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ABSTRACT

Peg solitaire is a game in which pegs are placed in every hole but one and
the player jumps over pegs along rows or columns to remove them. Usually,
the goal of the player is to leave only one peg. In a 2011 paper, this game is
generalized to graphs. In this thesis, we consider a variation of peg solitaire
on graphs in which pegs can be removed either by jumping them or merging
them together. To motivate this, we survey some of the previous papers
in the literature. We then determine the solvability of several classes of
graphs including stars and double stars, caterpillars, trees of small diameter,
particularly four and five, and articulated caterpillars. We conclude this
thesis with several open problems related to this study.
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Chapter 1

INTRODUCTION

Peg solitaire is a game that is familiar to most people - it is the wooden
peg game that you might find at a popular restaurant. However, few people
realize that this game dates back to at least 1697, as evidenced by the en-
graving in Figure 1.1, when it was played with stones that were set in holes
[2]. In fact, Beasley uses a quote from Gottfried Leibniz from 1710 about peg
solitaire: “Not so very long ago, there became widespread an excellent kind
of game, called solitaire, where I play on my own, but as it with a friend as
witness and referee to see that I play correctly.”

Today, this classic game consists of a game board with pegs. Traditionally,
the player begins with a single hole in the game board and the player jumps
pegs in order to remove them one at a time until there are no possible moves
remaining, with the goal of only leaving one peg. A jump moves one peg from
its position over another peg into an empty hole, removing the peg in the
middle with the move. The game is solved if there is only one peg remaining,
and we call this a solved state for the game. Similarly, if a game board can
reach a solved state, then it is called solvable. Some common boards include
the English cross and the European board. These, along with the triangular
board are illustrated in Figure 1.2. Readers are most likely to be familiar
with the fifteen hole triangular board featured on the tables of Cracker Barrel
restaurants. For more information on traditional peg solitaire, the reader is
referred to [2, 15].

In 2011, Beeler and Hoilman generalized peg solitaire to graphs in the
combinatorial sense. Our graph theoretical terminology and notation will be
consistent with Buckley and Lewinter [16]. A graph G is a set of vertices
together with a set of edges. An example of a graph on five vertices is given

7
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Figure 1.1: Madame la Princesse de Soubise joüant au jeu de Solitaire by
Claude-Auguste Berey, 1697

Figure 1.2: The English cross, the European, and the triangular game boards

in Figure 1.3. The vertex set of G is denoted V (G). The edge set of G is
denoted E(G). We will assume that both V (G) and E(G) are nonempty and
finite. Each edge in G will have a pair of distinct vertices called endpoints.
Given vertices u, v ∈ V (G), a u−v path is an alternating sequence of vertices
and edges that begins at u and ends at v such that no vertex is listed twice
in this sequence. If for every u, v ∈ V (G) there is a u− v path, then we say
that G is connected. We will assume that all graphs are connected.

In peg solitaire on graphs, if there are pegs in vertices x and y and a hole
in z, then we allow x to jump over y into z, provided that xy, yz ∈ E(G).
Such a jump will be denoted x·

−→

y ·z. An example is given in Figure 1.4. In
our figures, a hollow vertex represents a hole, while a solid vertex represents
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Figure 1.3: An example of a graph, G

1

x y z

2

x y z

3

x y z

Figure 1.4: A typical jump in peg solitaire, x·
−→

y ·z

a peg. In particular, playing the game on graphs allows for L-shaped jumps,
which are usually not allowed in the traditional game. In the next chapter,
we will discuss more results on peg solitaire on graphs as well as its variants.

In order to facilitate our discussion, it is useful to introduce basic concepts
from graph theory. Our terminology and notation will be consistent with
Buckley and Lewinter [16]. Two vertices are adjacent if there is an edge
between them. A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and
E(H) ⊆ E(G). If V (H) = V (G) and E(H) ⊆ E(G), then H is a spanning
subgraph of G. For a graph G = (V,E), let A be a subset of the vertex set V .
The subgraph of G induced by A, denoted GA, is the graph with vertex set
A and E(GA) = {xy : x, y ∈ A, xy ∈ E(G)}. Such graphs are called vertex
induced subgraphs.

Note, the types of graphs that we are interested in for the sake of this
thesis are finite and contain no loops or multiple edges. In other words, there
is a maximum of one edge between any two vertices and an edge must be
between two distinct vertices. There are many families of graphs, each with
their own properties. Much of our time will be spent with a family of graphs
known as trees. A tree is a type of graph that is connected and acyclic. Trees
contain no cycles, or a closed path within a graph such that you can begin
at one vertex and traverse edges no more than once to return to the original
vertex, and are thus called acyclic. Trees can take on named shapes such
as a star, double star, caterpillar, or path, just to name a few. The specific
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definitions of such graphs will be discussed later. The following are useful
and well-known properties of trees.

Proposition 1.0.1 Trees have the following properties.

(i) A nontrivial tree contains branches and at least two leaves.

(ii) Given two vertices, x and y, of any tree, T , there is a unique x − y
path.

(iii) The deletion of any edge disconnects the graph.

We are interested in exploring trees since every connected graph has a
spanning tree. If we can explore what trees are solvable, then other graphs
will be implied to be solvable by the following proposition.

Proposition 1.0.2 (Inheritance Principle [9]) If H is a solvable spanning
subgraph of G, then G is solvable.

There are some other graph theory terms that will prove useful for this
research. The degree of a vertex is how many edges meet at the vertex and
can be classified as even or odd. The distance between vertices u and v is
the number of edges on the shortest path from u to v. The diameter of a
graph is the greatest distance between any pair of vertices. A complete graph
is one in which every vertex is adjacent to all other vertices. The complete
graph on n vertices is denoted Kn. A bipartite graph is composed of two sets
of vertices X and Y such that if uv ∈ E, then u ∈ X and v ∈ Y . A complete
bipartite graph is a special kind of bipartite graph where every vertex of
the first set is connected to every vertex of the second set. The complete
bipartite graph with partite sets of cardinality |X| = n and |Y | = m is
denoted Kn,m. In particular, the complete bipartite graph K1,n is called a
star. With these definitions in mind, we can explore the current research
that has been conducted about peg solitaire on graphs in the next chapter.



Chapter 2

LITERATURE REVIEW

2.1 Peg Solitaire

Despite its long history, peg solitaire is a game that has not had a deep math-
ematical connection until recently. In 2011, Beeler and Hoilman generalized
the ideas behind the table game of peg solitaire (such as the infamous trian-
gle peg board) to any arbitrary board [9]. These boards can be thought of as
connected graphs for purposes of analyzing and research, along with general
play of the game. This generalization allows us to label the vertices as the
holes of the board, which are solid if they contain a peg and hollow otherwise,
and allow moves to occur between any adjacent vertices, despite variations
that occur in the depiction of the graph. The edges represent locations for
possible moves to occur since they determine adjacencies between pegs.

Since the original 2011 paper [9], Beeler and other mathematicians, have
expanded the concepts of this game and transposed it to a graph theoretical
background so that it can be more easily studied on shapes other than the
traditional boards such as the English cross, the European board, and the
triangular board. In 2011, Beeler and Hoilman wrote about peg solitaire on
graphs, where vertices are the holes of the board and edges represent adja-
cencies between the holes [9]. They write that the main difference between
a traditional game board and peg solitaire on graphs is the allowance of L-
shaped moves. There have been a number of papers in which the solvability
of various classes of graphs is discussed. In this section, we survey those
results that will be pertinent to this paper.

First, some basic definitions. A starting state S is the set of vertices

11
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that have a hole at the beginning of the game. Unless otherwise noted, S
will consist of a single vertex. A terminal state T is the set of vertices that
have a peg at the end of the game. A terminal state T is associated with a
starting state S if T can be obtained from S via a sequence of legal moves.
A solvable graph is one in which for some configuration of pegs occupying all
but one vertex, some sequence of jumps leaves a single peg [21]. A graph G
is freely solvable if for all vertices s so that, starting with S = {s}, then there
exists an associated terminal state consisting of a single peg. A graph G is
k-solvable if there exists some vertex s so that, starting with S = {s}, then
there exists an associated minimal terminal state consisting of k nonadjacent
pegs. In particular, a graph is distance 2-solvable if there exists some vertex
s so that, starting with S = {s}, then there exists an associated terminal
state consisting of two pegs that are distance 2 apart.

