire, games on graphs, graph theory. 
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54 JOHN ENGBERS AND RYAN WEBER 

x y z x y z 

Figure 1. A move in peg solitaire on graphs. 

x y z x y z 

Figure 2. A move in merging peg solitaire on graphs. 

In this paper, we introduce a new variation on peg solitaire, called merging peg 
solitaire on graphs, by using a different move. We again consider vertices x , y, and 
z with x and y adjacent and y and z adjacent. However, now we start with pegs 
on vertices x and z only, and the new move merges those two pegs to a single peg 
on y; see Figure 2. 

For a fxed simple connected graph G and some initial confguration of pegs — 
occupying all but a single vertex — the goal of the game is to use this move to reduce 
the number of pegs to one. If this is possible for some initial confguration, we 
again say that the graph is solvable, and if it is possible for any initial confguration 
we say that the graph is freely solvable. The main question that we ask is the 
following. Given a fxed simple connected graph G, is G solvable, and if so, is G 
freely solvable? 

Notice that the merging move is the only other symmetric way of reducing exactly 
two pegs in a path on 3 vertices, P3, to exactly one peg where each vertex must 
change from peg to hole or vice versa. In this way, this new game may be viewed 
as a restricted version of Lights Out on graphs, a game where the entire closed 
neighborhood of a vertex fips all states (here pegs/holes). In this formulation, we 
are allowed to fip the states of all vertices in a P3 subgraph if the endpoints of 
the P3 have pegs and the center has a hole. For a survey of Lights Out, see, e.g., 
[Fleischer and Yu 2013]. 

The game is also similar to graph rubbling (see, e.g., [Belford and Sieben 2009] 
for an introduction to graph rubbling) in that the moves allowed are nearly identical, 
but the end goal of the game is quite different. Indeed, in graph rubbling, a number 
of pebbles (pegs) are placed on some vertices, and the allowable move removes two 
pebbles at vertices v and w adjacent to a vertex u while an extra pebble is added 
at u. The goal of graph rubbling is to use the least number of pebbles m so that any 
vertex is reachable from any pebble distribution of the m pebbles. In addition to 
the goal of merging peg solitaire on graphs being different, our game also does not 
allow for multiple pebbles on the vertices (and so, in particular, forces v 6= w). 

http:viceversa.In


 

    
 

 

 

  

 

 
 

  

   
   
  

55 MERGING PEG SOLITAIRE ON GRAPHS 

2. Preliminary results 

In this section we describe some preliminary results for various classes of graphs. 
As usual, we let Pn and Cn denote the path and cycle on n vertices, respectively. 
The complete bipartite graph with V = X ∪ Y , where |X | = m and |Y | = n, is 
denoted Km,n; when m = 1 we refer to the complete bipartite graph as a star. A 
vertex of degree one is a pendant vertex. We begin with several useful lemmas. 

Lemma 2.1. Let G be a graph and suppose that the only holes on the vertices of G 
are on pendant vertices. Then there are no available moves. 

Proof. Any move requires two pegs on distinct vertices, both adjacent to the vertex 
with a hole. � 

The next results follow from Lemma 2.1. 

Lemma 2.2. Let G be a graph. If G has any pendant vertices, then G is not freely 
solvable. 

Corollary 2.3. Let T be a tree. Then T is not freely solvable. 

Next, we show that a star on at least 4 vertices is not solvable. 

Theorem 2.4. Fix n > 2. The star K1,n is not solvable. 

Proof. Let G = K1,n . If the hole starts on a pendant vertex, then there are no 
available moves by Lemma 2.1. If the hole starts on the center, then a single move 
will leave exactly two holes on two pendant vertices. Again, by Lemma 2.1, there 
are no more available moves. Since n > 2, there are at least two pegs remaining. � 

We already know that trees are not freely solvable. For the games of peg solitaire 
on graphs and reversible peg solitaire on graphs, not all paths are solvable [Beeler 
and Hoilman 2011; Engbers and Stocker 2015]; in particular, P5 is not solvable in 
either of those two games. In contrast, for merging peg solitaire on graphs all paths 
are solvable. 

