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Abstract—Yellow fever is a vigorous, phlebotomic, vector-
borne disease that poses a significant public health threat in
regions with high mosquito density and inadequate vaccination
coverage. The disease’s toxic phase is lethal, making prompt
identification and control measures crucial. The emergence of
the latest technologies and data analytics techniques such as
edge-cloud computing, data analytics, and machine learning/deep
learning has played a pivotal role in revolutionizing remote
healthcare services. Henceforth, applying the above-mentioned
technologies leads to improvements in the response time, service
quality, and location awareness of healthcare systems. Relative
to this context, we propose an intelligent fuzzy-centric fog-cloud-
assisted healthcare framework to identify and control yellow fever
epidemics. Initially, at the fog layer, singular value decomposition
is used for data dimensionality reduction analysis and the fuzzy-c
mean algorithm is leveraged to get rigorous results. Moreover,
for better results and to focus on time series patterns, the deep
interval type 2 fuzzy Bi-LSTM model is proposed at the cloud
layer to generate a yellow fever severity index and visualize each
yellow fever region based on self-organized maps. Additionally,
we propose an alert generation mechanism to facilitate real-time
decision-making. Finally, results show that the proposed system
yields significant efficacy, compared with other state-of-the-art
methodologies.

Index Terms—Fog-Cloud Computing, Singular Value Decom-
position, Fuzzy-C Mean, Deep interval fuzzy type-2 Bi-LSTM,
Temporal Mining, Self-Organized Mapping.

I. INTRODUCTION

YELLOW fever is an acute viral disease attributable to
the yellow fever virus, which replicates in lymph nodes

and infects dendritic cells and hepatocytes, leading to the
eosinophilia degradation of these cells and the release of
cytokines [1]. This disease causes 200,000 infections and
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30,000 deaths each year [2]. Like other flavivirus infections,
yellow fever has no known cure at present. The disease has
an incubation period of 3-6 days and two phases: a mild
phase and a toxic phase that can be fatal in 20-50% of
the cases1. Symptomatic treatment is provided to patients,
including paracetamol, aspirin, and antiviral drugs, and hospi-
talization may be necessary. Symptoms range from mild, e.g.,
fever, headache, fatigue, loss of appetite, muscle pain, bleeding
in the eyes, and mouth, and gastrointestinal tract infection
[3], [4]. Yellow fever shares some symptoms with malaria,
zika, dengue, and chikungunya viruses, such as high fever,
joint pain, muscle pain, headache, fatigue, and nausea [5]. A
comparison of yellow fever symptoms with those of malaria,
zika, dengue, and chikungunya viruses is presented in Table I.
Here, ‘###’ shows the main symptoms of yellow fever, dengue
fever, Zika virus, malaria, and chikungunya virus, and ‘##’
represents symptoms that are not serious but still an important
indicator for these diseases, and ‘#’ represents inconsistent
symptoms that may or may not be present in a patient from
these diseases, and ‘-’ in a person with the same disease
represents the absence of symptoms.

The World Health Organization (WHO) reports that the
United States (US) allocates the highest percentage of its gross
domestic product (GDP) towards healthcare expenditures for
its citizens [6]. Effective management of healthcare is crucial
for the development of any nation. Nowadays, it is essential
to use remote detection and monitoring systems to control
the outbreak of infectious diseases, as the existing healthcare
system has not been able to effectively combat such diseases.
The evolution of technology has led to the development of
various fog and cloud computing instances that are easy to set
up and can be used in large IT systems [7]–[9]. The migration
of healthcare and other mobile technology applications to the
cloud platform has enabled remote real-time services [10].
However, heterogeneous data types over the cloud can lead
to latency-sensitive issues, location awareness, and delays in
the transmission of big data [11]. These factors can result
in data transmission dilution, delayed user notification, faulty
diagnosis, and potential harm to human life.

A. Motivation and Objectives

To overcome these challenges, a fog layer has been intro-
duced to reduce latency between end users and cloud servers.

