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Abstract: 

The game of peg solitaire on graphs was introduced by Beeler and 

Hoilman in 2011. In this game, pegs are initially placed on all but one vertex 

of a graph GG. If xyz forms a path in GG and there are pegs on vertices x and 

y but not z, then a jump places a peg on z and removes the pegs from x and 

y. A graph is called solvable if, for some configuration of pegs occupying all 

but one vertex, some sequence of jumps leaves a single peg. We study the 

game of reversible peg solitaire, where there are again initially pegs on all but 

one vertex, but now both jumps and unjumps (the reversal of a jump) are 

allowed. We show that in this game all non-star graphs that contain a vertex 

of degree at least three are solvable, that cycles and paths on n vertices, 

where n is divisible by 2 or 3, are solvable, and that all other graphs are not 

solvable. We also classify the possible starting hole and ending peg positions 

for solvable graphs. 
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1. Introduction 

Peg solitaire is a game on geometric boards that has been 

recently generalized to connected simple graphs by Beeler and 

Hoilman [2]. In the game of peg solitaire on graphs, all vertices but 

one start occupied by a peg (the vertex without a peg is said to have a 

hole). If x and y are adjacent and y and z are adjacent with pegs on x 

and y and a hole on z, then the legal move is to jump the peg on x 

over the peg on y into the hole on z while removing the peg on y. See 

Figure 1. 

 

Figure 1: A jump in peg solitaire. 

The purpose of the game is to reduce the total number of pegs 

on the vertices to one. If this is achieved from some starting 

configuration with exactly one hole the graph is said to be solvable. If 

it is achievable from every starting configuration with exactly one hole 

the graph is said to be freely solvable. Clearly, solvability requires the 

graph to be connected. Several results on which graphs are freely 

solvable, which are solvable but not freely solvable, and which are not 

solvable are given in [2, 3, 9]. As a sample result, in [3] the game is 

played on the double star DS(L,R) (with L ≥ R), which is the graph 

consisting of a fixed edge uv that has L pendant edges joined to u and 

R pendant edges joined to v. Beeler and Hoilman show that DS(L ≥ R) 

is freely solvable if and only if L = R and R ≠ 1, and solvable if and 

only if L ≤ R + 1. Fully characterizing the connected graphs G that are 

freely solvable or solvable for peg solitaire on graphs seems to be a di 

cult question. It is also worth mentioning here that there are many 

interesting results and techniques related to traditional peg solitaire on 

geometric boards, see [1, 5, 6]. 

Variations of peg solitaire on graphs have recently been 

introduced. One such variation, called fool's solitaire, asks for the 

maximum number of pegs that can be left on vertices where no 

possible jumps remain, see [4, 8]. In this paper, we introduce another 

http://dx.doi.org/10.1016/j.disc.2015.05.012
http://epublications.marquette.edu/
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variation, which is mentioned with regards to algebraic techniques 

used to study traditional peg solitaire in [5]. We consider the game of 

reversible peg solitaire, which allows not only jumps but also the 

additional move of an unjump, which is the reversal of a jump. 

Specifically, if x and y are adjacent and y and z are adjacent with holes 

on x and y and a peg on z, then a second legal move is to unjump the 

peg from z to x, creating a peg on y. We can also view this as allowing 

the hole on x to jump over the hole on y, creating a hole on z (but also 

creating pegs on x and y). See Figure 2. 

 

 

Figure 2: An unjump in reversible peg solitaire. 

Notice that reversible peg solitaire may also be viewed as a 

restricted version of Lights Out on graphs, a game where a closed 

neighborhood may flip all states (here pegs/holes). In this formulation, 

we are allowed to flip the states of all vertices in a path on three 

vertices (instead of an entire closed neighborhood) if the vertices are 

in one of two starting configurations. In particular, any path on three 

vertices whose endpoints contain exactly one peg may be flipped. For 

a survey of Lights Out, see [7]. 

Following the terminology for peg solitaire, we say that a graph 

is solvable for reversible peg solitaire if for some starting configuration 

with exactly one hole, some combination of jumps and unjumps 

eventually produces a configuration with a single peg. If a graph is 

solvable for every starting configuration with exactly one hole, we say 

that the graph is freely solvable. If we may freely choose the location 

of the final peg in a freely solvable graph, we say that the graph is 

doubly freely solvable. Note that any graph that is doubly freely 

solvable is freely solvable, and any graph that is freely solvable is 

solvable. 