Theorem 2.5. If n ≥ 2, the path Pn is solvable, and furthermore if an initial 
confguration can be reduced to a single vertex, then the initial hole must start on a 
vertex adjacent to a pendant vertex. 

Proof. We induct on n, with the base case n = 2 clear. Let the vertices of the path 
be labeled 1, . . . , n. By Lemma 2.1, the hole cannot start on vertex 1 or on vertex n. 
If the hole starts on vertex 2, then one move creates holes on vertices 1 and 3 only. 
By considering the vertices 2, . . . , n we have a path on n− 1 vertices with a hole 
second from one end. Therefore we are done by induction. 

Suppose the hole is on vertex i with 2 < i < n− 1. After the frst move, there are 
holes on vertices i − 1 and i + 1. Suppose next that the pegs on vertices i and i − 2 
merge to a peg on i− 1, leaving a confguration with holes on vertices i− 2, i , and 

http:eitherofthosetwogames.In
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56 JOHN ENGBERS AND RYAN WEBER 

. . . . . . 

i − 2 i − 1 i i + 1 i + 2 

Figure 3. The confguration after the frst two moves. 

i + 1; see Figure 3. The only move available is to merge pegs into i − 2 and iterate 
this process, producing a graph with pegs on vertex 2 and on vertices i + 1, . . . , n. 
By the assumption on i , at least two pegs remain. 

The other possible second move produces a similar result, and so no set of moves 
can reduce the path to a confguration with a single peg unless the hole starts on a 
vertex adjacent to a pendant vertex. � 

Part of the proof of Theorem 2.5 will be useful later, but in the following (slightly) 
generalized form. We start with a defnition. 

Defnition 2.6. In a confguration of pegs on a graph G, an empty bridge is a pair 
of adjacent degree 2 vertices, joined by a cut-edge, both of which have holes. 

Lemma 2.7. Suppose that G is a graph and some confguration of pegs and holes 
on the graph has an empty bridge and a nonzero number of pegs on either side of 
the empty bridge. Then G is not solvable from that confguration. 

Proof. Suppose that the empty bridge consists of vertices u and v. To solve the 
graph from this confguration, a peg must be moved to either vertex u or vertex v, 
since there are a nonzero number of pegs on either side of the empty bridge. But 
any move that puts a peg on u requires a prior peg on v, and any move that puts a 
peg on v requires a prior peg on u. � 

Since any graph containing a spanning solvable subgraph must also be solvable, 
we have the following result. 

Theorem 2.8. Let n > 2. The n-cycle Cn is freely solvable. 

The cycle is freely solvable since given a hole on any vertex of the cycle we can 
choose a spanning path so that the hole is adjacent to a pendant vertex of the path. 

Corollary 2.9. If G is Hamiltonian, then G is freely solvable. 

Let us consider other graph classes. By Corollary 2.9, complete graphs are freely 
solvable. The behavior of nonstar complete bipartite graphs is more interesting. 

Theorem 2.10. Let m, n ≥ 2 be integers. If m − n is divisible by 3, then Km,n is 
freely solvable. If m − n is not divisible by 3, then Km,n is solvable but not freely 
solvable. 

Proof. Notice that any move results in two pegs becoming holes on one partition 
class of the graph and a single hole becomes a peg on the other partition class. 
Therefore if there are p pegs in the partition class of size m and q pegs in the 



 

       
    

   
   

   

      
        

   

  

      

   

   
  

    

 
      

  
   

   

57 MERGING PEG SOLITAIRE ON GRAPHS 

partition class of size n, then the quantity f ( p, q) := ( p− q) mod 3 is preserved 
by a move. Notice that a confguration with only a single peg has f ( p, q) = 1 or 
f (p, q) = 2. 

This immediately implies several facts. If f (m, n) = 1, then a confguration 
with the hole on a vertex in the partition class of size m cannot be reduced to a 
confguration with a single peg, and if f (m, n) = 2 then a confguration with the 
hole starting on a vertex in the partition class of size n cannot be reduced to a 
confguration with a single peg. 