1https://www.who.int/news-room/fact-sheets/detail/yellow-fever
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Fig. 1. Fog computing in Healthcare 5.0

Motivated by the need for an early warning system, advanced
data analysis, real-time monitoring, secure data transmission,
and resource optimization, a fog-cloud-assisted secured frame-
work has been developed for predicting and preventing yellow
fever outbreaks [12]–[14]. By leveraging fog-cloud computing,
this framework analyses data from various sources, such
as climate patterns and disease incidence rates, to provide
timely alerts and preventive measures. Real-time monitoring of
environmental conditions and vector populations enables swift
actions to mitigate outbreaks. The framework offers multiple
benefits, including secure data transmission, protection of
sensitive health information, optimized resource allocation,
validation of benefits, accessibility of medical information,
and prompt alarm notifications, as shown in Fig. 1. These
advantages greatly assist yellow fever-infected individuals and
deliver real-time notices to end users within a specified time
frame. Moreover, this approach enhances outbreak prediction
and prevention strategies, leading to saved lives and improved
public health outcomes. The proposed framework addresses
the restriction confronted in yellow fever identification and
outbreak prevention. Its essential goals are:

• Providing an initial class to users based on their infected
symptoms using Singular Value Decomposition (SVD)
and Fuzzy C-mean algorithm at the fog layer.

• In-depth analysis of temporal granular series using deep
interval type 2 fuzzy Bi-LSTM model at cloud layer.

• Decision making using Self-Organized Mapping (SOM)-
based visualization technique.

• Sending instant emergency alert messages to users to
prompt timely action.

B. Existing Works

A comprehensive analysis is conducted, comparing various
state-of-the-art research articles that center on different dis-
eases. The examination is based on key specifications, includ-
ing the inclusivity of Internet of Things (IoT), Applications
Domain (AD), Cloud Computing (CC), Fog Computing (FC),
Prediction Model (PM), Real-Time Perspective (RTP), Visual-
ization Mechanism (VS), and comparison with infectious/other
diseases (CID), as detailed in Table II.

C. Paper organization

The rest of this paper is framed into various sections.
Section II focuses on different components of the proposed

TABLE I
SYMPTOM-BASED COMPARISON OF YELLOW FEVER, CHIKUNGUNYA,

ZIKA, DENGUE, AND MALARIA

Symptoms Chikungunya Zika
Virus

Dengue Malaria Yellow
Fever

Jaundice - - ### - ###
Abdominal
pain

- - ### - ###

Red eyes # ### - - ##
Headaches ## ### ### ## ##
Muscle/Joint
aches

### ## ## # ##

Seizures - - - ### ###
Onset post
infection

2-7 days 3-12
days

4-7
days

3-6
days

7-30
days

Loss of ap-
petite

- - - - ##

Pain behind
eyes

- # ### - -

Nausea # # ### # ##
Decreased
urination

- - - - ###

Skin rash ## ### ### - -
Itching # ### ## - -
Fatigue # ### ### ## ##

intelligent healthcare system. Section III comprises a detailed
experimental evaluation with dataset generation and results.
Finally, Section IV concludes the paper with recommendations
for future work.

II. PROPOSED SYSTEM

The proposed system, depicted in Fig. 2, is composed
of a cloud layer, a middle section (fog computing), and a
front-end section (data acquisition layer). The cloud layer
section comprises various components, including predictive
analysis, SOM-based visualization with Global Positioning
System (GPS)-based risk assessment, and health communi-
cation. The fog server contains two modules: data collection
and dimensionality reduction, and classification using Fuzzy
C-mean clustering. The fog layer is connected to the mobile
device through General Packet Radio Service (GPRS) com-
munication protocols and also collects real-time data from
various acquisition methods and sensors, as illustrated in
Fig. 2. The proposed model incorporates a location-based
fog server that collects overall data from different devices
and transfers it to cloud servers for further decision-making.
The data acquisition component is responsible for gathering
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TABLE II
COMPARISON OF THE PROPOSED APPROACH WITH THE EXISTING WORKS

Reference Year Application Domain/Major Contributions IoT FC CC PM RTP VS CID
[15] 2018 Displayed a novel system for controlling the outbreak of Mosquito-borne

diseases
✓ ✓ ✓ ✓ × × ✓

[16] 2019 Proposed efficient framework to distinguish and control the mosquito-borne
diseases

× ✓ ✓ × × × ✓

[17] 2023 Presented an efficient and novel dengue monitoring framework ✓ ✓ ✓ ✓ × × ×
[18] 2021 Presented a fog-cloud framework for monitoring and controlling swine flu × ✓ ✓ × × × ×
[19] 2022 SDN-enabled Fog nodes specific Early Detection of Communicable Infections

(FogCom)
× ✓ × × × × ×

[20] 2022 Demonstrated a novel system to help a person/community related to the
irregular screen of COVID-19

✓ ✓ ✓ ✓ × × ✓

[21] 2021 Showed a novel and energy-efficient methodology for ceaselessly checking
the heart for low- power wearable devices.

