8,963 research outputs found

    Skin Cancer Recognition by Using a Neuro-Fuzzy System

    Get PDF
    Skin cancer is the most prevalent cancer in the light-skinned population and it is generally caused by exposure to ultraviolet light. Early detection of skin cancer has the potential to reduce mortality and morbidity. There are many diagnostic technologies and tests to diagnose skin cancer. However many of these tests are extremely complex and subjective and depend heavily on the experience of the clinician. To obviate these problems, image processing techniques, a neural network system (NN) and a fuzzy inference system were used in this study as promising modalities for detection of different types of skin cancer. The accuracy rate of the diagnosis of skin cancer by using the hierarchal neural network was 90.67% while using neuro-fuzzy system yielded a slightly higher rate of accuracy of 91.26% in diagnosis skin cancer type. The sensitivity of NN in diagnosing skin cancer was 95%, while the specificity was 88%. Skin cancer diagnosis by neuro-fuzzy system achieved sensitivity of 98% and a specificity of 89%

    An Intelligent Method for Industrial Location Selection: Application to Markazi Province, Iran

    Get PDF
    Decision-making and selection are important and sensitive aspects of planning. An important part of land-use planning is the location of human activities. Locating activities in the right places determines the future space of a region. Selection and definition of natural and human indices and criteria for location always face uncertainty. Thus, this study aimed to develop an intelligent method for industrial location. In this study a developmental-applied approach was used along with a descriptive-analytical method for data analysis. Through the review of related literature and a Delphi survey, 18 criteria were extracted and 6 main components were categorized. The data were analyzed and modeled by GIS, MATLAB software, and the Fuzzy Inference System (FIS) and Adaptive Neuro-Fuzzy Inference System (ANFIS) methods. For each modeling three industrial domains were extracted, i.e. weak, medium, and premium. A total of 42,968 hectares of premium industrial location with a score higher than 0.7 resulted from combining the produced maps. Other important findings were related to the architecture and methodology applied in the research based on computational intelligence and knowledge-based systems to analyze and understand the processes that influence the score of locations. The novelty of this method lies in the use of high computing power and information evaluation based on artificial intelligence (AI), making it possible to analyze and understand the processes influencing industrial location.   Abstrak. Pengambilan keputusan dan seleksi adalah aspek-aspek penting dan sensitive dalam perencanaan. Bagian yang penting dalam sebuah perencaan penggunaan lahan adalah terkait lokasi kegiatan manusia. Alokasi kegiatan manusia pada tempat yang benar adalah penentu ruang masa depan dari suatu wilayah. Dalam hal seleksi dan definisi index, juga kriteria lokasi selalu menghadapi ketidakpastian. Sehingga, studi ini dilakukan untuk mengembangkan metode yang berguna dalam alokasi industri. Pada artikel ini, digunakan pendekatan terapan-terkembangkan dengan metode analisis deskriptif dalam hal analisis data. Berdasarkan tinjauan pada literatur terkait dan survey Delphi, 18 kritersia diekstraksi yang dikategorikan pada 6 komponen utama. Data dianalisis dan dimodelkan menggunakan GIS, MATLAB, Fuzzy Inference System (FIS), dan metode Adaptive Neuro-Fuzzy Inference System (ANFIS). Untuk setiap model, tiga domain industry ditentukan, yakni: lemah, moderat, dan premium. Terdapat lokasi industry premium dengan total 42,968 ha dengan nilai lebih dari 0.7. Hasil penting lainnya berkaitan dengan arsitektur dan metode terapan dalam penelitian yang berdasar kepada ilmu komputasi untuk memahami proses yang memengaruhi nilai untuk suatu lokasi. Kebaruan dari metode ini ada pada penggunaan model komputasi tinggi dan evaluasi informasi berdasarkan kecerdasan buatan (AI) yang memungkinkan untuk melakukan analisis dan memahami proses yang memengaruhi lokasi industri.   Kata kunci. Fuzzy Inference System (FIS), Adaptive Neuro-Fuzzy Inference System (ANFIS), Artificial Neural Network (ANN), lokasi industri, Provinsi Markazi

    Risk Assessment of Marine LNG Operations

    Get PDF

    Exploration of Subjective Color Perceptual-Ability by EEG-Induced Type-2 Fuzzy Classifiers