For reversible peg solitaire, which graphs are solvable? Clearly 

anything (freely/doubly freely) solvable in peg solitaire (which uses 

only jumps) will also be (freely/doubly freely) solvable in reversible 

peg solitaire, but some graphs that are not solvable in peg solitaire 

http://dx.doi.org/10.1016/j.disc.2015.05.012
http://epublications.marquette.edu/
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may now become solvable in reversible peg solitaire. Our first result 

shows, however, that not all graphs are solvable in reversible peg 

solitaire. 

Theorem 1.1. For any n ≥ 4, the star K1,n-1 is not solvable. 

Proof. Notice that both jumps and unjumps on the star require 

there to be a peg on one leaf and a hole on a second leaf; this shows 

that to make an initial move the hole must start on a leaf. Given this, 

each move will preserve the total number of pegs on the leaves and 

toggle the center between having a peg and being a hole. Therefore 

the only possible configurations on K1,n-1 have either n-1 or n-2 pegs, 

so for n ≥ 4 there will never be a single peg remaining.  

As the following theorem shows, with unjumps allowed most 

graphs are freely solvable. 

Theorem 1.2. Let G be a connected graph on n vertices. If G≠K1,n-1 

and G has a vertex of degree at least 3, then G is freely solvable. 

Furthermore G is doubly freely solvable if and only if there is a path 

joining two vertices of degree at least 3 whose length is not divisible 

by 3. 

In the proof of Theorem 1.2, which is given in Section 2, we 

provide all possible starting hole and ending peg positions for all freely 

solvable but not doubly freely solvable graphs containing a vertex of 

degree at least 3. 

The only connected graphs that are not covered by Theorems 

1.1 and 1.2 are paths and cycles. Let Pn and Cn denote a path and a 

cycle on n vertices, respectively. We also have the following, which we 

prove in Section 2. 

Theorem 1.3. Let n ≥ 2 be an integer. 

1. If n is not divisible by 2 or 3, then Pn and Cn are not solvable. 

2. If n is divisible by 3, then Pn is solvable but not freely solvable, and 

Cn is freely solvable but not doubly freely solvable. 

3. If n is not divisible by 3 but is divisible by 2, then Pn is solvable but 

not freely solvable, and Cn is doubly freely solvable 

http://dx.doi.org/10.1016/j.disc.2015.05.012
http://epublications.marquette.edu/
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In the proof of Theorem 1.3, which is given in Section 2, we 

provide all possible starting hole and ending peg positions for all 

solvable paths and cycles. 

We also mention two natural questions. Any graph that is solvable 

in peg solitaire on graphs is also solvable in reversible peg solitaire on 

graphs, and in particular can be solved with zero unjumps. Suppose 

that we let k count the minimum number of unjumps needed to solve 

a graph G in reversible peg solitaire. There are two natural questions 

associated with this parameter k. 

Question 1.4. Given a graph G that is solvable in reversible peg 

solitaire, what is the minimum number of unjumps necessary to solve 

G? 

Question 1.5. For a fixed k, which graphs are solvable with at most 

k unjumps? 

The proof of Theorem 1.2 uses at most cn2 unjumps to solve a 

connected non-star graph containing a vertex of degree at least 3. 

2. Proofs 

In this section we will first prove that if G ≠ K1,n-1 is a graph that 

contains a vertex of degree at least 3, then G is solvable. If n = 4, 

then since there is a vertex of degree at least 3 and G ≠ K1,3, there 

must exist a triangle with a pendant edge as a (not necessarily 

induced) subgraph. Using only the edges on this subgraph, G is 

solvable by inspection. Therefore we assume that n ≥ 5; note that we 

may also assume that G is a non-star tree with a vertex of degree at 

least 3. 

The main idea of the proof is to analyze the configurations of 

pegs on a graph H, where H is a claw K1,3 with one subdivided edge 

(see Figure 3). Notice that any connected non-star graph with n ≥ 5 

and a vertex of degree at least 3 has H as a (not necessarily induced) 

subgraph. Using these configurations, we show how to iteratively bring 

pegs from outside H into H and remove them, which eventually 

removes all pegs but one. 

 

http://dx.doi.org/10.1016/j.disc.2015.05.012
http://epublications.marquette.edu/
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Figure 3: The graph H, which is a claw with one subdivided edge. 

In the written notation for a configuration of pegs on H, we will 

let a letter indicate the presence of a peg and the absence of a letter 

indicate a hole; for example, ace indicates pegs on a, c, and e and 

holes on b and d. Two configurations on H are equivalent if we may 

move from one configuration to the other through a series of jumps 

and unjumps within H. We now separate out the configurations on H 

that are equivalent to a configuration on H that contain a single peg. 

