3,303 research outputs found

    EChO Payload electronics architecture and SW design

    Full text link
    EChO is a three-modules (VNIR, SWIR, MWIR), highly integrated spectrometer, covering the wavelength range from 0.55 μ\mum, to 11.0 μ\mum. The baseline design includes the goal wavelength extension to 0.4 μ\mum while an optional LWIR module extends the range to the goal wavelength of 16.0 μ\mum. An Instrument Control Unit (ICU) is foreseen as the main electronic subsystem interfacing the spacecraft and collecting data from all the payload spectrometers modules. ICU is in charge of two main tasks: the overall payload control (Instrument Control Function) and the housekeepings and scientific data digital processing (Data Processing Function), including the lossless compression prior to store the science data to the Solid State Mass Memory of the Spacecraft. These two main tasks are accomplished thanks to the Payload On Board Software (P-OBSW) running on the ICU CPUs.Comment: Experimental Astronomy - EChO Special Issue 201

    The ARIEL Instrument Control Unit design for the M4 Mission Selection Review of the ESA's Cosmic Vision Program

    Get PDF
    The Atmospheric Remote-sensing Infrared Exoplanet Large-survey mission (ARIEL) is one of the three present candidates for the ESA M4 (the fourth medium mission) launch opportunity. The proposed Payload will perform a large unbiased spectroscopic survey from space concerning the nature of exoplanets atmospheres and their interiors to determine the key factors affecting the formation and evolution of planetary systems. ARIEL will observe a large number (>500) of warm and hot transiting gas giants, Neptunes and super-Earths around a wide range of host star types, targeting planets hotter than 600 K to take advantage of their well-mixed atmospheres. It will exploit primary and secondary transits spectroscopy in the 1.2-8 um spectral range and broad-band photometry in the optical and Near IR (NIR). The main instrument of the ARIEL Payload is the IR Spectrometer (AIRS) providing low-resolution spectroscopy in two IR channels: Channel 0 (CH0) for the 1.95-3.90 um band and Channel 1 (CH1) for the 3.90-7.80 um range. It is located at the intermediate focal plane of the telescope and common optical system and it hosts two IR sensors and two cold front-end electronics (CFEE) for detectors readout, a well defined process calibrated for the selected target brightness and driven by the Payload's Instrument Control Unit (ICU).Comment: Experimental Astronomy, Special Issue on ARIEL, (2017

    From Quantum Optics to Quantum Technologies

    Full text link
    Quantum optics is the study of the intrinsically quantum properties of light. During the second part of the 20th century experimental and theoretical progress developed together; nowadays quantum optics provides a testbed of many fundamental aspects of quantum mechanics such as coherence and quantum entanglement. Quantum optics helped trigger, both directly and indirectly, the birth of quantum technologies, whose aim is to harness non-classical quantum effects in applications from quantum key distribution to quantum computing. Quantum light remains at the heart of many of the most promising and potentially transformative quantum technologies. In this review, we celebrate the work of Sir Peter Knight and present an overview of the development of quantum optics and its impact on quantum technologies research. We describe the core theoretical tools developed to express and study the quantum properties of light, the key experimental approaches used to control, manipulate and measure such properties and their application in quantum simulation, and quantum computing.Comment: 20 pages, 3 figures, Accepted, Prog. Quant. Ele

    A survey on scheduling and mapping techniques in 3D Network-on-chip

    Full text link
    Network-on-Chips (NoCs) have been widely employed in the design of multiprocessor system-on-chips (MPSoCs) as a scalable communication solution. NoCs enable communications between on-chip Intellectual Property (IP) cores and allow those cores to achieve higher performance by outsourcing their communication tasks. Mapping and Scheduling methodologies are key elements in assigning application tasks, allocating the tasks to the IPs, and organising communication among them to achieve some specified objectives. The goal of this paper is to present a detailed state-of-the-art of research in the field of mapping and scheduling of applications on 3D NoC, classifying the works based on several dimensions and giving some potential research directions

    A survey of carbon nanotube interconnects for energy efficient integrated circuits