With peg solitaire being applied to graphs, the next logical step is to
look at the gameplay on families of graphs. Beeler and Hoilman studied the
solvability of several classes of graphs, including complete graphs for n ≥ 2,
complete bipartite graphs, and the Cartesian products of two solvable graphs
[9]. The Cartesian product of two graphs, G×H with vertex sets u1, u2, ..., um

and v1, v2, ..., vn, respectively, is the graph with the vertex set consisting of
mn vertices labeled (ui, vj), where 1 ≤ i ≤ m and 1 ≤ j ≤ n. Further, two
vertices in G×H are adjacent if either (i) i = h and vj is adjacent to vk in
H , or (ii), j = k and ui is adjacent to uh in H . de Wiljes and Kreh have also
written on the Cartesian products of graphs and peg solitaire. For example,
it is known that star graphs are not solvable in traditional peg solitaire;
however, these authors show that the Cartesian product of two stars on at
least two vertices is solvable [25].

Importantly, Beeler and Hoilman noted that the star K1,n is (n − 1)-
solvable, which will be a key note later on when we explore stars with other
variations [9]. Paths, Pn, prove to be deceivingly tricky: despite the sim-
plicity of this graph, defining the possibilities of a solved state for a path
depends on the parity of n.

Proposition 2.1.1 [9] The path, Pn, is freely solvable if and only if n = 2;
Pn is solvable if and only if n is even or n = 3; Pn is distance 2-solvable in
all other cases.

They also note that complete graphs for n ≥ 2 and complete bipartite
graphs are freely solvable [9]. Allowing for additional moves would result
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in additional graphs being freely solvable in these variants. We leave such
variants as possible avenues for future research.

After the initial generalization of the peg solitaire game to graphs, there
were more published proofs for families of graphs and specific cases of graphs
that are considered solvable. In 2012, Beeler and Hoilman prove that the
windmill and certain types of double stars are solvable with the traditional
jump move [10]. A double star is a type of tree that has two star subgraphs
with an independent number of pendants attached to each center and whose
centers are adjacent along a spine. An example of a double star is shown in
Figure 2.1. Since double stars are trees of diameter three, there are several
ways to isolate pegs, which means that more pendants must be “exchanged”
across the graph, so they are not all solvable using only jumps. The proof
provided in the paper by Beeler and Hoilman shows that the double star
Sm,n is freely solvable if and only if m 6= n and Sm,n is solvable if and only
if m ≤ n + 1 [10]. This will likely be a key result as we examine stars and
caterpillars.

Figure 2.1: The Double Star - S4,3

An interesting graph family that has been proven to be freely solvable
is Sierpinski graphs. The Sierpinski graph S(k, n), where (n, k ≥ 1) is de-
fined on the vertex set {0, 1, ..., k − 1}n. Two vertices, u = (u1, ..., un), v =
(v1, ..., vn) are adjacent if and only if there exists a t ∈ 1, 2, ..., n such that
us = vs, s < t, ut 6= vt, and us = vt and vs = ut for s = t + 1, ..., n. In a
paper by H. Akyar, Çakmak, Torun, and E. Akyar, it is shown that these
Sierpinski graphs are freely solvable in traditional peg solitaire [1].

There are also particular methods that can be used so that one can con-
struct a solvable graph. One example of such a method is given by Beeler,
Gray, and Hoilman: If G has a universal vertex u and the graph obtained
from G by deleting u is connected, then G is freely solvable. If G contains
two universal vertices, then G is freely solvable [7]. Another method that is
discussed is overlap, which is where for two graphs G and H , we have all of
the vertices and edges of both G and H , but some are shared; the overlap
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can be a basis for a solvable graph [7]. When examining graphs, we will be
sure to look for these types of universal vertices and overlap to ensure that
cases of graph families are considered as we look for more solvable graphs.
That is, if a graph contains these elements, then we will be sure not to be
too hasty to ensure that there is not another graph within the same graph
family that does not contain these elements. Perhaps, the overlap will be a
solvable graph, when, once solved, leaves two solvable portions.

In this project, we will be particularly interested in different types of
trees, such as double stars, caterpillars, and trees of small diameter. Relevant
previous results from [8, 10, 13] will be referenced as each particular graph
is discussed in Section 3.

2.2 Variations

Naturally, there have been a number of variations of graphical peg solitaire.
In fool’s solitaire, the goal is to leave the maximum number of pegs, under
the caveat that the player makes a jump whenever possible. The fool’s soli-
taire variant is discussed extensively in [11, 26]. However, the fool’s solitaire
problem is determined for specific graph families in the papers discussing
those graphs (see for example [4, 8, 13, 20]).

Some versions of this game are less concerned with solvability and are
more concerned about making game play more exciting for one or more play-
ers, as is the case with Beeler and Gray’s version of duotaire [5]. Another
variation is known as the double jump solitaire, where each peg must be
jumped twice in order to be removed [6]. A similar problem is studied by
Davis et al in [18]. In this paper, each peg has one of two colors. When a
peg is jumped by one of the same color, it switches colors. When a peg is
jumped by one of the opposite color, it is removed.

Another variation is given by de Wiljes and Kreh in [19], where they
examine a game they call stick solitaire. In this variation, the player considers
sticks along the edges of the graph, rather than pegs in the vertices and tries
to remove every sticks but one. This allows the possibility of a graph to be
solvable in peg solitaire, but not in stick solitaire, or vice versa.

In some of these variations, the portfolio of game moves has been ex-
panded. One of the more unusual approaches is by Bullington [17]. Bulling-
ton [17] considers a variation in which a move (see Figure 2.2) is defined
as:
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y
z
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y OR z

x

y

1 2 3a 3b

Figure 2.2: A typical move in Bullington’s variation

(i) Suppose that ‘peg’ vertices x and z are adjacent to a ‘hole’ vertex y.

(ii) Add an edge between x and z if there is not one there already.

(iii) Delete the edges xy and yz.

(iv) Choose either x or z to be a ‘hole’ vertex.

What makes Bullington’s variation so unusual is that the structure of the
graph changes as the player progresses through the game.

Another move variation is called an unjump. This is best defined as the
inverse of a jump. In 2015, Enbergs and Stocker describe what they call
reversible peg solitaire on graphs, which allows for both jumps and unjumps,
which is simply the reversal of a jump [21]. An example of an unjump is
given in Figure 2.3. In the game of reversible peg solitaire, non-stars that
contain a vertex of at least three and cycles and paths on n vertices, where
n is divisible by two or three are solvable graphs, and all other graphs are
not solvable [21]. Unmoves such as the unjump may prove helpful to this
project since backstepping may be necessary as we determine the solvability
of graph families. They are also helpful in looking at other variations peg
solitaire in general.

1

x y z

2

x y z

3

x y z

Figure 2.3: A typical unjump in peg solitaire

For the purposes of this thesis, the most significant variation is the merg-
ing peg solitaire introduced by Engbers and Weber in 2017 [22]. The merge
move is defined by considering vertices x, y, and z with x and y adjacent
and y and z adjacent. However, now we start with pegs on vertices x and
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z only, and the new move merges those two pegs to a single peg on y [22].
This move will be denoted (x, z) → y. An example of a merge move is given
in Figure 2.4. It is worth noting that this move is inspired by the rubbling
move introduced by Belford and Sieben [14] as well as moves on the game
“Lights out” (see for example [23]).

1

x y z

2

x y z

3

x y z

Figure 2.4: An example of a merging move, (x, z) → y

Several results from this paper are given using the following theorem. As
the result for paths is useful for several of our results, we include its proof.

Theorem 2.2.1 [22] In merging peg solitaire:

(i) The star K1,n is not solvable.

(ii) If n ≥ 2, then the path Pn is solvable.

(iii) The double star Sn,m is solvable if and only if |n−m| ≤ 1.

Proof. (ii) If n = 2, then we are done since one hole and one peg remain.
Suppose n > 2. Label the vertices v1, v2, ..., vn and let the hole be in v2. For
i = 2, ..., n−1, we merge vi−1 and vi+1 into vi by (vi−1, vi) → vi+1. This ends
the game with a final peg in vn−1. Thus, we successfully solve the graph.

With the exception of the paper “Reversible peg solitaire on graphs” by
Engbers and Stocker [21], only one type of move has been allowed. Typically,
this move has been the jump (see for example [1, 3, 4, 5, 6, 7, 9, 10, 11, 13,
18, 20, 25, 26]). In particular, only merge moves are allowed in “Merging
peg solitaire on graphs” by Engbers and Weber [22]. Instead, we will look
at how jump and merge moves interact with each other. In other words, we
want to determine what combinations of these moves look like in game play.