Lemma 2.1.  

The rows in the following table represent two equivalence 

classes of configurations on H. The four unlisted configurations contain 

no jumps or unjumps within H. 

 

Class A    a, b, d, e, ac, bc, cd, abe, ade, bde, abcd, abce, acde, bcde 

 

Class B   c, ab, ad, ae, bd, be, de, abc, acd, ace, bcd, bce, cde, abde 

 

Proof. Letting x  y indicate that configurations x and y differ by 

a single jump/unjump, we have: 

 

Noting that also b  cd and abcd  abe, this produces the 

configurations in Class A. For Class B, we have 

 

http://dx.doi.org/10.1016/j.disc.2015.05.012
http://epublications.marquette.edu/
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Noting that also ad  abc  bd  acd, cde  ae, and abde  

abc, this produces the configurations in Class B. The remaining four 

configurations (abcde, abd, ce, and the empty configuration) each 

have no possible jumps or unjumps within H.                              

Next, we de ne a move that we will repeatedly use in our proof. 

P4-Move:  Given a P4 that has one peg (hole, resp.) on an 

endpoint and holes (pegs, resp.) on the other three vertices, we can 

move the peg (hole, resp.) to the other endpoint. 

Proof. Do an unjump (jump, resp.) to the two middle pegs, and 

then do a jump (unjump, resp.) to the other endpoint.                                               

Now we move on to the main proof. 

Proof of Theorem 1.2.  

Let G be a connected non-star graph with n ≥ 5 and a vertex of 

degree at least 3. We first show that G is freely solvable, and discuss 

the necessary and sufficient conditions for G to be doubly freely 

solvable at the end. We can find H as a (not necessarily induced) 

subgraph of G; x one such H for the remainder of the freely solvable 

proof. Suppose also that there are are pegs on all but a single vertex 

in G. If the hole starts outside of H, we can use the P4-Move to shift it 

onto H. In particular, we now have a configuration on H in Class A or 

Class B. The following procedure will leave a single peg on a vertex in 

G. 

Fix a peg outside of H that is closest to H. We move to an 

equivalent configuration on H (within the same class, as defined in 

Lemma 2.1); the configuration chosen will depend on the distance 

from H as well as the vertex in H closest to the peg under 

consideration. Since this is a closest peg, we use the      P4-Move, if 

necessary, to move the peg within distance 3 of H. See Figure 4; in 

this case we consider the peg to be on either x1, x2, or x3. 

We now absorb the peg into H while maintaining a configuration 

on H in either Class A or Class B applying one of the following cases. 

Case 1: The peg is nearest to a. See Figure 4. (Notice that this is 

equivalent to the peg being nearest to b.) 

 

http://dx.doi.org/10.1016/j.disc.2015.05.012
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Figure 4: Case 1. 

If the configuration on H is in Class A to start, we use 

configuration b (  ). Using the P4-Move we can move the peg to 

either a, c, or d, which puts us in either Class A or Class B. 

If the configuration on H is in Class B to start, we use 

configuration de (  ). Using the P4-Move we can move the peg to a, 

b, or c, which puts us in either Class A or Class B. 

Case 2: The peg is nearest to c. 

If the configuration on H is in Class A to start, we use 

configuration b (  ). Using the P4-Move we can move the peg to c, 

d, or e, which puts us in either Class A or Class B.  

If the configuration on H is in Class B to start and we consider a 

peg on x1 or x3, then we use configuration ab (  ). Using the P4-

Move we can move the peg to c or e, which puts us in either Class A or 

Class B. 

If instead the configuration on H is in Class B to start and we 

consider a peg on x2, then we use configuration be ( ). Using the P4-

Move we can move the peg to a, which puts us in Class A. 

Case 3: The peg is nearest to d. 

If the configuration on H is in Class A to start, we use 

configuration b (  ). Using the P4-Move we can move the peg to a, 

c, or d, which puts us in either Class A or Class B. 

If the configuration on H is in Class B to start, then we use 

configuration be       (  ). Using the P4-Move we can move the peg 

to a, c, or d, which puts us in either Class A or Class B. 

Case 4: The peg is nearest to e. 

http://dx.doi.org/10.1016/j.disc.2015.05.012
http://epublications.marquette.edu/
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If the configuration on H is in Class A to start, we use 

configuration b (  ). Using the P4-Move we can move the peg to c, 

d, or e, which puts us in either Class A or Class B. 

If the configuration on H is in Class B to start and we consider a 

peg on x1 or x3, then we use configuration ab (  ). Using the P4-Move 

we can move the peg to c or e, which puts us in either Class A or Class 

B. 

