21 research outputs found

    Kablosuz Vücut Alan Ağları için Coğrafi Tabanlı Yönlendirme Algoritmasının Başarım Analizi

    Get PDF
    Kablosuz iletişim teknolojilerindeki gelişmeler ve salgın hastalıklar ile pandemi süreçlerinin hayatımızın bir parçası haline gelmesi uzaktan sağlık izleme sistemlerinin önemini her geçen gün arttırmaktadır. Kablosuz Vücut Alan Ağları (KVAA) uzaktan sağlık izleme servislerinin başında gelmektedir. KVAA’lar çeşitli hayati bulguların algılayıcılar ile ölçülmesinden ve IEEE 802.15.6 protokolü sayesinde uzak birimlere kablosuz iletilmesinden sorumludur. Çalışmamızda geliştirilen coğrafik yönlendirme algoritması sayesinde açık alanlarda KVAA’lar arası bir kablosuz ağ iletişimi sağlanmış olup topluluk halinde bulunan insanların hayati verilerinin birbirleri üzerinden uzak birimlere iletilmesi ve bireylerin gereken durumlarda uyarılması amaçlanmıştır. Bu sayede birlikte hareket eden bireylerin hem sağlık durumları kontrol altında tutulup uzak birimlere de bu verilerin gönderilmesi sağlanmıştır hem de bireyleri ve çevresindekileri pandemi belirtisi bulunan kişilere karşı uyarma mekanizmasının alt yapısı oluşturulmuştur

    Cross-layer Balanced and Reliable Opportunistic Routing Algorithm for Mobile Ad Hoc Networks

    Full text link
    For improving the efficiency and the reliability of the opportunistic routing algorithm, in this paper, we propose the cross-layer and reliable opportunistic routing algorithm (CBRT) for Mobile Ad Hoc Networks, which introduces the improved efficiency fuzzy logic and humoral regulation inspired topology control into the opportunistic routing algorithm. In CBRT, the inputs of the fuzzy logic system are the relative variance (rv) of the metrics rather than the values of the metrics, which reduces the number of fuzzy rules dramatically. Moreover, the number of fuzzy rules does not increase when the number of inputs increases. For reducing the control cost, in CBRT, the node degree in the candidate relays set is a range rather than a constant number. The nodes are divided into different categories based on their node degree in the candidate relays set. The nodes adjust their transmission range based on which categories that they belong to. Additionally, for investigating the effection of the node mobility on routing performance, we propose a link lifetime prediction algorithm which takes both the moving speed and moving direction into account. In CBRT, the source node determines the relaying priorities of the relaying nodes based on their utilities. The relaying node which the utility is large will have high priority to relay the data packet. By these innovations, the network performance in CBRT is much better than that in ExOR, however, the computation complexity is not increased in CBRT.Comment: 14 pages, 17 figures, 31 formulas, IEEE Sensors Journal, 201

    Route discovery based on energy-distance aware routing scheme for MANET

    Get PDF
    Route discovery proses in a Mobile Ad hoc Network (MANET) is challenging due to the limitation of energy at each network node. The energy constraint limits network connection lifetime thus affecting the routing process. Therefore, it is necessary for each node in the network to calculate routing factor in terms of energy and distance in deciding optimal candidate relay nodes needed to forward packets. This study proposes a new route discovery mechanism called the Energy-Distance Routing Aware (EDRA) that determines the selection of nodes during route discovery process to improve the network connection lifetime. This mechanism comprises of three schemes namely the Energy-Distance Factor Aware (EDFA), the Energy-Distance Forward Strategy (EDFS), and the Energy-Aware Route Selection (EARS). The EDFA scheme begins by calculating each nodes energy level (ei) and the distance (di) to the neighbouring nodes to produce the energy-distance factor value used in selecting the relay nodes. Next, the EDFS scheme forwards route request packets within discovery area of relay nodes based on the number of nodes. Then, the EARS scheme selects stable routing path utilising updated status information from EDFA and EDFS. The evaluation of EDRA mechanism is performed using network simulator Ns2 based on a defined set of performance metrics, scenarios and network scalability. The experimental results show that the EDRA gains significant improvement in the network connection lifetime when compared to those of the similar mechanisms, namely the AODV and the DREAM. EDRA also optimises energy consumption by utilising efficient forwarding decisions on varying scale of network nodes. Moreover, EDRA maximizes network connection lifetime while preserving throughput and packet drop ratio. This study contributes toward developing an efficient energy-aware routing to sustain longer network connection lifetime in MANET environment. The contribution is significant in promoting the use of green and sustainable next generation network technology

    Социально-географическая оценка физического доступа к телекоммуникационным сетям в городах России

    Get PDF
    Выделены три уровня доступа к телекоммуникационным сетям - обычный, высокоскоростной и надежный высокоскоростной. Для их идентификации использовался авторский алгоритм обработки данных о линиях электросвязи и численности населени