In this thesis, we study combinations of jumps and merges and try to
prove that types of trees, and possibly other families of graphs, are solvable
blueprints for this classic game. We also plan to study what implications
that the initial choice for the hole has on the outcome of the final state of
the graph. This research will be completed primarily via inductive methods
of mathematical proofs and will impact future research of this modern idea.



Chapter 3

RESULTS

We are motivated by the comments in the previous section to consider a
variation of peg solitaire in which we allow both jump and merge moves.
For convenience of exposition, we refer to this as the jump+merge variant.
In particular, we are interested in how the combination of these moves can
help solve graph families. With a portfolio of possible moves in hand, the
next step is to research how combinations of moves can affect the solvability
of different graph families. In this variation, we see that some graphs are
immediately given as solvable.

Proposition 3.0.1 The following cases are solvable in the jump+merge vari-
ant:

(i) Any distance 2-solvable graph,

(ii) Any solvable graph in the jump-only variant,

(iii) Any solvable graph in the merge-only variant.

Proof. (i) Using only jumps, obtain the terminal state of the distance 2-
solvable graph. By definition, there are two pegs that are distance two apart.
At this point, merge the final two pegs and a solved state has been reached.

(ii) and (iii) In either case, the addition of a second move option will not
interfere with the solvability since at worst, both moves are not required to
be used in the jump+merge variant.

We now consider several families of trees.

17
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3.1 Stars and Double Stars

A star graph, K1,n is a type of tree that has a center vertex, v and n adjacent
pendants around the center vertex. A pendant is a vertex of degree one. In
the case of stars, pendants are only adjacent to the center vertex. These
graphs are not solvable with only jumps, since if the hole is in the center
vertex, then there are no possible moves [9]. Likewise, if the hole is in any
pendant, then there is only one possible jump before there are no adjacent
pegs. Likewise, if we allow only merges, then the graph is not solvable. To
see this, notice that once there is a peg in the center vertex, then no further
merges are possible [22]. In several other variants such as [6, 17, 18, 21] the
star is an unsolvable graph. Interestingly, if we allow for merges as well as
jumps, then stars are solvable.

v

p1p2 p3
p4

Figure 3.1: The star graph, K1,n

Theorem 3.1.1 Star graphs, K1,n, with n pendants are solvable using jumps
and merges.

Proof. First, define the center vertex to be v and label the pendants
p1, p2, ..., pn.

Case 1 The hole is in v. For i = 1, ..., ⌊n/2⌋, merge (p2i−1, pn) → v and
then jump p2i·

−→

v ·pn. If n is even, then this pattern will solve the graph. If n
is odd, then merge (pn, pn−1) → v, and a solved state will be obtained.

Case 2 The hole is in any pendant, say p1. Then, jump pn·
−→

v ·p1. Ignoring
the hole in pn, this is a star with n − 1 pendants and a hole in the center
vertex v, so it is solvable by the above algorithm.

The technique used in the proof of Theorem 3.1.1 can be applied to other
graphs as well. To do this, we define a package and a purge based on the above
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argument. Packages and purges are discussed extensively in [12, 15], but are
also used in [4, 13, 20]. When we solve graphs, we often deal with subgraphs
using the same sequences of moves. Packages and purges are “short cuts”
that allows us to rapidly progress through the solution of a graph without
repeating these same moves. A package is a subgraph which has a specific
configuration of pegs and holes. A purge is a sequence of moves (traditionally
jumps) which will preserve the locations of certain pegs and holes and remove
the remaining pegs on this subgraph. The pegs and holes which are restored
to their original locations are called the catalyst.

Motivated by the above comments, we define a Star Purge. Define a star
K1,n with n vertices, where the center vertex is labeled v and the pegs are
labeled p1, ..., pn. If the hole is in v, then merge (p1, pn) → v and then jump
p2·

−→

v ·pn. We continue in this fashion using the algorithm defined above, but
we can further define a collection of moves, Sv(X, 2d), where X is the set
and 2d is the number of pegs we remove from X .

If the hole is in a pendant, say pn, then we jump p1·
−→

v ·pn and then merge
(p2, pn) → v. In this case, we denote this as Spn(X, 2d), where X is the set
and 2d is the number of pegs we remove from X .

Note, if K1,n has an even number of pegs and the initial hole is in a
pendant, then the final peg will be in a pendant, and if K1,n has an odd
number of pendants, then the final peg will be in v. Similarly, if K1,n has an
even number of pegs and the initial hole is v, then the final peg will be in
v, and if K1,n has an odd number of pendants, then the final peg will be in
a pendant. This idea will become even more prevalent in some later results.
Notice that stars are freely solvable in the jump+merge variant, which is
significant since this purge is used to solve other graphs that my or may not
be freely solvable.

As an example of this technique, we use the star purge to investigate a
special case of caterpillars, the double star, Sm,n. The double star is a graph
with two spinal vertices that are connected by a single edge, like a path, each
with an independent number of pendants. We want to use the star purge to
prove that double stars are solvable using jumps and merges. If this can be
done, then we will have classified a type of caterpillar that is solvable in the
jump+merge variant.

Theorem 3.1.2 The double star Sm,n is solvable in the jump+merge variant.

Proof. Note that S1,1 is the path P4. This was shown to be solvable in
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Theorem 2.2.1. This being the case, we will assume that m ≥ n and that
m ≥ 2.

First, define the center vertices to be x and y and label the pendants
x1, x2, ..., xm and y1, y2, ..., yn, respectively. Since the parity of the spinal
vertices will affect the outcomes of the star purges, we will examine each
possible case for the parity of m and n.

Case 1 m and n are even.
Case 1a Let the hole be in any pendant, say x1. Complete a star purge

on the pegs in {x2, ..., xm, y} with x1 (hole) and x (peg) as the catalyst. We
are left with a peg in x and a hole in y. Complete a second star purge on
the pendants of y with x (peg) and y (hole) as the catalyst to solve.

Case 1b The hole is in either spinal vertex, say x. Complete a star purge
on the pegs in {x2, ..., xm, y} with x (hole) and x1 (peg) as the catalyst. We
are left with a peg in x1 and holes in x and y. Complete a second star purge
on {y3, .., yn} with y (hole) and y1 (peg) as the catalyst. This leaves pegs in
x1, y1, and y2. Merge (y1, y2) → y and (y, x1) → x to solve.

Case 2 m and n are odd.
Case 2a Let the hole be in any pendant, say x1. Jump xm·

−→

x ·x1. Com-
plete a star purge on the pendants of x with x (hole) and y (peg) as the
catalyst. This leaves us with a peg in y and a hole in x. Jump yn·

−→

y ·x.
Complete another star purge on the pendants of y with y (hole) and x (peg)
as the catalyst. We are left with peg in x.

Case 2b The hole is in either spinal vertex, say x. Complete a star
purge on the pendants of x with x (hole) and x1 (peg) as the catalyst. Merge
(x1, y) → x. We are left with a peg in x and a hole in y. Complete a second
star purge on the pendants of y with x (peg) and y (hole) as the catalyst to
solve.

Case 3 Exactly one ofm and n is odd. Without loss of generality, suppose
that m is even and n is odd.

Case 3a Let the hole be in a pendant of x, say x1. Complete a star purge
on the pendants of x with x1 (hole) and x (peg) as the catalyst. This will
leave a peg in one of the pendants of x, say x2. Jump x2·

−→

x ·x1 and merge
(x1, y) → x leaving a peg in x and a hole in y. We then perform a star purge
on the pendants of y with x (peg) and y (hole) as the catalyst. This leaves a
peg in x, a peg in y1, and holes elsewhere. The merge (x, y1) → y completes
the solution.

Case 3b Suppose the hole is in a pendant of y, say y1. Complete a star
purge on the pendants of y with y1 (hole) and y (peg). We perform the
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moves x·
−→

y ·y1, (xm, xm−1) → x, and (x, y1) → y. If m = 2, then the graph
is solved. If not, then we perform a star purge with catalyst x (hole) and y
(peg) to remove the remaining pegs from the pendants of x.

Case 3c Let the hole be in x. Complete a star purge with x (hole) and x1

(peg) as the catalyst. This leaves pegs in x1 and x2. We perform the moves
(x2, y) → x, x1·

−→

x ·y, and yn·
−→

y ·x. We are left with pegs in x, y1,...,yn−1 and
holes elsewhere. Complete a second star purge on the remaining pendants of
y with x (peg) and y (hole) as the catalyst to solve.