If instead the configuration on H is in Class B to start and we 

consider a peg on x2, then we use configuration c (  ). Using the P4-

Move we can move the peg to d, which puts us in Class A. 

Since each step reduces the number of pegs outside H by one, 

after iterating      |V(G)|-5 times the process terminates with H in Class 

A or Class B and no pegs outside of H. Since each of Class A and Class 

B contains a configuration with a single peg, the proof is complete. 

We next prove necessary and sufficient conditions for G to be 

doubly freely solvable. First, suppose that all paths joining vertices of 

degree at least 3 have length divisible by 3. We use a weighting 

argument to show that G is not doubly freely solvable. Choose a vertex 

v of degree at least 3, and assign a weight of 0 to all vertices w such 

that a path from v to w with length divisible by 3 exists. All other vertices 

are assigned a weight of 1. This is well-defined by the assumption on 

the vertices of degree at least 3; note that all vertices of degree at least 

3 receive weight 0. Then define the total weight of a configuration to be 

the sum (mod 2) of the weights on the vertices containing pegs (this is 

similar to a pagoda function defined in  [5]). Since every path P3 

contains exactly two vertices with weight 1, each jump and unjump 

preserves the total weight. This implies that initial configurations with 

total weight 0 must end with a peg on a vertex having weight 0, and 

initial configurations with total weight 1 must end with a peg on a vertex 

having weight 1. The P4-Move shows that a single peg on any weight 0 

vertex can be moved to any other weight 0 vertex. The P4-Move also 

shows that a single peg on any weight 1 vertex can be moved to either 

a, b, d, or e in H, and since these configurations are equivalent in HH, 

this shows that a single peg on any weight 1 vertex can be moved to 

any other weight 1 vertex. 

http://dx.doi.org/10.1016/j.disc.2015.05.012
http://epublications.marquette.edu/
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Now suppose that there are two vertices v1 and v2 of degree at 

least 3 that have a path PP between them of length not divisible by 3. 

Consider the two possible copies of H, H1 and H2, with degree 3 vertices 

v1 and v2 so that the respective d and e vertices (in the respective copies 

of H) lie on P; if P only contains v1 and v2, then we require that the 

respective e vertices lie on the respective copies of H. We have shown 

that any initial hole can be reduced to a single peg on a vertex in H1. By 

the P4-Move, a peg on v1 in H1 can be moved to a peg on either d or e 

in H2. By Lemma 2.1 this peg can be moved to either e or d, respectively, 

in H2, which by the P4-Move again can be moved back to H1 to a vertex 

other than v1. This procedure is reversible, and so by using P and H2 we 

can move from Class A to Class B in H1 when there is a single peg 

remaining in G. Since any vertex in G has a path to a vertex in H1 so 

that the length of the path is a multiple of 3, we may use the P4-Move 

to place the final peg on any vertex of 

G.                                                                                      □ 

Proof of Theorem 1.3. 

 It is shown in  [2] that P2k is solvable for peg solitaire (without 

unjumps) when the hole starts on a vertex adjacent to a leaf, so it 

remains solvable in reverse peg solitaire. For P3ℓ with ℓ odd, let the 

vertices be {1,2,3,…, 3ℓ−1,3ℓ} and start with the hole on vertex 3. Jump 

from 1 into 3, and then use the P4-Move to shift the hole on vertex 2 to 

vertex 3ℓ−1. Then vertices 2, 3, ……, 3ℓ−1, and 3ℓ form an even path 

where there is a single hole on a vertex adjacent to a leaf, which is 

solvable. Note that by reversing the roles of pegs and holes in each of 

these cases, we obtain possible starting hole and ending peg 

configurations for solvable paths. 

Since PnPn is solvable in these cases and PnPn is a subgraph of 

CnCn, CnCn is freely solvable in these cases. 

We now fully classify paths and cycles using another weighting 

argument. We use, as weights, the elements the multiplicative 

quaternion group Q8Q8, which has presentation  

Q8=〈−1,i,j,k|(−1)2=1,i2=j2=k2=ijk=−1〉 

In particular, note that ij=k, jk=i, and ki=j. 

http://dx.doi.org/10.1016/j.disc.2015.05.012
http://epublications.marquette.edu/
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For Pn with vertices {1,2,3,…,n}, assign weight i to vertex x if 

xmod3=1, weight j to vertex x if xmod3=2, and weight k to vertex x if 

xmod3=0. The total weight of a configuration is the product of the 

weights of the vertices containing pegs when written from smallest to 

largest vertex. For example, if on P5 we have pegs on vertices 1, 3, 4, 

and 5, then the total weight of that configuration is ikij=−i. 