Next, notice that given any m, n≥ 2 either f (m−1, n) or f (m, n−1) is nonzero. 
So suppose that m, n ≥ 2 and either f (m, n) = 0, f (m, n) = 1 and the hole starts 
on a vertex in the partition class of size n, or f (m, n) = 2 and the hole starts on a 
vertex in the partition class of size m. We describe a collection of moves that, when 
iterated, produces a confguration with a single peg. A partition move is a sequence 
of moves that merges pegs from one partition class into the opposite partition class 
until either all of the holes on the latter partition class have been flled with pegs 
or the vertices on the former partition class are all holes (with possibly a single 
peg left, depending on parity). Each partition move decreases the total number 
of pegs on the vertices. Note that the iteration requires m, n ≥ 2 so that partition 
moves can be made back and forth. This process will terminate when there is a 
single peg remaining (the terminating state can’t have a single peg in each partition 
class by the assumptions on m and n). If the initial confguration of pegs satisfes 
f (p, q) = 1 ( f (p, q) = 2, resp.), then the fnal peg will be in the partition class of 
size m (n, resp.). � 

We also investigate what happens when an edge is added to a star and, more 
generally, when a matching is added to a star. These graphs were analyzed for peg 
solitaire on graphs in [Beeler and Hoilman 2012]. 

Defnition 2.11. Given fxed nonnegative integers B and P, the windmill variant 
graph, denoted W (P, B), is the graph on P + 2B+ 1 vertices obtained by taking a 
star K1,P+2B and adding a matching of size B on the pendant vertices of the star. 
We will label the pendant vertices of W (P, B) by p1, . . . , pP and the pendant 
vertices of K1,P+2B involved in the matching by b1, b2, . . . , b2B so that b2i−1b2i is 
an edge of W (P, B) for i = 1, . . . , B. 

See Figure 4 for an example of a windmill variant graph. Note that if B = 0, 
then W (P, 0) = K1,P and if P = 0 then W (0, B) is the windmill graph. The vertex 
corresponding to the center of K1,P+2B is called the universal vertex u which is 
adjacent to B blades consisting of two vertices each. We now show that W (P, B) 
is solvable unless B = 0, and W (0, B) is freely solvable. We note that this differs 
from the results for peg solitaire, where W (P, B) is solvable if and only if P ≤ 2B 

http:solvable.We


 

 

       

  
   

    

  
 

 
  

 

 
  

 

   
    

        

58 JOHN ENGBERS AND RYAN WEBER 

p1 p2 

p3 b4 

p4 b3 

b2 b1 

Figure 4. The windmill variant W (4, 2). 

and freely solvable if and only if P ≤ 2B − 1 and (P, B) 6= (0, 2) [Beeler and 
Hoilman 2012, Theorem 2.2]. 

Theorem 2.12. Let P and B be nonnegative integers and let W (P, B) be a windmill 
variant graph on at least 2 vertices. If P = 0, then W (0, B) is freely solvable. If 
P 6= 0 and B ≥ 1, then W (P, B) is solvable but not freely solvable. 

Proof. Suppose frst that P = 0 and the hole starts on the center u. If B = 1, then 
the result follows. For B > 1, we iteratively eliminate the pegs on distinct blades. 
We frst merge the pegs on b2B and b1 to a peg on u, and then merge the pegs on u 
and b2B−1 to a peg on b2B . If B = 2, we merge the pegs on b2B and b2 to u and 
we’re fnished. If B > 2, we have B − 2 full blades and pegs on b2 and b2B . We 
merge b2 and b4 into u, and then u and b3 to b4. Doing this last step B− 2 times 
leaves two pegs on distinct blades; we then merge them to u. 

If P = 0 and the hole starts on a blade, say b2, then we merge the pegs on u and 
b1 to a peg on b2. If B = 1 we’re done, so suppose B > 1. Now ignoring the blade 
b1b2, we have a graph with B− 1 blades with the hole on u, which we can solve 
by the previous paragraph and end with the peg on u. We then merge the pegs on u 
and b2 to a peg on b1. 