Case 3d Let the hole be in y. Complete a star purge to remove pegs
from the pendants of y using y (hole) and y1 (peg) as the catalyst. Merge
(x, y1) → y. We are left with a peg in y and a hole in x. Complete a second
star purge on the pendants of x with x (hole) and y (peg) as the catalyst to
solve.

Notice that the double star is also freely solvable, since the choice of the
initial hole does not affect the solvability of the graph. We will see later how
the star purge and other purges can be applied to solve other graphs.

3.2 Caterpillars

Stars and double stars are special cases of a family of trees known as cater-
pillars. A caterpillar is obtained from the path on n vertices by appending
pendants to the existing vertices of the path. The vertices of the original
path, which are called the spine of the caterpillar, are labeled x1,...,xn in the
natural way. We call n the spine length. We append ai pendants to xi for
1 ≤ i ≤ n. The pendants adjacent to xi will be denoted xi,1,...,xi,ai . Simi-
larly, we define the set Xi = {xi,1, ..., xi,ai}. The caterpillar with parameters
n, a1,...,an will be denoted Pn(a1, ..., an). An example of a caterpillar is il-
lustrated in Figure 3.2. Without loss of generality, we will assume that for
i ∈ {1, n}, ai ≥ 1. While some literature calls the pendants of the caterpillar
leaves, we will be referring to them as pendants to remain consistent with
our definitions of the star and double star.

In the paper by Beeler, Green, and Harper [8], the solvability for several
classes of caterpillars were determined for the jump-only variant of peg soli-
taire on graphs. These classes include caterpillars of the form Pn(a1, ..., 1)
(i.e., broomsticks), caterpillars of the form Pn(a1, ..., 1, an) (i.e., dumbbells),
and caterpillars of the form P4(a1, a2, a3, a4).
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v0,1 v0,2 v0,3 v2,1 v2,2

v0
v1 v2 v3

v0,4 v0,5 v0,6 v1,1 v2,3 v2,4 v3,2 v3,3

v3,1

Figure 3.2: The caterpillar P4(6, 1, 4, 3)

In the paper by Engbers and Weber [22], the solvability of several classes
of caterpillars is determined for the merge-only variant. These classes include
dumbbells (particularly the cases P3(a1, 0, a3) and P4(a1, 0, 0, a4)) and cater-
pillars of the form Pn(a1, ..., an), where a1 = t1, an = tn−1, and ai = ti + ti−1

for 2 ≤ i ≤ n− 1 and non-negative integers t1,..,tn−1.

However, determining necessary and sufficient conditions for the solvabil-
ity of a general caterpillar in either variant is currently an unsolved problem.
For this reason, we wish to expand on the results of [8] and [22] by considering
the solvability of certain classes of caterpillars in the jump+merge variant.

Theorem 3.2.1 The caterpillar T = Pn(a1, ..., an) with n ≥ 1 and ai ≥ 1
for i = 1, ..., n is solvable in the jump+merge variant.

Proof. We prove that the caterpillar Pn(a1, ..., an), where ai ≥ 1 for i =
1, ..., n, is solvable when the initial hole is in the end of the spine, xn. In
order to do this, proceed by induction on the spine length n.

Let n = 1 and begin with the initial hole in x1. In this case, P1(a1) is
isomorphic to the star K1,a1 . If a1 is even, then the star purge Sx1

(X1, a1−2)
followed by the merge (x1,u, x1,2) → x1 solves the graph with final peg in x1.
If a1 is odd, then the star purge Sx1

(X1, a1 − 1) solves the graph with the
final peg in x1,i. So, the claim holds when n = 1.

Assume that for some n ≥ 1 that Pn(a1, ..., an) is solvable with the initial
hole in xn provided that ai ≥ 1 for all i.

Now, consider the caterpillar Pn+1(a1, a2, ..., an, an+1) (where ai ≥ 1 for
all i) and place the initial hole in xn+1.

Case 1 an+1 is even.

Treat xn as a pendant of xn+1. Use xn (peg) and xn+1 (hole) as a catalyst
for star purge Sxn+1

(Xn+1, an+1). We then jump xn,an ·
−→

xn ·xn+1. We now treat
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xn+1 as a pendant of xn. Ignoring the holes in xn,an and Xn+1, the resulting
graph is Pn(a1, ..., an) with a hole in xn. So it is solvable by hypothesis.

Case 2 an+1 is odd.
Apply the star purge Sxn+1

(Xn+1, an+1 − 1). Merge (xn, xn+1,1) → xn+1.
Treat xn+1 as a pendant of xn and ignore the holes in xn+1 and its pendants.
The resulting graph is Pn(a1, ..., an+1) with a hole in xn, so it is solvable by
hypothesis.

In either case, caterpillars of the form Pn(a1, ..., an), where ai ≥ 1 for all
i are solvable in the jump+merge variant by the principle of mathematical
induction.

Note that Theorem 3.2.1 shows that an infinite class of caterpillars are
solvable. However, it does not show that all caterpillars are solvable. In
particular, this result does not cover caterpillars of the form Pn(a1, ..., an),
where ai = 0 for some i ∈ {2, ..., n − 1}. Our next result seeks to alleviate
this discrepancy by considering an infinite class of caterpillars of this form.

Theorem 3.2.2 The caterpillar T = Pn(a1, ..., ap, 0, ..., 0, an) where n ≥ 1,
p ≥ 1, and ai ≥ 1 for i ∈ {1, ..., p, n} is solvable in the jump+merge variant.

Proof. Suppose that an is even. Begin with the initial hole in xn−1. Using
xn−1 (hole) and xn (peg) as the catalyst for our star purge, we remove an pegs
from the leaves of xn. We then make merge moves (xn−i+1, xn−i−1) → xn−i

for i = 1, ..., n − p − 1. We ignore the holes in xp+2,...,xn, and holes in the
pendants of xn. Further, we treat xp+1 as one of the leaves of xp. What
remains is the caterpillar Pp(a1, ..., ap−1, ap +1), where ai ≥ 1 for i = 1, ..., p.
Since we have a hole in xp, this is solvable by Theorem 3.2.1.

Suppose that an is odd. Begin with the initial hole in xn. We use xn

(hole) and xn−1 (peg) as the catalyst for our star purge to remove all but
one peg from the pendants of xn. We then merge (xn,1, xn−1) → xn followed
by (xn−i+1, xn−i−1) → xn−i for i = 1, ..., n − p − 1. We ignore the holes in
xp+2,...,xn, and holes in the pendants of xn. Further, we treat xp+1 as one
of the leaves of xp. What remains is the caterpillar Pp(a1, ..., ap−1, ap + 1),
where ai ≥ 1 for i = 1, ..., p. Since we have a hole in xp, this is solvable by
Theorem 3.2.1.

The following corollary follows immediately from Theorem 3.2.1 and The-
orem 3.2.2. This corollary is especially important as it covers several special
cases of caterpillars that were previously investigated in [8] and [22].
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Corollary 3.2.3 The following families of caterpillars are solvable in the
jump+merge variant:

(i) Caterpillars with spine length three, i.e., P3(a1, a2, a3)

(ii) Caterpillars with spine length four, i.e., P4(a1, a2, a3, a4).

(iii) Caterpillars of the form Pn(a1, 0, ..., 0, 1), i.e., broomsticks.

(iv) Caterpillars of the form Pn(a1, 0, ..., 0, an), i.e., dumbbells.

In the proof of Theorem 3.2.1, the parity of an determines how we deal
with xn−1 and its pendants. Specifically, when an is even, then the star
purge removes all of the pegs from the pendants of xn. We then jump
xn−1, an−1·

−→

xn−1·xn. We ignore xn−1,an−1
and the pendants of xn. We treat xn

as a pendant of xn−1, allowing us to work with the caterpillar Pn−1(a1, ..., an−1)
with a hole in xn−1. In short, the parity of an−1 is not changed. Likewise, if
an is odd, then the star purge removes all but one peg from the pendants of
xn. We then merge (xn−1, xn,1) → xn. Ignoring the pendants of xn and treat-
ing xn as a pendant of xn−1 we have the caterpillar Pn−1(a1, ..., an−2, an−1+1)
with a hole in xn−1. In short, the parity of an−1 is changed. We are moti-
vated by the above discussion to define the adjusted values a′1,...,a

′

n for the
caterpillar as follows: a′n = an and for i = 1, ..., n− 1,

a′i =

{

ai a′i+1 ≡ 0 (mod 2)
ai + 1 a′i+1 ≡ 1 (mod 2).