× ✓ ✓ ✓ × × ×

[22] 2023 Displayed an autonomic Edge-assisted Cloud-IoT framework for heart illness
prediction

× ✓ ✓ ✓ × × ×

[23] 2022 Proposed a novel framework called ABFog which integrates with edge
computing gadgets to analyze Heart disease

× ✓ ✓ ✓ × ✓ ×

[24] 2020 Proposed system for identifying individuals affected by dengue at prior stage × ✓ ✓ ✓ × × ×
[25] 2022 Proposed an approach for detecting and tracking Parkinson Disease intensity × ✓ ✓ ✓ × × ×

Proposed
system

2023 Presented a novel architecture for yellow fever detection and precaution
measures

✓ ✓ ✓ ✓ ✓ ✓ ✓

Fig. 2. Proposed framework for yellow fever prediction and mitigation.

personal information and yellow fever symptoms from users
via the mobile application and IoT network. Additionally,
environmental sensors are employed to collect useful data
related to air quality and other parameters discussed in the fog
component layer. The Singular Value Decomposition (SVD)
is used for dimensionality reduction and the Fuzzy C-mean
algorithm is then utilized to classify infected and uninfected
users based on their health symptoms. Moreover, temporal
data is transferred to the cloud layer for further processing,
prediction, and decision-making. At the cloud layer, deep
learning methodology followed by the yellow fever outbreak
severity index helps determine the yellow fever outbreak
intensity.

A. Fog Component Layer
The proposed model illustrates the use of fog computing as a

communication channel between the cloud and end users. The
system security can be enhanced by integrating a cloud access
security broker (CASB) with Health Fog. Fog computing acts
as a bridge between mobile, cloud, and fog servers, extending

cloud computing services to edge devices in the network while
improving Quality of Service (QoS) for real-time applications.
Heterogeneous data entered by the user is collected through
mosquito sensors at the fog nodes and relayed to the cloud
layer for in-depth data processing and analysis. Fog node
interaction in a fog layer can cover a city, country, or even
a continent. They provide services with low latency, location
awareness, and local data processing at the appropriate node
to process data in real time [26].

1) Data Collection and Dimensionality Reduction: To start
utilizing the framework, health-related data is acquired from
IoT devices in real time. The data includes a person’s health
data, meteorological data, location, and environmental data
as shown in Fig. 2. Moreover, to overcome missing data
insertion and time synchronization issues because of heteroge-
nous sensors, universal time synchronization, and expectation
maximum methods are used for filling the former objective.
Furthermore, the dimensionality reduction method is used to
reduce the dimensionality of the data for accurate results. In
addition, some vital information can be submitted by users via.
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mobile application. Data values are categorized as follows:

Algorithm 1 Dimensionality reduction using SVD
Input:: Dataset DS of dimensions R ∗ n with R as several
records and n as total no. of features/attributes for yellow fever.
Output: Reduce the Dataset (DS)R∗n to (DS)R∗(n− f ) as total
dimensions discarded with f as total dimensions discarded.

1: Factorize the dataset DS as (DS)R∗n = (P)R∗R
(Q)R∗n(S)T

n∗n.
2: Determine P and Q such that PPT = VR and ST S= Vn, here

columns of P and S are eigen vectors in orthogonal form
of (DS)(DS)T and (DS)T (DS), respectively.

3: Calculate S−
(n− f )∗(n− f ) by removing the last f rows and f

columns from S.
4: Calculate (Q)R∗n such that Q is diagonal and singular one,

and elements in the matrix are non-negative square roots
of eigenvalues of P and S in decreasing order.

5: Calculate Q−
R∗(n− f ) by removing last f columns of Q.

6: Calculate ((DS)R∗(n− f ) as (DS)R∗(n− f )= PR∗R Q−
R∗(n− f )

S−
(n− f )∗(n− f )

7: Exit.