Now suppose that P ≥ 1. By Lemma 2.1, in this case W (P, B) is not freely 
solvable. We show that if B = 1 and P ≥ 1, then W (P, 1) is solvable. Since for 
B ≥ 1 and P 0 = P + 2(B− 1), W (P 0 , 1) is a spanning subgraph of W (P, B), this 
proves the result. 

Start with the hole on b2, and merge the pegs on u and b2 to a peg on b1. Then 
merge the pegs on two pendant vertices to a peg on u, and subsequently merge 
the pegs on u and b1 to a peg on b2. Iteratively merge the pegs on two pendant 
vertices to a peg on u then merge the peg on u with the peg on the blade to the hole 
on the blade. This process stops when there are 0 pegs or 1 peg remaining on the 
pendant vertices. If there are 0 pegs remaining, then we are done. If there is 1 peg 
remaining, then merge with the peg on the blade to a peg on u. � 

http:pendantvertices.If


 

  
  

  

 
  

  

      
     

 

   
     

   

 

59 MERGING PEG SOLITAIRE ON GRAPHS 

3. Double stars and caterpillars 

Knowing whether or not a given tree is solvable would be extremely helpful in 
determining whether or not a connected graph is solvable or not; in particular, any 
connected graph with a solvable spanning tree would necessarily be solvable. Since 
stars are not solvable but paths are solvable, a natural frst step in classifying the 
solvable trees is to describe when a caterpillar is solvable. 

Defnition 3.1. Let n ≥ 1 be given, and let p1, . . . , pn be nonnegative integers. A 
caterpillar on n+ p1+· · ·+ pn vertices consists of a path on n vertices so that the 
i-th vertex on the path has pi pendant vertices attached to it. We will denote this 
caterpillar by Pn( p1, . . . , pn). 

See Figure 5 for an example of a caterpillar. Note also that P1(n) is isomorphic 
to the star K1,n and Pn(0, . . . , 0) is isomorphic to the path Pn . 

We will prove that a large family of caterpillars are solvable and also fully 
classify the solvability of some special types of caterpillars. To do so, we start with 
a special type of caterpillar. A double star is a caterpillar of the form P2(m, n) — 
see Figure 6 — and the two vertices from the path are its centers. 

Theorem 3.2. Let m, n ≥ 1. If |m − n| ≤ 1, then the double star P2(m, n) is 
solvable. If |m − n| > 1 then the double star P2(m, n) is not solvable. 

Also, if m = n and the hole starts on center vertex u, then the fnal peg is on v. 

We note that in peg solitaire P2(m, n) (with m ≥ n) is solvable if and only if 
m ≤ n + 1 and n 6= 1 and freely solvable if and only if m = n and n 6= 1 [Beeler 
and Hoilman 2012, Theorem 3.1]. 

Proof. We must start with the hole on one of the two center vertices u or v; without 
loss of generality assume the hole starts on u, where u has m pendant vertices. If 

Figure 5. The caterpillar P4(2, 0, 1, 3). 

Figure 6. The graph P2(3, 3). 

http:attachedtoit.We
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the pegs on two pendant vertices are merged to a peg on u, then by Lemma 2.1 
no more moves are possible, and since there is a peg on v this move will never 
produce a graph with a single peg remaining. Therefore the only move that allows 
for future moves is to merge the peg on v and the peg on a pendant vertex of u to a 
peg on u. We then repeat by merging the peg on u and the peg on a pendant vertex 
of v to a peg on v. Continuing in this way, we remove the same number of pegs 
from the pendant vertices of u and v, so if m = n this process terminates with a 
peg only on v. 

If m + 1= n, then after the frst move we have the same number of pegs on the 
pendant vertices of u and v with the hole on v, and so the double star is solvable 
by the previous argument. If m = n+ 1, then we start with the hole on v and the 
previous argument shows that the graph is solvable. 