    Amplitude Modeling of Specular Multipath Components for Robust Indoor Localization

    Get PDF
    Ultra-Wide Bandwidth (UWB) and mm-wave radio systems can resolve specular multipath components (SMCs) from estimated channel impulse response measurements. A geometric model can describe the delays, angles-of-arrival, and angles-of-departure of these SMCs, allowing for a prediction of these channel features. For the modeling of the amplitudes of the SMCs, a data-driven approach has been proposed recently, using Gaussian Process Regression (GPR) to map and predict the SMC amplitudes. In this paper, the applicability of the proposed multipath-resolved, GPR-based channel model is analyzed by studying features of the propagation channel from a set of channel measurements. The features analyzed include the energy capture of the modeled SMCs, the number of resolvable SMCs, and the ranging information that could be extracted from the SMCs. The second contribution of the paper concerns the potential applicability of the channel model for a multipath-resolved, single-anchor positioning system. The predicted channel knowledge is used to evaluate the measurement likelihood function at candidate positions throughout the environment. It is shown that the environmental awareness created by the multipath-resolved, GPR-based channel model yields higher robustness against position estimation outliers

    Localization Enhanced Mobile Networks

    Get PDF
    The interest in mobile ad-hoc networks (MANETs) and often more precisely vehicular ad-hoc networks (VANETs) is steadily growing with many new applications, and even anticipated support in the emerging 5G networks. Particularly in outdoor scenarios, there are different mechanisms to make the mobile nodes aware of their geographical location at all times. The location information can be utilized at different layers of the protocol stack to enhance communication services in the network. Specifically, geographical routing can facilitate route management with smaller overhead than the traditional proactive and reactive routing protocols. In order to achieve similar advantages for radio resource management (RRM) and multiple access protocols, the concept of virtual cells is devised to exploit fully distributed knowledge of node locations. The virtual cells define clusters of MANET nodes assuming a predefined set of geographically distributed anchor points. It enables fast response of the network to changes in the nodes spatial configuration. More importantly, the notion of geographical location can be generalized to other shared contexts which can be learned or otherwise acquired by the network nodes. The strategy of enhancing communication services by shared contexts is likely to be one of the key features in the beyond-5G networks

    An Efficient Bypassing Void Routing Algorithm for Wireless Sensor Network

    Get PDF
    Since the sensor node’s distribution in a wireless sensor network (WSN) is irregular, geographic routing protocols using the greedy algorithm can cause local minima problem. This problem may fail due to routing voids and lead to failure of data transmission. Based on the virtual coordinate mapping, this paper proposes an efficient bypassing void routing protocol to solve the control packet overhead and transmission delay in routing void of WSN, which is called EBVRPVCM. The basic idea is to transfer the random structure of void edge to a regular one through mapping the coordinates on a virtual circle. In EBVRPVCM, some strategies, executed in different regions, are selected through virtual coordinates to bypass routing void efficiently. The regular edge is established by coordinate mapping that can shorten the average routing path length and decrease the transmission delay. The virtual coordinate mapping is not affected by the real geographic node position, and the control packet overhead can be reduced accordingly. Compared with RGP and GPSR, simulation results demonstrate that EBVRPVCM can successfully find the shortest routing path with higher delivery ratio and less control packet overhead and energy consumption

    DIRECTIONAL ANTENNA BASED EFFICIENT LOCATION AWARE ROUTING IN MOBILE ADHOC NETWORK

    Get PDF
    Mobile Adhoc Network (MANET) also called as wireless ad hoc network is a self-organizing, self-configuring infrastructure less network containing a group of mobile nodes communicating wirelessly. As the hosts move often resulting in dynamic topology of the network, routing seeks more attention. Therefore, routing protocol using node’s location information like LAR (location aided routing) has emerged as potential solution. Here, the route discovery is limited to a small region named as request zone in contrast to blind flooding over the entire network. Also it is noticeable that the shape and size of the request zone play a vital role in enhancing the protocol’s performance. After various analyses it was concluded that for higher node density, elliptical shaped request zone performs better than other possible shapes. Further, suitable route must be chosen based on current load status of the network so that successful delivery of packets is ensured. Generally, omni-directional antennas are used for communication between moving motes. The disadvantage of mobile ad hoc networks with omni-directional antenna lies in the limited capacity caused by high interference and low spatial reuse. This paper focuses on obtaining optimal size for request zone in accordance with varying node density. Further, optimal path between source and destination is selected using Dijkstra’s algorithm. Our simulation results show that directional antennas outshines the performance of omni-directional antennas in increasing transmission range of nodes, reducing the number of redundant nodes involving in data communication etc

    Ensuring Reliable Communication in Disaster Recovery Operations with Reliable Routing Technique

    Get PDF
    corecore