Algorithm 2 Fuzzy-C means algorithm working in our pro-
posed system

1: Initially, set the number of clusters as per the dataset and
also the value pertaining to the fuzzifier constant. For
process termination, set ε greater than zero (termination
condition).

2: Initialize the membership matrix as M = [mi j]q∗ l, where
q is the number of clusters set as optimal for the problem
and l is the count of data points.

3: Find the computation of fuzzy cluster centers ci, for k

iterations ck
i =

∑
l
j=1[m

(k−1)
i j ]n p j

∑
l
j=1[m

(k−1)
i j ]n

4: Update membership value mi j and ck
i according to mi j =

1

∑
q
k=1

(
|(p j − ci)|
|(p j − ck)|

)2/n−1

5: If |M(k+1)−M(k)|> ε , Stop. Otherwise, go to Step 3 and
find membership degrees and new cluster centers until the
termination condition is satisfied.

• Health Related data: Important parameters shown in
Table I, come under health dataset. Various wearable and
bio-sensors are required to collect this data.

• Meterological data: This dataset encompasses variables
such as rainfall, humidity, temperature, etc. The data is
collected through climate sensors strategically positioned
at various locations.

• Location data: This dataset facilitates the identification
of infectious and high-risk regions. The utilization of GPS
technology enables the acquisition of data across diverse
locations and regions.

• Environmental data: Diet quality, surrounding air level,
and other risk factors that impact human health are

Fig. 3. Temporal granularity mechanism.

measured. To seamlessly collect these data values, feature
extraction techniques including cross-modality, symbolic
aggregation approximation mechanism, and hidden con-
ditional random field extraction method have been incor-
porated.

The required number of dimensions can be achieved by
removing less efficient and redundant parts, resulting in ef-
fective time complexity or lower cost and proper utilization
of network parameters. SVD is used for data dimensionality
reduction in our proposed framework due to its properties [27].
Algorithm 1, shows the complete steps adopted for dimension-
ality reduction.

2) Data Classification: The proposed model utilizes fuzzy
clustering to generate results. If the output result is “YES”
(INFECTED), it updates the user’s location on Google Maps,
and if it is “NO” (NOT INFECTED), it sends a precautionary
message to the user. Fuzzy logic is a form of set theory and
logic that allows predicates to have degrees of applicability
rather than just being true or false. Fuzzy sets can poten-
tially have an infinite range of truth values between one and
zero [28], [29].

Fuzy-C mean (FCM) is an effective clustering technique
that organizes a data set into n clusters, and each data
point is relatively appertained to each cluster. The degree of
membership of a data point in a cluster is excessive if it is close
to the center of the cluster and low if it is far from the center.
FCM iteratively finds the centroid of each cluster and fuzzy
pseudo-partition until the partition does not change. A set of 10
data points, denoted as Y = {Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8,Y9,Y10},
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Fig. 4. DIT2FLSTM cell structure.

has been carefully selected according to the specified require-
ments. These data points correspond to the features presented
in Table I (Initial symptoms-based classification). The two
fuzzy clusters S1 and S2 are taken as subsets for all possible
fuzzy subsets of Y and are used to classify users by grouping
the dataset into these clusters. One includes uninfected users
and the other includes potentially infected users. The primary
goal of FCM is to minimize the error of the objective function.
The mathematical foundation of the objective function is
represented as follows:

F(M,C,D) =
2

∑
i=1

10

∑
j=1

mn
i jd

2
i j(p j,ci), (1)

F(M,C,D) =
2

∑
i=1

10

∑
j=1

mn
i j|(p j − ci)|2, (2)

where M = mi j is the desired partition matrix. Here, i ∈ {1,2}
and j ∈ {1,2,3, · · · ,10} represent the membership values of
data point j in the ith cluster. The set D represents a collection
of data points, and C = {ci}|i={1,2} is defined as the set of
cluster centers. In addition, n is the fuzzy robustness parameter
that is usually considered for the best statistical results 2 and
also controls the fuzziness of the problem. |p j − ci|2 is the
Euclidean distance determinant. In addition, FCM must meet
three conditions to be worth membership mi j ∈ [0,1],∀i, j.

The submission of the membership values of each data point
must be equal to 1.

2

∑
i=1

mi j = 1,∀ j. (3)

All membership values in each cluster must be submitted
to be less than the number of data points (N).