    Get PDF
    Perceptual-ability informally refers to the ability of a person to recognize a stimulus. This paper deals with color perceptual-ability measurement of subjects using brain response to basic color (red, green and blue) stimuli. It also attempts to determine subjective ability to recognize the base colors in presence of noise tolerance of the base colors, referred to as recognition tolerance. Because of intra- and inter-session variations in subjective brain signal features for a given color stimulus, there exists uncertainty in perceptual-ability. In addition, small variations in the color stimulus result in wide variations in brain signal features, introducing uncertainty in perceptual-ability of the subject. Type-2 fuzzy logic has been employed to handle the uncertainty in color perceptual-ability measurements due to a) variations in brain signal features for a given color, and b) the presence of colored noise on the base colors. Because of limited power of uncertainty management of interval type-2 fuzzy sets and high computational overhead of its general type-2 counterpart, we developed a semi-general type-2 fuzzy classifier to recognize the base color. It is important to note that the proposed technique transforms a vertical slice based general type-2 fuzzy set into an equivalent interval type-2 counterpart to reduce the computational overhead, without losing the contributions of the secondary memberships. The proposed semi-general type-2 fuzzy sets induced classifier yields superior performance in classification accuracy with respect to existing type-1, type-2 and other well-known classifiers. The brain-understanding of a perceived base or noisy base colors is also obtained by exact low resolution electromagnetic topographic analysis (e-LORETA) software. This is used as the reference for our experimental results of the semi-general type-2 classifier in color perceptual-ability detection. Statistical tests undertaken confirm the superiority of the proposed classifier over its competitors. The proposed technique is expected to have interesting applications in identifying people with excellent color perceptual-ability for chemical, pharmaceutical and textile industries

    Autonomous Vehicle Coordination with Wireless Sensor and Actuator Networks

    Get PDF
    A coordinated team of mobile wireless sensor and actuator nodes can bring numerous benefits for various applications in the field of cooperative surveillance, mapping unknown areas, disaster management, automated highway and space exploration. This article explores the idea of mobile nodes using vehicles on wheels, augmented with wireless, sensing, and control capabilities. One of the vehicles acts as a leader, being remotely driven by the user, the others represent the followers. Each vehicle has a low-power wireless sensor node attached, featuring a 3D accelerometer and a magnetic compass. Speed and orientation are computed in real time using inertial navigation techniques. The leader periodically transmits these measures to the followers, which implement a lightweight fuzzy logic controller for imitating the leader's movement pattern. We report in detail on all development phases, covering design, simulation, controller tuning, inertial sensor evaluation, calibration, scheduling, fixed-point computation, debugging, benchmarking, field experiments, and lessons learned

    Pixel Classification of SAR ice images using ANFIS-PSO Classifier

    Get PDF
    Synthetic Aperture Radar (SAR) is playing a vital role in taking extremely high resolution radar images. It is greatly used to monitor the ice covered ocean regions. Sea monitoring is important for various purposes which includes global climate systems and ship navigation. Classification on the ice infested area gives important features which will be further useful for various monitoring process around the ice regions. Main objective of this paper is to classify the SAR ice image that helps in identifying the regions around the ice infested areas. In this paper three stages are considered in classification of SAR ice images. It starts with preprocessing in which the speckled SAR ice images are denoised using various speckle removal filters; comparison is made on all these filters to find the best filter in speckle removal. Second stage includes segmentation in which different regions are segmented using K-means and watershed segmentation algorithms; comparison is made between these two algorithms to find the best in segmenting SAR ice images. The last stage includes pixel based classification which identifies and classifies the segmented regions using various supervised learning classifiers. The algorithms includes Back propagation neural networks (BPN), Fuzzy Classifier, Adaptive Neuro Fuzzy Inference Classifier (ANFIS) classifier and proposed ANFIS with Particle Swarm Optimization (PSO) classifier; comparison is made on all these classifiers to propose which classifier is best suitable for classifying the SAR ice image. Various evaluation metrics are performed separately at all these three stages

    Cancer diagnosis using deep learning: A bibliographic review

    Get PDF
    In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a historical idea of cancer classification techniques to the readers. These methods include Asymmetry, Border, Color and Diameter (ABCD) method, seven-point detection method, Menzies method, and pattern analysis. They are used regularly by doctors for cancer diagnosis, although they are not considered very efficient for obtaining better performance. Moreover, considering all types of audience, the basic evaluation criteria are also discussed. The criteria include the receiver operating characteristic curve (ROC curve), Area under the ROC curve (AUC), F1 score, accuracy, specificity, sensitivity, precision, dice-coefficient, average accuracy, and Jaccard index. Previously used methods are considered inefficient, asking for better and smarter methods for cancer diagnosis. Artificial intelligence and cancer diagnosis are gaining attention as a way to define better diagnostic tools. In particular, deep neural networks can be successfully used for intelligent image analysis. The basic framework of how this machine learning works on medical imaging is provided in this study, i.e., pre-processing, image segmentation and post-processing. The second part of this manuscript describes the different deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial models (GANs), deep autoencoders (DANs), restricted Boltzmann’s machine (RBM), stacked autoencoders (SAE), convolutional autoencoders (CAE), recurrent neural networks (RNNs), long short-term memory (LTSM), multi-scale convolutional neural network (M-CNN), multi-instance learning convolutional neural network (MIL-CNN). For each technique, we provide Python codes, to allow interested readers to experiment with the cited algorithms on their own diagnostic problems. The third part of this manuscript compiles the successfully applied deep learning models for different types of cancers. Considering the length of the manuscript, we restrict ourselves to the discussion of breast cancer, lung cancer, brain cancer, and skin cancer. The purpose of this bibliographic review is to provide researchers opting to work in implementing deep learning and artificial neural networks for cancer diagnosis a knowledge from scratch of the state-of-the-art achievements
    corecore