Observe that when a′1 is even, then our final peg is in x1. Whereas if a′1
is odd, then the final peg is in one of the neighbors of x1. A more subtle
observation is that we can change the location of final peg by changing the
location of the initial hole. This observation is important because we want a
hole in the final spine vertex in order to utilize our earlier result. We will go
into more detail in the proof of our next theorem.

Theorem 3.2.4 Let p, q, and n be positive integers such that p+q ≤ n. The
caterpillar T = Pn(a1, ..., an), where ai ≥ 1 for i ∈ {1, ..., p, n − q + 1, .., n}
and ai = 0 for p+ 1 ≤ i ≤ n− q is solvable in the jump+merge variant.

Proof. If q = 1, then the result is covered by Theorem 3.2.2. For this reason,
we will assume that q ≥ 2 for the rest of the proof. Compute the adjusted
values for an−q+1,...,an as described above.
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If a′n−q+1 is odd, then begin with the initial hole in xn. Consider the sub-
graph induced by xn−q+1,...,xn and their pendants. Solve this Pq(an−q+1, ..., an)
subgraph as described in the proof of Theorem 3.2.1. Since a′n−q+1 is odd, this
results in a hole in xn−q+1 and a peg in one of its neighbors, say xn−q+2. We
then make the merge moves (xn−q+3−i, xn−q+1−i) → xn−q+2−i for i = 1, ..., n−
q−p+1. We ignore the holes in xp+2,...,xn and their pendants and treat xp+1

as a pendant of xp. What remains is the caterpillar Pp(a1, ..., ap−1, ap + 1)
with a hole in xp. Thus, it is solvable by Theorem 3.2.1.

Suppose a′n−q+1 is even and that an ≥ 2. Begin with the initial hole in

xn,an−1 and jump xn,an ·
−→

xn ·xn,an−1. Ignoring the hole in xn,an , our result is
the caterpillar Pn(a1, ..., an−1, an − 1) with a hole in xn. Since the parity of
a′n has changed, the parities of a′n−q+1,...,a

′

n−1 have each changed from their
original values. Thus, this reduces to the case above.

Suppose a′n−q+1 is even and that an = 1. Begin with the initial hole in

xn−1. Notice that q ≥ 2 implies that an−1 ≥ 1. Jump xn,1·
−→

xn ·xn−1 and
xn−1,an−1

·
−→

xn−1·xn. Ignore the holes in xn,1 and xn−1,an−1
and treat xn as a

pendant of xn−1. The resulting graph is Pn−1(a1, ..., an−1) with a hole in
xn−1. Since an (and therefore a′n) is odd, this removal changes the parity of
a′n−1 from its initial value. Subsequently, the parities of a′n−q+1,...,a

′

n−2 have
each changed from their original values. Thus, this reduces to the case where
a′n−q+1 is odd.

Using a similar technique as was used in the proof of Theorem 3.2.4, we
can find a bound on how many pegs are left on a general caterpillar. To aid
in this, we define some additional terminology. With the exception of the end
vertices of the spine x1 and xn, which we will discuss later, we place every
vertex within either a dessert or a garden, Within the caterpillar, the desert
Di is the subgraph induced by xdi ,...,xdi+ℓi, where adi = · · · = adi+ℓi = 0,
adi−1 ≥ 1, and adi+ℓi+1 ≥ 1. Likewise, the garden Gj is the subgraph induced
by xgj ,...,xgj+ℓj and their pendants, where agj+c−1 ≥ 1 for c = 1, ..., ℓj + 1,
agj−1 = 0, and agj+ℓj+1 = 0. If a1 ≥ 2 (an ≥ 2) or a2 ≥ 2 (an−1 ≥ 2), then we
include x1 (xn) along with its pendants in the garden that contains x1 (xn).
If a1 = 1 (an = 1) and a2 = 0 (an−1 = 0), then we include x1 (xn) and its
pendant along with the desert that contains x2 (xn−1).

In this way, we can describe the caterpillar as an alternating sequence
of gardens and deserts. Without loss of generality, there are three possible
patterns:

(i) G1, D2, G3, ..., Dt−1, Gt;
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(ii) D1, G2, D3, ..., Dt−1, Gt;

(iii) D1, G2, D3, ..., Gt−1, Dt.

We will assume that the spine vertices in the ith entry (regardless of whether
it is a desert or a garden) are xi1 ,...,xini

. As in the proofs of Theorem 3.2.1,
Theorem 3.2.2, and Theorem 3.2.4, our solution will progress from right to
left.

Observe what happens as we move from the desert Di+1 into the garden
Gi. The final peg on Di+1 will be in x(i+1)2 . To move into Gi, we merge
(x(i+1)2 , xini

) → x(i+1)1 . We then treat x(i+1)1 as a pendant of xini
. Since

xini
has a hole in it, we have effectively increased the value of aini

by one.
This suggests that our adjusted values for the parameters of the gardens
(other than Gt, in cases (i) and (ii)) will be changed accordingly. As before,
we define a′tnt

= atnt
, if we are in case (i) or case (ii). Based on the above

discussion, we define a′ini
= aini

+ 1 for Gi, i 6= t. For each garden Gi and
j = 1, ..., ni − 1 we define the other adjusted values in the same manner as
above, namely

a′ij =

{

aij a′ij+1
≡ 0 (mod 2)

aij + 1 a′ij+1
≡ 1 (mod 2).

At this point, it behooves us to discuss how we move from the garden
Gi+1 to the desert Di. On Gi+1, we want a hole in x(i+1)1 and a peg in one
of its neighbors, say x(i+1)2 . This allows us to traverse the desert Di using
the merge moves (x(i+1)2 , xini

) → x(i+1)1 , and (xini−1
, x(i+1)1) → xini

followed
by (xini−j−1

, xini−j+1
) → xini−j

for j = 1, ..., ni−2. As in the proof of Theorem
3.2.4 and in cases (i) and (ii), we can ensure that the final peg on Gt will be
in xt2 by choice of our initial hole. However, we do not have this luxury for
subsequent gardens. If a′i1 is odd, then the star purges will leave a single peg
in xi2 in Gi. We can then progress down the caterpillar as described above.
However, if a′i1 is even for 2 ≤ i ≤ t− 1, then our star purges will result in a
peg in each of xi2 and xi1,1 on Gi. In order to continue, we choose to leave
the peg in xi1,1 and then progress with our solution as we have described.
Observe that in case (i), if a′11 is even, then we can merge the final two pegs in
G1. Thus, in order to determine a bound on the solvability of the caterpillar,
we need only know which Gi have even a′i1 . For 2 ≤ i ≤ t − 1, we say that
Gi is an even garden if the adjusted value a′i1 is even. Using the method
described above, we will leave one peg in each even garden as well as a final
peg in either G1 or D1. Based on this, the following theorem is immediate.
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Theorem 3.2.5 Given the caterpillar Pn(a1, ..., an), at most we will leave
1 +m pegs on this graph, where m is the number of even gardens.

There are various ways that the bound in Theorem 3.2.5 can be im-
proved. For example, suppose that we have an even garden Gi such that for
xij , xij+1

, xij+2
∈ V (Gi) the adjusted values satisfy a′ij ≥ 3 and a′ij+2

≥ 2. In
this case, we solve the garden Gi as described above until there is a hole in
xij+2

. At this point, we jump xij ·
−→

xij+1
·xij+2

, jump xij+2,aij+2
·

−→

xij+2
·xij+1

, and

merge (xij ,aij−1, xij ,aij
) → xij . We then ignore the holes in xij ,aij−1, xij ,aij

,
and xij+2,aij+2

. Notice that this changes the parity of aij+2
while leaving the

parity of aij and aij+1
alone (however, the actual value of aij has changed).

Thus, the adjusted value of a′ij+2
has changed, thereby changing the subse-

quent adjusted values. This allows us to solve the garden Gi, leaving no pegs
behind.

No doubt, there are similar methods that will also allow for minor im-
provements on Theorem 3.2.5. However, we have no desire to catalog addi-
tional methods at this time.

3.3 Trees of Small Diameter

As mentioned previously, trees can take many different named or unnamed
forms. One way to discuss unnamed forms of trees is by their diameter, since
this gives us an idea to their size and shape, even though a tree of a certain
diameter may or may not be an explicit named form. Note that all trees of
diameter two are stars and all trees of diameter three are double stars.