0 <
10

∑
j=1

mi j < N. (4)

The complete steps for the FCM classifier are presented in
Algorithm 2, which is designed to evaluate the category of the
user.

3) Temporal Mining Layer: Fog computing provides a
feasible platform for ubiquitously sensed data anytime from
anywhere. Connectors transmit vital signals, and indicators
of yellow fever outbreak prediction accuracy by storing the

data in the cloud repository whenever an event happens. The
vital signals are stored in an adequate format for analyzing
purposes. Since event-triggered mode generates temporal data,
it must be represented in the real values format for analysis.
Time-series sequence consists of a real value set of different
events which are analyzed using a temporal granulation mech-
anism [30].

Definition 1: (Temporal mining data pattern) A time-series
T can be defined as an ordered list of real-valued variables
T =< t1, t2, · · · , tn >, where n is its length. Additionally, the
data set will be a long-term series that can be restricted to
sub-sections called sub-sequences for analysis.

Corollary 1.1: (Time-series pattern) Given a field K, a Field
Time Series (FTS) can be defined as a set of m values over
a certain period: < t(s),v(s) >,< t(s+ 1),v(s+ 1) >, · · · ,<
t(s+m−1),v(s+m−1)>. Often the values are identified for
specific well-defined points in time, in that case, the value may
be viewed as a vector < v(s),v(s+1), · · · ,v(s+m−1)>.

Corollary 1.2: Given an FTS of various events occurring
during the sliding window of δ t, Temporal Granule Series
(TGS) at an instance ta is defined as attributes selected from
various datasets to form a relation set Ai. Moreover, the
temporal granule formation mechanism is shown in Fig. 3.

Definition 2: Yellow fever outbreak severity value
(YFOSV): The possibility that a user’s health is in an un-
desirable state at any time instance with the vulnerability for
serious consequences.

Y FOSV =
1
p
(α ∗V1 +β ∗V2 + γ ∗V3 + · · ·+ v∗Vp), (5)

where α , β , γ and v are the respective measures for the pth
attribute. A larger YFOSV indicates the user is highly vul-
nerable to yellow fever. Fig. 4 shows the temporal granularity
concept. Temporal granularity helps in calculating YFOSV and
provides sensitivity information on different events.

B. DIT2FBi-LSTM model

Fig. 4 defines the cell structure of the proposed deep interval
type-2 fuzzy LSTM model. The inputs to the DIT2FBi-LSTM
model can be represented as i, xi, xi+1. The input structure
can be represented using Takagi Sugeno Kang (TSK) interval
type-2 fuzzy inference, as follows:

i

{
Rm1m2

i : i f xi = Fm1
i and xi+1 = Fm2

i

then yi =
[
em1,m2
−i , ēm̄1,m2

i

] }M

m1,m2=1

(6)

where Fm1
i and Fm2

i are respectively the interval type-2 fuzzy
sets for the input xi and xi+1. Moreover, M represents the
number of fuzzy rules applied. Other parameters em1,m2

−i and
e−m1,m2

i are the endpoints of a fuzzy rule Rm1,m2
i or the

consequent. We used the product t-norm technique in Eq. (6),
to determine the firing intervals.{

f l
− (x′) = µ−x1

1
(x′1)×·· ·×µ−x′i

(x′i)

f̄ l (x′) = µ̄x′1
(x′1)×·· ·× µ̄x′i

(
ẋ′i
) (7)
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Fig. 5. DIT2FBi-LSTM oriented yellow fever severity prediction.

The inference part of our proposed model can be entirely
portrayed by M-fuzzy rules for the inference process, where
the lth rule now has the form:

Rl : i f x1 is F̃ l · · ·and xi is F̃ l
i , then y is G̃l , ∀l = 1, · · · ,M

where i is the inputs x1 ∈ X1, · · · ,xi ∈ Xi and the output y ∈Y .
The membership function can be formulated as follows:

µRl (x,y) = µA→G̃l (x,y). (8)

The output of each fuzzy rule is Bl= Ax ◦ Rl , with membership
function of µBl (y) as:

µBl (y) =
⋃
x∈X

[µAx(x)∩µA→Ḡ(x,y)] , (9)

where
⋃

signifies the maximum t-conorm operation [31], and
◦ denotes the composition operation. It is pertinent to mention
here that F̃ l(xA

′
) denotes the firing intervals for the fuzzy rule,

where x = xA
′

and F̃ l is as:

F̃ l
(

x
′
)
≡
[
f
¯

l
(

x
′
)
, f̄ l
(

x
′
)]

. (10)

Using the ruleset and the aggregation of the consequent, the
firing output Bl is produced through fuzzy inference [32]:

Bl :


FOU

(
Bl
)
=
[
µ

¯ B′

(
y | x

′
)
, µ̄B′

(
y | x

′
)]

µB′

(
y | x

′
)
= f

¯
l
(

x
′
)
∗µ

¯ G′ (y)

µ̄B′

(
y | x

′
)
= f̄

′
(

x
′
)
∗ µ̄G̃(y)

(11)

Moreover, the final output Bl can be gathered by integrating all
rule firing sets Bl on the output. Here ∗ represents the product
ts-norm operation.

Bl :


FOU(B) =

[
µ

¯ B

(
y | x

′
)
, µ̄B

(
y | x

′
)]

µ

¯ B

(
y | x

′
)
= ∨µ

¯ BM

(
y | x

′
)

µ̄B

(
y | x

′
)
= ∨µ̄BM

(
y | x

′
) (12)

where ∨ denotes the maximum operation. Then the type
reduced set Ic(xA

′
) is obtained through computing the centroid

C
BA′ of B.

IC(x
′
) =CB(x

′
) =

1[
lB
(
x′)

,rB
(
x′)] , (13)

where the two points lB(x
′
) and rB(x

′
) are computed through

the K.M algorithm [33].

C. Prediction and Decision-Making Layer

This layer provides a novel time series prediction for
calculating yellow fever outbreak severity. The Bidirectional
(DIT2FBi-LSTM) model is used to estimate the severity of
YFOSV over the time series of events. Fig. 6 depicts the flow
diagram of the proposed decision-making system at the cloud
layer. Deep interval type 2 fuzzy Bi-LSTM applies DIT2F-
LSTM twice in forward and reverse form which increases
the accuracy of the model and the context available to the
algorithm. The forward function of a DIT2FBi-LSTM with M
input units and N hidden units can be calculated as:

dt
n =

M

∑
m=1

xt
mwmn +

N

∑
n′=1,t>0

f t−1
n′ wn′n, (14)

f t
n = φn(dt

n), (15)

where xt is the sequential input, dt
n represents at time t of unit

n the network input to DIT2F-LSTM. f t
n is activation function

n at time t, wmn is input weight m towards n, wn′n is the weight
of hidden unit n towards n′, φn is the activator function of the
hidden layer and µ is an objective function with p units of
output. The backward function can be calculated as:

δ µ

δwnp
=

T

∑
t=1

δ µ

δdt
n

f t
n, (16)

δ µ

δdt
n
= φ

′
n(d

t
n)

(
P

∑
p=1

δ µ

δdt
n

wnp +
N

∑
n′=1,t>0

δ µ

δdt+1
n′

wnn′

)
. (17)

Fig. 5 illustrates the integration of DIT2FBi-LSTM into the
proposed system. Following the announcement of results, a
window of size n is created, containing x label measures.
Subsequently, YFOSV is calculated based on these labels, as
described in Definition 2 [34], [35].
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Fig. 6. Umatrix-based SOM visualization and YFOSV value-based color coding.

Algorithm 3 Steps for visualization and alert generation
Input: Recent classification category of user, probability of
events, various dataset’s attributes, and pre-defined threshold
values.

1: The Current category of user, health and location attributes
and events for the current time-stamp window.

2: for i = 1 to n do
3: if Current attribute (i) instances > pre-threshold value

then
4: if category = YF-infected then
5: The user is vulnerable and break
6: else
7: if category == YF-normal then
8: Calculate YFSOV value
9: if P(Y FSOV ) > Pre-fixed threshold value

then
10: Generate alert messages to users and

nearby hospitals.
11: end if
12: end if
13: end if
14: end if
15: end for
16: Feed new values to SOM technique for generating the

infected region details.