    Get PDF
    This article is a review of the state-of-art carbon nanotube interconnects for Silicon application with respect to the recent literature. Amongst all the research on carbon nanotube interconnects, those discussed here cover 1) challenges with current copper interconnects, 2) process & growth of carbon nanotube interconnects compatible with back-end-of-line integration, and 3) modeling and simulation for circuit-level benchmarking and performance prediction. The focus is on the evolution of carbon nanotube interconnects from the process, theoretical modeling, and experimental characterization to on-chip interconnect applications. We provide an overview of the current advancements on carbon nanotube interconnects and also regarding the prospects for designing energy efficient integrated circuits. Each selected category is presented in an accessible manner aiming to serve as a survey and informative cornerstone on carbon nanotube interconnects relevant to students and scientists belonging to a range of fields from physics, processing to circuit design

    VarSim: A Fast Process Variation-aware Thermal Modeling Methodology Using Green's Functions

    Full text link
    Despite temperature rise being a first-order design constraint, traditional thermal estimation techniques have severe limitations in modeling critical aspects affecting the temperature in modern-day chips. Existing thermal modeling techniques often ignore the effects of parameter variation, which can lead to significant errors. Such methods also ignore the dependence of conductivity on temperature and its variation. Leakage power is also incorporated inadequately by state-of-the-art techniques. Thermal modeling is a process that has to be repeated at least thousands of times in the design cycle, and hence speed is of utmost importance. To overcome these limitations, we propose VarSim, an ultrafast thermal simulator based on Green's functions. Green's functions have been shown to be faster than the traditional finite difference and finite element-based approaches but have rarely been employed in thermal modeling. Hence we propose a new Green's function-based method to capture the effects of leakage power as well as process variation analytically. We provide a closed-form solution for the Green's function considering the effects of variation on the process, temperature, and thermal conductivity. In addition, we propose a novel way of dealing with the anisotropicity introduced by process variation by splitting the Green's functions into shift-variant and shift-invariant components. Since our solutions are analytical expressions, we were able to obtain speedups that were several orders of magnitude over and above state-of-the-art proposals with a mean absolute error limited to 4% for a wide range of test cases. Furthermore, our method accurately captures the steady-state as well as the transient variation in temperature.Comment: 15 page

    CoMeT: An Integrated Interval Thermal Simulation Toolchain for 2D, 2.5 D, and 3D Processor-Memory Systems

    Get PDF
    Processing cores and the accompanying main memory working in tandem enable the modern processors. Dissipating heat produced from computation, memory access remains a significant problem for processors. Therefore, processor thermal management continues to be an active research topic. Most thermal management research takes place using simulations, given the challenges of measuring temperature in real processors. Since core and memory are fabricated on separate packages in most existing processors, with the memory having lower power densities, thermal management research in processors has primarily focused on the cores. Memory bandwidth limitations associated with 2D processors lead to high-density 2.5D and 3D packaging technology. 2.5D packaging places cores and memory on the same package. 3D packaging technology takes it further by stacking layers of memory on the top of cores themselves. Such packagings significantly increase the power density, making processors prone to heating. Therefore, mitigating thermal issues in high-density processors (packaged with stacked memory) becomes an even more pressing problem. However, given the lack of thermal modeling for memories in existing interval thermal simulation toolchains, they are unsuitable for studying thermal management for high-density processors. To address this issue, we present CoMeT, the first integrated Core and Memory interval Thermal simulation toolchain. CoMeT comprehensively supports thermal simulation of high- and low-density processors corresponding to four different core-memory configurations - off-chip DDR memory, off-chip 3D memory, 2.5D, and 3D. CoMeT supports several novel features that facilitate overlying system research. Compared to an equivalent state-of-the-art core-only toolchain, CoMeT adds only a ~5% simulation-time overhead. The source code of CoMeT has been made open for public use under the MIT license.Comment: https://github.com/marg-tools/CoMe

    A study of recent contributions on simulation tools for Network-on-Chip (NoC)

    Get PDF
    The growth in the number of Intellectual Properties (IPs) or the number of cores on the same chip becomes a critical issue in System-on-Chip (SoC) due to the intra-communication problem between the chip elements. As a result, Network-on-Chip (NoC) has emerged as a new system architecture to overcome intra-communication issues. New approaches and methodologies have been developed by many researchers to improve NoC. Also, many NoC simulation tools have been proposed and adopted by both academia and industry. This paper presents a study of recent contributions on simulation tools for NoC. Furthermore, an overview of NoC is covered as well as a comparison between some NoC simulators to help facilitate research in on-chip communication
    corecore