We are motivated by the above comments to determine the solvability
of all trees of diameter four. Any tree of diameter four can be obtained by
appending pendant vertices to the existing vertices of the star K1,n. Label
the center of the star as x and its arms as y1, ..., yn. Suppose that we append c
pendant vertices to x, namely x1, ..., xc and ai pendant vertices to yi, namely
yi,1, ..., yi,ai for i = 1, ..., n. Note that for i 6= j and for any ℓ and m, the
vertices yi,ℓ, yi, x, yj , and yj,m induce a path of length four. Thus, this
construction gives all trees of diameter four. The resulting graph will be
denoted K1,n(c; a1, ..., an). An example is shown in Figure 3.3.

The necessary and sufficient conditions for the solvability of trees of di-
ameter four are given in a 2015 paper by Beeler and Walvoort [13]. Because
their results are pertinent to our discussion, we include them here. Note that
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Figure 3.3: The graph K1,3(4; 3, 2, 2)

Beeler and Walvoort introduce a new parameter k = c−Σai+n to facilitate
their discussion.

Theorem 3.3.1 [13] The conditions for solvability of K1,n(c; a1, ..., an) where
a1 ≥ 2 are as follows:

(i) The graph K1,n(c; a1, ..., an) is solvable if and only if 0 ≤ k ≤ n+ 1.

(ii) The graph K1,n(c; a1, ..., an) is freely solvable if and only if 1 ≤ k ≤ n.

(iii) The graph K1,n(c; a1, ..., an) is (1 − k)-solvable if k ≤ −1. The graph
K1,n(c; a1, ..., an) is (k − n)-solvable if k ≥ n+ 2.

Theorem 3.3.2 [13]
The conditions for solvability of K1,n(c; 1, ..., 1) are as follows:

(i) The graph K1,2t(c; 1, ..., 1) is solvable if and only if 0 ≤ c ≤ 2t and
(t, c) 6= (1, 0). The graph K1,2t+1(c; 1, ..., 1) is solvable if and only if
0 ≤ c ≤ 2t+ 2.

(ii) The graph K1,n(c; 1, ..., 1) is freely solvable if and only if 1 ≤ c ≤ n−1.

(iii) The graph K1,2t(c; 1, ..., 1) is (c − 2t + 1)-solvable if c ≥ 2t + 1. The
graph K1,2t+1(c; 1, ..., 1) is (c− 2t− 1)-solvable if c ≥ 2t+ 3.

As we begin to study more complex graphs such as trees of small diameter,
we will want to take advantage of the packages and purges introduced in
Beeler and Walvoort’s paper on trees of diameter four. These purges include
the wishbone, the trident, the double star, and two variations of a spider
purge.
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The wishbone package consists of K1,2(1; 1, 1) with the hole in x. The
wishbone purge is y2,1·

−→

y2 ·x, x1·
−→

x ·y2, y1,1·
−→

y1 ·x, and y2·
−→

x ·x1. The wishbone
purge removes two legs, while the catalyst is x (hole) and x1 (peg).

The trident package consists of K1,3(1; 1, 1, 1) with the hole in x and
pegs elsewhere. The trident purge is y3,1·

−→

y3 ·x, x1·
−→

x ·y3, y2,1·
−→

y2 ·x, y3·
−→

x ·y2,
y1,1·

−→

y1 ·x, and y2·
−→

x ·x1. This purge removes three legs, while the catalyst is
x (hole) and x1 (peg).

The double star package will consist of a Sd,d with a hole in x. The
associated purge to remove d pendants from each side of the double star is
accomplished with the moves y1,i·

−→

y1 ·x and xi·
−→

x ·y1 for i = 1, ..., d [10]. This
purge is denoted DS (Y1, X, d). The catalyst is x (hole) and y1 (peg).

The spider(N) package consists of a K1,3(2; 1, 1, 1) with the hole in y1
and pegs elsewhere. The spider(N) purge is x1·

−→

x ·y1, y1,1·
−→

y1 ·x, x2·
−→

x ·y1,
y2,1·

−→

y2 ·x, x·
−→

y1 ·y1,1, and y3,1·
−→

y3 ·x. Note that the spider(N) purge removes
two pegs from X and two legs, while y1 (hole), x (peg) and y1,1 (peg) are the
catalyst.

The spider(x) package has the hole in x. The associated purge is y1,1·
−→

y1 ·x,
x1·

−→

x ·y1, y2,1·
−→

y2 ·x, x·
−→

y1 ·y1,1, y3,1·
−→

y3 ·x, and x2·
−→

x ·y1. The spider(x) purge
removes two pegs from X and two legs, while x (hole), y1 (peg), and y1,1
(peg) are the catalyst.

Illustrations of the graphs used for the wishbone, trident, and spider
purges are given in Figure 3.4. For each graph, the catalyst is placed in a
box. The hollow vertex in the box represents the initial hole for the purges.

Figure 3.4: The graphs for the wishbone, trident, and spider(N), and
spider(x) purges

We are now prepared to show that all trees of diameter four are solvable
in the jump+merge variant. Throughout this theorem, we will define several
versions of a set S. We perform star purges on this set to complete the
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solution.

Theorem 3.3.3 Let T = K1,n(c; a1, ..., an) be a tree of diameter four. Then
T is solvable in the jump+merge variant of peg solitaire.

Proof. Note that K1,2(0; 1, 1) is isomorphic to the path on five vertices. As
the solvability of all paths was established in Theorem 2.2.1, we will assume
that T 6= P5 for the remainder of the proof.

Begin with the initial hole in x. For i = 1, ..., n perform star purges with
catalyst x (hole) and yi (peg) to remove 2⌊ai/2⌋ pegs from the pendants of yi.
Note that if ai is even, then we have removed all of the pegs from yi,1,...,yi,ai.
Likewise if ai is odd, then one peg remains in yi,1. Let ℓ be the number of yi,1
that still have pegs. If ℓ = 0, then define the set S = {y1, ..., yn, x1, ..., xc}. If
ℓ ≥ 1, then reorder the yi so that there are pegs in y1,1,...,yℓ,1.

If ℓ = 1, then jump y1,1·
−→

y1 ·x and yn·
−→

x ·y1. We define the set S =
{y1, ..., yn−1, x1, ..., xc}.

Suppose that 2 ≤ ℓ ≤ n − 1. Perform trident and wishbone purges
with catalyst x (hole) and yn (peg) to remove all pegs from yi and yi,1 for
i = 1, ..., ℓ. Define the set S = {yℓ+1, ..., yn, x1, ..., xc}.

Similarly, when ℓ = n and n ≥ 3 we perform trident and wishbone purges
with catalyst x (hole) and yn (peg) to remove all pegs from yi and yi,1 for
i = 1, ..., n−1. We then jump yn,1·

−→

yn ·x. If c = 0, then the graph is solved with
the final peg in x. Otherwise, jump xc·

−→

x ·y1 and define S = {y1, x1, ..., xc−1}.
Finally, suppose that ℓ = n and n = 2. If c ≥ 1, then we perform a

wishbone purge with catalyst x (hole) and x1 (peg) to remove the pegs from
y1, y1,1, y2, and y2,1. We define S = {x1, ..., xc}. If c = 0, then either a1 ≥ 2
or a2 ≥ 2 since T 6= P5. Assume without loss of generality that a1 ≥ 2.
This means that there are pegs in y1, y1,1, y2, and y2,1 and holes in y1,2 and
x. To complete the solution, we jump y1,1·

−→

y1 ·y1,2, jump y2,1·
−→

y2 ·x, and merge
(y1,2, x) → y1, completing the solution.

If S is undefined or |S| = 1, then the graph is solved. Otherwise, let
w ∈ S. Perform star purges on the set S − {w} with catalyst x (hole) and
w (peg) to remove 2⌊|S − {w}|/2⌋ pegs from S − {w}. If |S| is odd, then
we have solved the graph with the final peg in w. If |S| is even, then there
is a peg in w and a peg in some element of S − {w}, say z. In this case, we
complete the solution with the merge (w, z) → x.

Using our result from Theorem 3.3.3, it is straightforward to show that
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Figure 3.5: The graph S4,3(7; 5, 3, 1, 1, ; 3; 4, 2, 1)

trees of diameter five are also solvable. Any tree of diameter five can be
obtained by appending leaves to the existing vertices of the double star Sr,s.
We append c1 leaves to x, namely w1,...,wc1 . We append c2 leaves to y, namely
z1,...,zc2 . Similarly, we append ai leaves to xi, namely xi,1,...,xi,ai , and bj
leaves to yj , namely yj,1,...,yj,bj . A diameter five tree with these parameters
is denoted Sr,s(c1; a1, ..., ar; c2; b1, ..., bs) (see Figure 3.5). Without loss of
generality, assume that a1 ≥ ... ≥ ar ≥ 1 and b1 ≥ .... ≥ bs ≥ 1. Note that
if r = s = 1, then this graph is isomorphic to the caterpillar P4(a1, c1, c2, b1).
As these graphs were shown to be solvable in Theorem 3.2.3, we can assume
that r ≥ 2.