Now suppose that |m − n| ≥ 2. Notice that each move that allows for future 
move alternates reducing the number of pegs on pendant vertices of u by 1 and the 
number of pegs on pendant vertices of v by 1; without loss of generality assume 
the hole starts on u. If m < n, then removing the last peg on a pendant vertex of 
u leaves pegs on u and n − m + 1 pendant vertices of v. Then the fnal remaining 
move merges two of these pegs to a peg on v, and no further moves are possible. 
If m > n and the hole starts on u, then removing the last peg on a pendant vertex 
of v leaves pegs on v and n− m pendant vertices of u. Merging two of these pegs 
leaves n− m pegs remaining with no further moves available. � 

Next, we see what happens to solvability when we subdivide the edge between 
the center vertices of a double star. 

Defnition 3.3. Fix an integer k ≥ 3 and positive integers m and n. A path-k double 
star is the graph Pk(m, 0, . . . , 0, n). 

See Figure 7 for an example of a path-3 double star. Recall that by Corollary 2.3 
no tree is freely solvable. In what follows, we fully classify the solvability of path-k 
double stars. We are unaware of any results in peg solitaire for path-k double stars 
when k > 2. 

Theorem 3.4. Fix nonnegative integers m and n and let P3(m, 0, n) be a path-3 
double star. Then P3(m, 0, n) is solvable if b 1

2(m − 1)c ≤ n ≤ 2m + 2 and is not 
solvable otherwise. 

Proof. As before we cannot start with a hole on a pendant vertex; assume that the 
graph has nonpendant vertices u, w, and v with u having m pendants attached to it 
and v having n pendants attached to it. 

Suppose frst that the hole starts on u. Merging two pendant pegs results in no 
further moves, so the only move is to merge pegs on a pendant vertex and w to a 
peg on u, leaving one fewer peg on the pendants of u and a hole on w. The initial 



 

 

  

 
    
         

 

 

 
  

 

 
 

   
 

       
    

         
 

       

61 MERGING PEG SOLITAIRE ON GRAPHS 

u w v 

Figure 7. The graph P3(3, 0, 3). 

move when the hole starts on v is similar. It remains to analyze the situation where 
a hole starts on w only, and we note that if P3(a, 0, b) is solvable with initial hole 
on w, then P3(a+ 1, 0, b) is solvable with initial hole on v and P3(a, 0, b+ 1) is 
solvable with initial hole on w. 

Now, with a hole on w, the only available move is to merge the pegs on u and v 
to a peg on w, creating holes on u and v. Focusing on the hole at u, either two pegs 
on pendant vertices of u can merge to a peg on u or a peg on a pendant vertex of u 
and the peg on w can merge to a peg on u. Two similar moves are possible at v, 
but these moves cannot be made independently. If two pendant pegs merge to u 
and two pendant pegs merge to v, then no further moves can be made. So suppose 
that w and a pendant peg merge to u. Then the only available move merges two 
pegs on pendants of v to a peg on v. A similar result follows from merging w and 
a pendant peg to v. 

This shows that if the holes are on w and pendant vertices only, then the only sets 
of moves that allow for future moves result in the removal of two pegs on pendant 
vertices from u (v, resp.), the removal of one peg on a pendant vertex from v (u, 
resp.), and a confguration where the only holes are on w and pendant vertices again. 

Next, it is useful to see which graphs P3(m, 0, n) are solvable with initial hole on 
w for small values of m and n. Since we can effectively reduce one of m and n by 
2 and the other by 1 (by viewing holes on pendant vertices as deleted vertices), we 
only need to check the solvability of P3(m, 0, 0), P3(0, 0, n), and P3(1, 0, 1) with 
initial hole on w. The only graphs that are solvable are P3(0, 0, 0), P3(1, 0, 0), and 
P3(0, 0, 1), as P3(1, 0, 1) is not solvable by Theorem 2.5 and P3(m, 0, 0) for m > 1 
is, after one move, essentially a star with m + 1 pendants and so is not solvable by 
Theorem 2.4. 