Note that: (a) moves preserve the total weight of a configuration, 

(b) we can assume, by the P4-move, an initial (final, resp.) configuration 

has a hole (peg, resp.) on vertex 1, 2, or 3, and (c) the total weight of 

a configuration with a single peg is either I (if the peg is on vertex 1), j 

(if the peg is on vertex 2), or k (if the peg is on vertex 3). 

We use these observations to fully classify paths Pn where n≥3n≥3. We 

have the following six cases.  

1. If n=6ℓ, then an initial hole on 1, 2, or 3 gives an initial configuration 

weight of −i, j, or −k, respectively. Therefore the hole must start on 2 

and the final peg must end on 2. 

2. If n=6ℓ+1, then an initial hole on 1, 2, or 3 gives an initial 

configuration weight of 1, −k, or −j, respectively. Therefore these 

paths are not solvable. 

3. If n=6ℓ+2, then an initial hole on 1, 2, or 3 gives an initial 

configuration weight of j, i, or 1, respectively. Therefore the hole must 

start on 1 or 2 and the final peg must end on 2 or 1, respectively. 

4. If n=6ℓ+3, then an initial hole on 1, 2, or 3 gives an initial 

configuration weight of i, −j, or k, respectively. Therefore the hole 

must start on 1 or 3 and the final peg must end on 1 or 3, respectively. 

5. If n=6ℓ+4, then an initial hole on 1, 2, or 3 gives an initial 

configuration weight of −1, k, or j, respectively. Therefore the hole 

must start on 2 or 3 and the final peg must end on 3 or 2, respectively. 

6. If n=6ℓ+5, then an initial hole on 1, 2, or 3 gives an initial 

configuration weight of −j, −i, or −1, respectively. Therefore these 

paths are not solvable. 

Since these six cases give the total weight of any possible initial 

hole or final peg configuration (and the P4-Move allows an initial hole or 

final peg to be shifted by distance 3), this fully classifies the possible 

starting hole and final peg positions for Pn. 

http://dx.doi.org/10.1016/j.disc.2015.05.012
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NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Discrete Mathematics, Vol. 338, No. 11 (November 2015): pg. 2014-2019. DOI. This article is © Elsevier and permission 
has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission for this 
article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier. 

12 

 

What about Cn for n≥3? We know that the cycle Cn is freely 

solvable unless n=6k+1 or n=6k+5. We use a similar weighting scheme 

to show the remaining cycles are not solvable and to classify the cycles 

that are doubly freely solvable. 

Fix one cyclic orientation of the vertices of Cn; label them 

{1,2,…,n}. We then consider C3n with vertices {1,2,…,3n} such that 

each move on Cn corresponds to three   moves on C3n, where the three 

moves are equivalent copies of the move on those vertices with labels 

that differ by n. For example, if n=5 and a move jumps a peg on vertex 

2 over a peg on vertex 1 into a hole on vertex 5, then in C15 the pegs 

on vertices 2, 7, and 12 jump over the pegs on vertices 1, 6, and 11 

into holes on vertices 15, 5, and 10. 

As before, define the total weight of a configuration   to be the 

product of the weights of the vertices containing pegs when written from 

smallest to largest vertex. Notice that the sets of moves made on C3nC3n 

preserve the total weight (here, the fact that ijk=kij=jki and jik=kji=kij 

is essential). 

Suppose that n=6ℓ+1. Then an initial configuration in C3n 

(corresponding to an initial configuration in Cn with a single hole) has 

total weight 1 and a final configuration in C3n (corresponding to a final 

configuration in Cn with a single peg) has pegs in C3n on x, x+n, and 

x+2n for some x∈{1,2,…,n}. But this means a final configuration in C3n 

that corresponds to a single peg in Cn has total weight −1. If n=6ℓ+5, 

then a similar analysis shows that an initial configuration in C3n 

(corresponding to an initial configuration in Cn with a single hole) has 

total weight −1 while a final configuration in C3n (corresponding to a 

final configuration in Cn with a single peg) has total weight 1. Therefore 

Cn, where n=6ℓ+1 or 6ℓ+5, is not solvable. 

Similar arguments show that if a hole starts on vertex xx in C6ℓ and C6ℓ+3, 

then the final peg must be on vertex x+3q for some integer qq. In C6ℓ+2 

and C6ℓ+4, the initial hole and final peg can be anywhere (using the P4-

Move).                                      □ 
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