For purposes of exhibition, we define two subsets of the vertex set

L = {x, y, x1, ..., xr}∪{w1, ..., wc1}∪{x1,1, ..., x1,a1}∪· · ·∪{xr,1, ..., xr,ar} and

R = {x, y, y1, ..., ys} ∪ {z1, ..., zc2} ∪ {y1,1, ..., y1,b1} ∪ · · · ∪ {ys,1, ..., xs,bs}.

Note that the subgraph induced by L is isomorphic to the tree of diameter
four K1,r(c1+1; a1, ..., ar). Similarly, when s = 1, the subgraph induced by R
is isomorphic to the double star Sc2+1,b1 . When s ≥ 2, the subgraph induced
by R is isomorphic to the tree of diameter four K1,s(c2+1; b1, ..., bs). We will
use our results regarding the solvability of stars, double stars, and trees of
diameter four to yield the analogous result on trees of diameter five. This
result is especially significant as the solvability of such trees has not been
determined in either the (traditional) jump variant or the merge variant of
peg solitaire.

Theorem 3.3.4 The tree of diameter five Sr,s(c1; a1, ..., ar; c2; b1, ..., bs) is
solvable when merge moves and jump moves are allowed.
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Proof. Note that if r = s = 1, then this graph is isomorphic to the caterpillar
P4(a1, c1, c2, b1). As these graphs were shown to be solvable in Theorem 3.2.3,
we will assume for the rest of the proof that r ≥ 2.

Begin with the initial hole in y and solve GR as described in Theorem
3.1.2 (when s = 1) or Theorem 3.3.3 (when s ≥ 2). In either case, we can
assume the final peg on GR will be in either y or in y1. Observe that there
is a hole in x.

Case 1 Suppose that the final peg on GR is in y. Treat y as a pendant
of x. As GL has a hole in x, we solve it as we would K1,r(c1 + 1; a1, ..., ar)
(see Theorem 3.3.3).

Case 2 Suppose that the final peg on GR is in y1.

If ar = 1, then we jump xr,1·
−→

xr ·x and merge (y1, x) → y. We ignore the
holes in xr and xr,1 and treat y as a pendant of x. If r = 2, then we solve GL

as we would Sc1+1,a1 with a hole in x (see Theorem 3.1.2). If r ≥ 3, then we
solve GL as K1,r−1(c1 + 1; a1, ..., ar−1) with a hole in x (see Theorem 3.3.3).

If a1 ≥ 3 and ar ≥ 2, then jump x1,a1 ·
−→

x1 ·x, merge (y1, x) → y, and merge
(x1,a1−2, x1,a1−1) → x1. We now ignore the holes in x1,a1−2, x1,a1−1, and x1,a1

and treat y as a pendant of x. If a1 = 3 and r = 2, then we also treat x1

as a pendant of x and we solve GL as we would Sc1+2,a2 with a hole in x
(see Theorem 3.1.2). If a1 = 3 and r ≥ 3, then we solve GL as we would
K1,r−1(c2 +2; a2, ..., ar) with a hole in x (see Theorem 3.3.3). If a1 ≥ 4, then
we solve GL as we would K1,r(c1 + 1; a1 − 3, a2, ..., ar).

Finally, suppose that ai = 2 for i = 1, ..., r. We make the following merges
(xr−1, xr) → x, (y1, x) → y, (xr−1,1, xr−1,2) → xr−1, and (xr,1, xr,2) → xr. We
ignore the holes in xr−1,1, xr−1,2, xr,1, and xr,2 and treat xr−1, xr, and y as
pendants of x. If r = 2, then we solve GL as we would K1,c1+3 with a hole
in x (see Theorem 3.1.1). If r = 3, then we solve GL as we would Sc1+3,a1

with a hole in x (see Theorem 3.1.2). If r ≥ 4, then we solve GL as we would
K1,r−2(c1 + 3; a1, ..., ar−2) (see Theorem 3.3.3).

A natural next step may be to consider trees of diameter six. Any tree
of diameter six can be obtained by adding pendant vertices to the vertices
of a tree of diameter four. Given the notation for a tree of diameter four, it
is likely that any notation used for a general tree of diameter six would be
complicated and cumbersome. However, it may be interesting and insightful
to consider certain classes of trees of diameter six. One such class could be
the banana trees studied by de Wiljes and Kreh [20]. However, we leave such
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considerations as a problem for future research.

3.4 Other Trees

We have explored trees as a graph family that has much to offer to peg
solitaire on graphs. We have mentioned that this is due to the fact that every
connected graph contains a spanning tree. A great resource that explores
these spanning trees on n vertices is Steinbach’s Field Guide to Simple Graphs
[29]. In this book, illustrations are provided for each non-isomorphic tree on
n vertices where n ≤ 12, and we see that there is one on one vertex, one on
two vertices, one on three vertices, two on four vertices, three on five vertices,
and so on. Using the results that we have obtained thus far and comparing
them to the trees in [29], we notice that all trees on eight vertices or less
are solvable using the jump and the merge. There are two non-isomorphic
trees on nine vertices that we have not shown to be solvable (there are eleven
on ten vertices and more than fifty left unsolved on eleven vertices). Upon
further study, we notice that there are some commonalities among some of
the trees on n ≤ 11 vertices. One in particular is a caterpillar-like graph that
we will now explore.

Consider a graph that looks like a caterpillar with a path as a spine and
pendants along the spinal vertices. However, we now allow these pendants
to be subdivided so that it looks like a tail with two adjacent vertices rather
than just one. We will refer to this caterpillar-like graph as an articulated
caterpillar and denote it APn(b1, ..., bn), where bi is the number of tails on xi

(such graphs are sometimes referred to as lobster graphs in the literature).
An example of such a graph is given in Figure 3.6. For clarity, we assume
that n ≥ 2 and b1 = bn = 0. Otherwise, the graph could be transformed into
various interpretations via various arrangements of the tails of the endpoints.
For example, an articulated caterpillar with b1 = 1 could be interpreted as
an articulated caterpillar with no tails on the first three vertices.

Theorem 3.4.1 The articulated caterpillar, APn(b1, ..., bn), where n ≥ 2,
b1 = bn = 0, and bi ≤ 1 for all i is solvable in the jump+merge variant.

Proof. Let t be the number of tails on APn(b1, ..., bn). We proceed by
induction on t.

Let t = 1. Then, by the definition of an articulated caterpillar, there are
at least three spinal vertices, say v1, ..., vn, where vi is the vertex with the
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Figure 3.6: The articulated caterpillar AP8(0, 3, 0, 1, 1, 0, 2, 0)

tail. Note that 2 ≤ i ≤ n− 1. Label the vertices of the tail vi,1 and vi,2. Let
the initial hole be in the peg adjacent to the end of the spine, say v2. Treat
the vertices along the spine from v1, ..., vi, vi,1 as a path and merge along this
path. Now, v1, ..., vi−1 are empty, vi and vi,2 have pegs, and vi,1 is empty.
Now, treat vi,2, vi,1, vi, vi+1, ...vn as a path. Note, the hole is still in the vertex
adjacent to the end of the path, so it can be solved using merges. So, the
claim holds when t = 1.

Assume that for some t ≥ 1 that the articulated caterpillar, APn(b1, ..., bn),
where n ≥ 2 and b1 = bn = 0, with t tails is solvable in the jump+merge
variant when bi ≤ 1.

Now, consider the articulated caterpillar, APn(b1, ..., bn), where n ≥ 2,
b1 = bn = 0, and bi ≤ 1 for all i with t+1 tails. Label the spinal vertices that
have tails as vi1 , vi2, ..., vit , vit+1

, where 1 < i1 < i2 < ... < it+1 < n. Label the
vertices of the ijth tail as vij ,1 and vij ,2. Place the hole in the vertex adjacent
to the end of the spine, say v2. Treat the vertices v1, ..., vi1, vi1,1 as a path
and merge along this path so that all vertices to the left of vi1 are empty. We
ignore v1,...,vi1−1 and treat vi1,1 and vi1,2 as spinal vertices on an articulated
caterpillar. The resulting graph is APn−i1+3(0, 0, 0, bi1+1, ..., bn) with a hole
in the second spinal vertex, namely vi1,1. As this is an articulated caterpillar
with t tails, it is solvable by hypothesis.