Suppose that we: 

(1) complete x sets of moves that remove 2 pegs on pendant vertices of u and 1 
peg on a pendant vertex of v; 

(2) complete y sets of moves that remove 1 peg on a pendant vertex of u and 2 
pegs on pendant vertices of v; and 

(3) end with P3(0, 0, 0), P3(1, 0, 0), or P3(0, 0, 1) and a hole on w. 
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If the initial hole started on w, then 2x + y pegs were removed from the pendant 
vertices of u and x + 2y pegs were removed from the pendant vertices of v. If the 
initial hole started on u (v, resp.) then 2x+ y+1 (2x+ y, resp.) pegs were removed 
from the pendant vertices of u and x + 2y (x + 2y+ 1, resp.) pegs were removed 
from the pendant vertices of v. We analyze the possible values of m and n that are 
solvable by considering both where the hole starts and also which of P3(0, 0, 0), 
P3(1, 0, 0), or P3(0, 0, 1) remains. 

For these fxed values of x and y, if P3(0, 0, 0) remains, then we have (m, n) = 
(2x+ y, x+2y), (2x+ y+1, x+2y), or (2x+ y, x+2y+1). If P3(0, 0, 1) remains, 
then (m, n) = (2x+ y, x+2y+1), (2x+ y+1, x+2y+1), or (2x+ y, x+2y+2). 
If P3(1, 0, 0) remains, then (m, n) = (2x + y+ 1, x + 2y), (2x + y+ 2, x + 2y), 
or (2x + y+ 1, x + 2y+ 1). By the above arguments, these are the only solvable 
values for m and n. 

Now, suppose m > 0 is fxed. What values of n (as a function of m) are solvable? 
For n to be maximized, we take m = 2x + y and n = x + 2y + 2 where x = 0 
and y = m. Then we have n = 2m + 2; therefore n ≤ 2m + 2. Symmetrically we 
have m ≤ 2n + 2, so b1

2(m − 1)c ≤ n. To show that all values of n in that range 
are possible, note that for a given m there are values of x and y with 2x + y = m. 
But for each x and y pair, we have, as possible values for n, x + 2y, x + 2y+ 1, 
and x + 2y+ 2. This shows that all values b1

2(m + 1)c ≤ n ≤ 2m + 2 are possible. 
But we can have n = b 1

2(m − 1)c by taking m = 2x + y + 2 or m = 2x + y + 1 
1(depending on parity) and n = x + 2y where x = b2 (m − 1)c and y = 0. � 

Theorem 3.5. Fix nonnegative integers m and n. Then the graph P4(m, 0, 0, n) is 
solvable if : 

(1) m = n, or 

(2) m is even and n = m + 1, m + 2, m + 3, or m + 4, or 

(3) n is even and m = n + 1, n+ 2, n+ 3, or n + 4, 

and is not solvable otherwise. 

Proof. As before we cannot start with a hole on a pendant vertex; assume that the 
graph has nonpendant vertices u, w1, w2 and v with m pendant vertices on u, n 
pendant vertices on v, and u adjacent to w1; see Figure 8. 

Suppose frst that the hole starts on u. Merging two pegs on pendant vertices 
results in no further possible moves, so the only move is to merge a peg on a pendant 
vertex and the peg on w1 to a peg on u, leaving one fewer peg on the pendants of u 
and a hole on w1. When the hole starts on v the analysis is similar. So we again 
consider the initial hole starting on w1 (with a similar analysis of the hole at w2 

following immediately), and have that if P4(a, 0, 0, b) is solvable with initial hole 
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u v w1 w2 

Figure 8. The graph P4(5, 0, 0, 4). 

on w1 (w2, resp.), then P4(a+ 1, 0, 0, b) (P4(a, 0, 0, b+ 1), resp.) is solvable with 
initial hole on u (v, resp.). 

Suppose then that the only hole on a nonpendant vertex is on w1. The available 
move is to merge pegs on w2 and u to a peg on w1. If we then merge pegs on a 
pendant of u and w1 to a peg on u, we create an empty bridge which is not solvable 
by Lemma 2.7. 

If we frst merge the pegs on w1 and v to a peg on w2, then we have holes on u, 
w1, and v. To avoid creating an empty bridge, we must merge two pegs on pendant 
vertices of u to a peg on u and merge two pegs on pendant vertices of v to a peg 
on v. This produces a hole on w1 and removes two pegs on the pendant vertices of 
u and two pegs from the pendant vertices of v. 

