1,212 research outputs found

    A Survey of Location Prediction on Twitter

    Full text link
    Locations, e.g., countries, states, cities, and point-of-interests, are central to news, emergency events, and people's daily lives. Automatic identification of locations associated with or mentioned in documents has been explored for decades. As one of the most popular online social network platforms, Twitter has attracted a large number of users who send millions of tweets on daily basis. Due to the world-wide coverage of its users and real-time freshness of tweets, location prediction on Twitter has gained significant attention in recent years. Research efforts are spent on dealing with new challenges and opportunities brought by the noisy, short, and context-rich nature of tweets. In this survey, we aim at offering an overall picture of location prediction on Twitter. Specifically, we concentrate on the prediction of user home locations, tweet locations, and mentioned locations. We first define the three tasks and review the evaluation metrics. By summarizing Twitter network, tweet content, and tweet context as potential inputs, we then structurally highlight how the problems depend on these inputs. Each dependency is illustrated by a comprehensive review of the corresponding strategies adopted in state-of-the-art approaches. In addition, we also briefly review two related problems, i.e., semantic location prediction and point-of-interest recommendation. Finally, we list future research directions.Comment: Accepted to TKDE. 30 pages, 1 figur

    A survey of online data-driven proactive 5G network optimisation using machine learning

    Get PDF
    In the fifth-generation (5G) mobile networks, proactive network optimisation plays an important role in meeting the exponential traffic growth, more stringent service requirements, and to reduce capitaland operational expenditure. Proactive network optimisation is widely acknowledged as on e of the most promising ways to transform the 5G network based on big data analysis and cloud-fog-edge computing, but there are many challenges. Proactive algorithms will require accurate forecasting of highly contextualised traffic demand and quantifying the uncertainty to drive decision making with performance guarantees. Context in Cyber-Physical-Social Systems (CPSS) is often challenging to uncover, unfolds over time, and even more difficult to quantify and integrate into decision making. The first part of the review focuses on mining and inferring CPSS context from heterogeneous data sources, such as online user-generated-content. It will examine the state-of-the-art methods currently employed to infer location, social behaviour, and traffic demand through a cloud-edge computing framework; combining them to form the input to proactive algorithms. The second part of the review focuses on exploiting and integrating the demand knowledge for a range of proactive optimisation techniques, including the key aspects of load balancing, mobile edge caching, and interference management. In both parts, appropriate state-of-the-art machine learning techniques (including probabilistic uncertainty cascades in proactive optimisation), complexity-performance trade-offs, and demonstrative examples are presented to inspire readers. This survey couples the potential of online big data analytics, cloud-edge computing, statistical machine learning, and proactive network optimisation in a common cross-layer wireless framework. The wider impact of this survey includes better cross-fertilising the academic fields of data analytics, mobile edge computing, AI, CPSS, and wireless communications, as well as informing the industry of the promising potentials in this area

    Mobile Edge Computing Empowers Internet of Things

    Full text link
    In this paper, we propose a Mobile Edge Internet of Things (MEIoT) architecture by leveraging the fiber-wireless access technology, the cloudlet concept, and the software defined networking framework. The MEIoT architecture brings computing and storage resources close to Internet of Things (IoT) devices in order to speed up IoT data sharing and analytics. Specifically, the IoT devices (belonging to the same user) are associated to a specific proxy Virtual Machine (VM) in the nearby cloudlet. The proxy VM stores and analyzes the IoT data (generated by its IoT devices) in real-time. Moreover, we introduce the semantic and social IoT technology in the context of MEIoT to solve the interoperability and inefficient access control problem in the IoT system. In addition, we propose two dynamic proxy VM migration methods to minimize the end-to-end delay between proxy VMs and their IoT devices and to minimize the total on-grid energy consumption of the cloudlets, respectively. Performance of the proposed methods are validated via extensive simulations

    A space-time model for analyzing contagious people based on geolocation data using inverse graphs

    Get PDF
    Los dispositivos móviles nos proporcionan una importante fuente de datos que capturan los movimientos espaciales de los individuos y nos permiten derivar patrones generales de movilidad para una población a lo largo del tiempo. En este artículo, presentamos una base matemática que nos permite armonizar datos de geolocalización móvil utilizando geometría diferencial y teoría de grafos para identificar patrones de comportamiento espacial. En particular, nos centramos en modelos programados utilizando Sistemas de Álgebra Informática y basados en un modelo espacio-temporal que permite describir los patrones de contagio a través de patrones de movimiento espacial. Además, mostramos cómo se puede utilizar el enfoque para desarrollar algoritmos para encontrar el "paciente cero" o, respectivamente, para identificar la selección de candidatos que tienen más probabilidades de ser contagiosos

    Towards the internet of agents: an analysis of the internet of things from the intelligence and autonomy perspective

    Get PDF
    Recently, the scientific community has demonstrated a special interest in the process related to the integration of the agent-oriented technology with Internet of Things (IoT) platforms. Then, it arises a novel approach named Internet of Agents (IoA) as an alternative to add an intelligence and autonomy component for IoT devices and networks. This paper presents an analysis of the main benefits derived from the use of the IoA approach, based on a practical point of view regarding the necessities that humans demand in their daily life and work, which can be solved by IoT networks modeled as IoA infrastructures. It has been presented 24 study cases of the IoA approach at different domains ––smart industry, smart city and smart health wellbeing–– in order to define the scope of these proposals in terms of intelligence and autonomy in contrast to their corresponding generic IoT applications.En los últimos años, la comunidad científica ha mostrado un interés especial en torno al proceso de integración de la tecnología orientada a agentes sobre plataformas de Internet de las Cosas (IoT, por sus siglas en inglés). Surge así, un nuevo enfoque denominado Internet de los Agentes (IoA, por sus siglas en inglés) como una alternativa para añadir un componente de inteligencia y autonomía sobre los dispositivos y redes de IoT. El presente trabajo muestra un análisis de los principales beneficios derivados del uso del enfoque del IoA, visto desde las actuales necesidades que el ser humano demanda en su trabajo y vida cotidiana, las cuales pueden ser resueltas por redes de IoT modeladas como infraestructuras de IoA. Se plantea un total de 24 casos prácticos de aplicaciones de IoA en diferentes dominios ––industria, ciudad, y salud y bienestar inteligente–– a fin de determinar el alcance de dichas aplicaciones en términos de inteligencia y autonomía respecto a sus correspondientes aplicaciones genéricas de IoT.This study was founded by the Ecuadorian Ministry of Higher Education, Science, Technology and Innovation (SENESCYT)

    Artificial intelligence and visual analytics in geographical space and cyberspace: Research opportunities and challenges

    Get PDF
    In recent decades, we have witnessed great advances on the Internet of Things, mobile devices, sensor-based systems, and resulting big data infrastructures, which have gradually, yet fundamentally influenced the way people interact with and in the digital and physical world. Many human activities now not only operate in geographical (physical) space but also in cyberspace. Such changes have triggered a paradigm shift in geographic information science (GIScience), as cyberspace brings new perspectives for the roles played by spatial and temporal dimensions, e.g., the dilemma of placelessness and possible timelessness. As a discipline at the brink of even bigger changes made possible by machine learning and artificial intelligence, this paper highlights the challenges and opportunities associated with geographical space in relation to cyberspace, with a particular focus on data analytics and visualization, including extended AI capabilities and virtual reality representations. Consequently, we encourage the creation of synergies between the processing and analysis of geographical and cyber data to improve sustainability and solve complex problems with geospatial applications and other digital advancements in urban and environmental sciences
    corecore