Thus, the articulated caterpillar, APn(b1, b2, ..., bn), where n ≥ 2, b1 =
bn = 0, and bi ≤ 1 for all i is solvable in the jump+merge variant.

We are interested to see what happens to the solvability of APn(b1, ..., bn)
when bi is unrestricted.

Theorem 3.4.2 The articulated caterpillar, APn(b1, , ..., bn), where n ≥ 2
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and b1 = bn = 0, is solvable in the jump+merge variant.

Proof. As before, we label the spinal vertices as v1, ..., vn. There is now a
set of spinal vertices vi such that bi ≥ 1. We label them vt1 , vt2 , ...vtj . Notice
that if bi ≤ 1 for all i, then this graph is solvable by Theorem 3.4.1. Thus,
we will assume that at least one of the btk is at least two. We proceed by
induction on j.

If j = 1, then let the initial hole be in the spinal vertex adjacent to
the end of the spine, say v2. Perform the merge moves (vi, vi+2) → vi+1 for
i = 1, ..., t1−2. Since bt1 ≥ 2, then we let vt1−1 (peg) and vt1 (hole) act as the
catalyst for wishbone and trident purges (see Figure 3.4) to remove the tails
of vt1 . We complete our solution with the merges (vt1+i−2, vt1+i) → vt1+i−1

for i = 1, ..., n− t1.
Assume that for some j ≥ 1 that the articulated caterpillar APn(b1, ..., bn)

with n ≥ 2, b1 = bn = 0, and bti ≥ 1 for i = 1, ..., j is solvable.
Consider the articulated caterpillar APn(b1, ..., bn) with n ≥ 2, b1 = bn =

0, and bti ≥ 1 for i = 1, ..., j + 1. Begin with the initial hole in v2. For
i = 1, ..., t1 − 2 perform the merge (vi, vi+2) → vi+1. There are now holes in
v1,...,vt1−2, vt1 and pegs elsewhere. We now need to consider cases for bt1 .

Case 1 If bt1 = 1, then we make the merge (vt1−1, vt1,1) → vt1 . We
now treat vt1,1 and vt1,2 as spinal vertices on the articulated caterpillar
APn−i1+3(0, 0, 0, bi1+1, ..., bn), where bn = 0, bti ≥ 1 for i = 1, ..., j, and
the hole is in the second spinal vertex, namely vt1,1. Hence it is solvable by
hypothesis.

Case 2 If bt1 ≥ 2, then we let vt1−1 (peg) and vt1 (hole) act as the
catalyst for a combination of wishbone and or trident purges (see Figure 3.4)
to remove the pegs from the tails of vt1 . Ignoring the tails of vt1 as well
as v1,...,vt1−2, we are left with the graph APn−t1+1(0, 0, bt1+1, ..., bn), where
bn = 0 and there is a hole in the second spinal vertex, namely vt1 . Hence it
is solvable by hypothesis.

At this point, we have only discussed caterpillars and articulated cater-
pillars separately. Solving a caterpillar with both pendants and tails is a
problem that we will leave to future research. For now, we can expand our
results by the idea of overlap, which is discussed in [7]. In this way, we can
take a solvable caterpillar and overlap it with an articulated caterpillar of
the same spinal length to obtain a solvable graph. Though this certainly
leaves many graphs unclassified as solvable or unsolvable, this is useful in
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Figure 3.7: P1, P2, and O(P1, P2)

generating solvable graphs from the results that we have obtained.
We can also apply this idea to purges using a technique from [12]. Suppose

that P is a package with catalyst C(P ) = (S(P ), T (P )), where S(P ) (T (P ))
is the set of vertices with holes (pegs) in them. It is possible to construct
additional purges using overlaps. Suppose that P1 and P2 are two packages
such that |S(P1)| = |S(P2)| and |T (P1)| = |T (P2)|. Define the overlap of P1

and P2 induced by their catalysts to be the graph obtained by identifying
S(P1) = S(P2) and T (P1) = T (P2). This will be denoted O(P1, P2) as in
Figure 3.7.

Theorem 3.4.3 [12] Suppose that P1 and P2 are packages with catalysts
(S(P1), T (P1)) and (S(P2), T (P2)), respectively, such that |S(P1)| = |S(P2)|
and |T (P1)| = |T (P2)|. The overlap of P1 and P2 induced by their catalysts,
P3 = O(P1, P2) is a package with catalyst (S(P3), T (P3)), where S(P1) =
S(P2) = S(P3) and T (P1) = T (P2) = T (P3).

We can also construct new purges by examining the moves within the
purge. Namely, if we have a package P1, then we can perform the moves
of its purge. Whenever we have a subgraph with the configuration of the
catalyst of a second purge P2, then we can overlap them as described above.
Further details to this process are given in [12].

That is, if we have a large graph with multiple packages as subgraphs,
we can overlap them and use multiple purges to reduce the graph. In this
way, larger portions of the tree will be emptied quickly to reduce a tree to
one that is solvable. Though this is not possible with all trees, this form of
overlap is a useful technique to identify trees of diameter greater than five
that are also solvable and to generate trees of larger diameter that are also
solvable.



Chapter 4

OPEN PROBLEMS AND

CONCLUDING REMARKS

This research project has laid a good foundation for some families of trees
that are solvable - and even freely solvable in the cases of stars and double
stars - but is far from complete. Even with as much research that has been
conducted on peg solitaire on graphs, there are still several open problems
and variations that deserve future attention that have been mentioned by
researchers, or that have been alluded to within this thesis. Some examples
of these are finding necessary and sufficient conditions for any arbitrary graph
to be solvable, trees of larger diameter, and variations of peg solitaire using
new conditions or combinations of moves.

One type of tree that we did not discuss in this project is asters. An
aster (or star-like graph) is obtained from the star K1,n by replacing the ith
pendant with a path on pi edges for i = 1, ..., n. Such an aster is denoted
An(p1, ..., pm) (see Figure 4.1). This graph is essentially a star with paths
adjacent to the center c rather than single pendants. While we suspect that
asters are unsolvable due to the nature of stranding pegs along each path, we
leave this problem open for future research. An extension of this idea would
be an aster-caterpillar hybrid with only asters, or even with a combination of
pendants, tails, and paths adjacent to the spinal vertices. If some asters were
proven solvable, then this idea could lead to fascinating results as bounds are
determined.

An interesting idea that would serve as a good foundation for future
research is the following: Consider peg solitaire played on a solvable graph
G. The player is allowed j jumps and m merges, where j +m = |V (G)| − 1.

37
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Figure 4.1: The aster A5(6, 5, 4, 4, 2)

For what values of j and m does the graph G remain solvable? Another such
problem was presented by Beeler and Hoilman in 2012 [10]: Namely, what
role, if any, does the maximum degree of a tree (or in general, a graph) have
in its solvability?

One of the most studied variations of peg solitaire is the fool’s solitaire
problem [11, 26]. Namely, what is the maximum number of pegs that can be
left under the caveat that the player must make a move whenever possible.
Obviously, we could study the fool’s solitaire number of graphs when both
merging and jumping are allowed.

Beeler and Gray also studied a variation of peg solitaire on graphs known
as duotaire [5]. Duotaire on traditional game boards was also studied in
[24, 27]. Typically, the first player selects a location for the initial hole in
duotaire. The players the alternate making legal moves on the graph. When
a player can not make a move, then they lose. There is also a version of
duotaire on graphs where one player aims to leave the maximum number of
pegs at the end while the other player seeks to leave the minimum number
of pegs at the end. When both players play optimally, then the resulting
number of pegs is a competitive graph parameter. For more information on
competitive graph parameters, see [28] among others.

Another aspect of peg solitaire on graphs that deserves more research is
exploring the impact of the initial hole. Engbers and Weber begin to explore
this concept with merging peg solitaire on graphs. As in jump-only peg
solitaire, they define a graph as freely solvable if the starting point of the
empty vertex does not change the fact that the graph is solvable [22]. While
there are infinite families of graphs that have previously been proven freely
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solvable, there are many more families to be investigated.
There is also little research that has been conducted exploring the combi-

nation of different moves in the game, which is the inspiration for this research
project. While we have explored the combination of jumps and merges, there
is more that can be explored in this variant, as well as other combinations
with new, more complex moves. For example, there is likely more that can
be determined involving trees that this project did not allow the time for.
While we mentioned the possibility of overlap, allowing any arbitrary combi-
nation of pendants and tails or asters, pendants, and tails could yield some
challenging yet interesting results that we will leave for future research.
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