Note that if we instead frst merge two pegs on pendant vertices of u to a peg on u, 
a similar analysis produces the same loss of two pegs from both sets of pendant 
vertices with a hole on w1. 

Again, we now analyze the small cases of m and n; we see that P4(0, 0, 0, 0) is 
solvable with the hole on w1 or w2; P4(1, 0, 0, 0), P4(0, 0, 0, 2), and P(0, 0, 0, 3) 
are solvable with the hole on w2, and P4(0, 0, 0, 1), P4(2, 0, 0, 0), and P4(3, 0, 0, 0) 
are solvable with the hole on w1, and by inspection no other graph P4(m, 0, 0, n) 
is solvable when one of m or n is 0 or 1 and the hole is on w1 or w2. 

We now put all of this together. The graphs that are solvable with initial 
hole on w1 are P4(2x, 0, 0, 2x), P4(2x, 0, 0, 2x + 1), P4(2x + 2, 0, 0, 2x) and 
P4(2x+3, 0, 0, 2x); the solvable graphs with initial hole on w2 are P4(2x, 0, 0, 2x), 
P4(2x+1, 0, 0, 2x), P4(2x, 0, 0, 2x+2) and P4(2x, 0, 0, 2x+ 3). This then shows 
that the graphs that are solvable with initial hole on u are P4(2x + 1, 0, 0, 2x), 
P4(2x+1, 0, 0, 2x+1), P4(2x+3, 0, 0, 2x), and P4(2x+4, 0, 0, 2x); the graphs that 
are solvable with initial hole on v are P4(2x, 0, 0, 2x + 1), P4(2x + 1, 0, 0, 2x + 1), 
P4(2x, 0, 0, 2x + 3) and P4(2x, 0, 0, 2x + 4). This gives the result. � 

We next show that the remaining nontrivial path-k double stars are not solvable 
for positive integers m and n. 
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Theorem 3.6. Fix positive integers m, n (where both m and n are not 1) and fx an 
integer k ≥ 5. Then the graph Pk(m, 0, . . . , 0, n) is not solvable. 

Proof. Label the vertices of the path (in order) u = w0, w1, w2, . . . , wk−2, and 
v = wk−1. Assume that u has m pendants and v has n pendants. 

If the hole starts on wi for some i ∈ {2, . . . , k − 3}, then any two possible 
consecutive moves produces an empty bridge and thus a confguration that is not 
solvable by Lemma 2.7. 

If the hole starts on w1, then the frst move produces holes on u and w2. If the 
next move merges two pegs on pendant vertices of u to a peg on u, then we have a 
confguration with holes only on pendant vertices of u and on w2, which as above 
is not solvable. If the next move instead merges a peg on a pendant of u with the 
peg on w1, then we have a confguration with an empty bridge on vertices w1 and 
w2 and so the graph again is not solvable. 

Lastly, suppose that the hole starts on u. Then the only move that allows for 
future moves merges the pegs on a pendant vertex of u and w1 to a peg on u. But 
the next move must merge the pegs on u and w2 to a peg on w1. 

From this confguration, if we merge two pegs on pendants of u to u, then we 
are left with a confguration with holes only on pendant vertices of u and w2, which 
as above is not solvable. So we must merge the pegs on w1 and w3 to a peg on w2. 

If we then merge two pegs from the pendants of u to u, then any subsequent move 
produces a confguration with an empty bridge and so the graph is not solvable. So 
the only other possible move is to merge the pegs on w2 and w4 to a peg on w3. 
Now, if m > 1 we have a confguration with an empty bridge on vertices w1 and 
w2 and so is not solvable. If m = 1, then we can iterate this move through the path 
until fnally we merge pegs on wk−3 and wk−1 to a peg on wk−2, which leaves pegs 
on wk−2 and the n (where n > 1 as m = 1) pendant vertices of v = wk−1. But the 
only possible move now merges two pegs from the neighbors of v to v; since there 
are at least n+ 2 pegs on the neighbors of v, this leaves at least two pegs remaining 
and no further moves. � 

We now provide a large class of caterpillars that are solvable by combining the 
double star and the path. We are unaware of any results in peg solitaire for this 
class of caterpillars. 

Theorem 3.7. Let t1, t2, . . . , tn−1 be nonnegative integers where p1= t1, pn = tn−1, 
and pi = ti + ti−1 for 2 ≤ i ≤ n − 1. Then the caterpillar Pn( p1, p2, . . . , pn) is 
solvable. 

We’ll frst provide the proof, and then give two specifc examples of caterpillars 
that satisfy the conditions for pi in Theorem 3.7. We note that this theorem can also 
incorporate solvable path-k double stars, but for reading ease we state this theorem 
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Figure 9. The solvable caterpillar P4(1, 3, 3, 1). Here t1 = 1, 
t2 = 2, and t3 = 1. 

and proof without adding path-3 double stars or path-4 double stars as intermediate 
steps. We leave the details of these changes to the reader. 

Proof. Let t1, . . . , tn−1 be any nonnegative integers, p1 = t1, pn = tn−1, and for 
2≤ i ≤ n− 1 let pi = ti + ti−1. We need to show that Pn(p1, . . . , pn) is solvable. 

Start with the hole on vertex 2 of the path, i.e., the vertex with p2 pendant vertices. 
Then focus on the double star that has as its two centers the frst two vertices of the 
path. By Theorem 3.2 we can eliminate pegs on t1 pendant vertices from vertex 1 and 
vertex 2 in the path, leaving the hole on vertex 2. Then we merge pegs from vertex 1 
and 3 (in the path) to vertex 2. We then focus on the double star that has as its two 
centers vertex 2 and vertex 3 in the path, noting that vertex 2 has a peg and vertex 3 
has a hole. Again, by Theorem 3.2 we eliminate t2 pendant vertices from each, leav-
ing a peg on vertex 2 and a hole on vertex 3. Then we merge the pegs from vertex 2 
and vertex 4 to vertex 3. We iteratively continue until we reach vertex n− 1 and 
vertex n; eliminating tn−1 vertices from each leaves a peg on vertex n−1 and a hole 
on vertex n. By construction, all pendant vertices have holes, and there is only one 
peg left on the path. This means that the caterpillar Pn( p1, . . . , pn) is solvable. � 

Notice that by solving for each ti we can fnd equivalent conditions on the 
values pi : for each i ∈ [1, n − 1], 

Pi
j=1(−1)i− j p j is nonnegative, and also Pn−1 pn = j=1(−1)i− j p j . � � n Several interesting sequences that satisfy this condition include setting pi = i 

(see, e.g., Figure 9) and, for n even, letting pi = c for some nonnegative integer c. 

4. Related questions and future work 

We end our discussion by giving several open problems that can serve as a basis for 
future investigations. The main open question is to classify all simple connected 
graphs according to whether they are freely solvable, solvable, or not solvable. A 
helpful step would be to classify all trees according to whether they are solvable 
or not. While this might prove diffcult, even determining a nice characterization 
of solvable caterpillars would be interesting. Another possible direction toward 
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the main open question would be to determine which trees of a fxed diameter are 
solvable (see, e.g., [Walvoort 2013] for results related to peg solitaire on graphs 
with fxed diameter). 

Another interesting question is the following. Let Gn,k denote the set of all 
simple connected graphs on n vertices with k edges. Note that the only graph 
in Gn,n(n−1)/2 is solvable, while the star shows that not every graph in Gn,n−1 is 
solvable. For fxed n, what is the minimum value of k so that every graph in Gn,k 

is solvable? 
Suppose that we wanted to leave the maximum number of pegs left so that no 

further moves can be made; i.e., we wanted to play merging fool’s solitaire on 
graphs (for results for fool’s solitaire on graphs, see, e.g., [Beeler and Rodriguez 
2012; Loeb and Wise 2015]). For a given graph G, determine the maximum number 
of pegs that can be left when playing merging fool’s solitaire on graphs. 
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