D. Visualization and Alert Generation Layer

To discard the numbered value and adopt novel methods for
visualization, the SOM technique is used [36]. It is an impor-
tant tool [37] for locating disease hot positions. Moreover, the
Geographical Information system tool is used to analyze the
spatial distribution of disease-prone areas and classify yellow
fever hot positions using cluster analysis techniques including
Getis-Ord Gi* and SOM. As shown in Fig. 6, mapping is
done through ArcGIS 10.2 software, and the SOM technique
is also incorporated for the dynamic presentation of the color-
coding method to analyze the geographical distribution of
yellow fever. The proposed DiT2FBi-LSTM model for predic-
tion is visualized using the U-matrix technique (UMT) [38].
Fig. 6 also demonstrates the abstraction of the UMT method.
Generally, the Low YFOSV value indicates yellow color,

Fig. 7. Data instances formation for yellow fever

the Medium YFOSV value indicates green color and finally
High YFOSV value indicates red color. The steps involved in
visualization and alert generation are shown in Algorithm 3.

Timely decision-making in public health services is of
utmost importance. Effectively integrating SOM along with
GIS provides better interactive visualization. To trace the
yellow fever outbreak enormous location-based sensors can
be deployed and GPS coordinates are also captured by mobile
devices to draw effective results. Moreover, geospatial infor-
mation plays a vital role in tracing the yellow fever region so
that healthcare authorities, government, and doctors can access
and view the information and take preventive actions.

III. PERFORMANCE EVALUATION

In this section, the systematic description of various com-
ponents for generating results is shown below. Moreover, the
experiments have been conducted on a system with R studio
and the evaluations are executed on Amazon Elastic MapRe-
duce framework, a platform that hosts Hadoop clusters on EC2
memory-optimized i2.xlarge instances provided by Amazon’s
cluster. The system specifications are Intel(R) Core(TM) i7
processor, memory capacity of 16GB, clock frequency of 2.5
GHz, and 64-bit Windows 11 Pro operating system.
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Fig. 8. SVD dimensionality reduction

A. Dataset

1) Creation of Yellow Fever Dataset: After an exhaustive
search over the internet for yellow fever datasets, we found 427
records of patients for the year 20172. To conduct experiments
and generate effective results for our patient health diagnosis
system, we extracted records of individuals. The initial dataset
consisted of 122 cases, but we created a simulation environ-
ment by bootstrapping these cases to generate more than 2000
cases, as shown in Fig. 7 We used symptom-based datasets
to assess the proposed system to ensure that no possible
cases were left out. These values can be adjusted based on
the simulation at hand if necessary. Moreover, the rigorous
approach was also adopted to generate better results at the
cloud layer based on the DIT2FBi-LSTM method, discussed
in Section III-E.

2) Data Dimensionality Reduction: The best-case data sets
generated using Fig. 8, are fed to SVD for dimensionality
reduction, using the R Studio tool. The procedure of dimen-
sionality reduction is already shown in Algorithm 1. Fig. 8
shows all nine singular vectors with their eigenvalues and
cumulative variance. It depicts that the first four singular
vectors have eigenvalues greater the one and cumulatively
draw 93.09% variance. These most informative four SVs
are forwarded to the fog node for classification and further
decision-making.

B. Evaluation Metrics

Metrics such as specificity, sensitivity, accuracy and re-
sponse time are calculated in each fold and the obtained results
are compared with other state-of-the-art algorithms [39].

• Accuracy: The most common and effective performance
measure for a classification model is accuracy. It quan-
tifies the proportion of correct predictions among all
predictions made. Mathematically, accuracy is expressed
as:

Accuracy =
T P+T N

T P+T N +FP+FN
, (18)

where TP (true positive), TN (true negative), FP (false
positive), and FN (false negative) represent key perfor-
mance metrics in the classification process.

2http://data.humdata.org/dataset?tags=yellowfever and UCI repository

• Sensitivity: The sensitivity, also known as True Positive
Rate or Recall, is the ratio of accurately identified positive
instances to the total number of actual positive instances.
Mathematically, it is expressed as:

Sensitivity =
T P

T P+FN
. (19)

• Specificity: To avoid false positives, the proportion of
negative instances that were collectively classified as
negative determines the specificity.

Speci f icity =
T N

T N +FP
. (20)

• Average response time: It is characterized as the mean
duration taken by each classification algorithm over 10
iterations to produce a diagnosis result.

• F-measure: To maintain the balance between precision
and recall, the F-measure is calculated as the harmonic
mean between the two. Mathematically, it can be ex-
pressed as:

F −measure =
2∗Precison∗Recall
Precision+Recall

. (21)

C. k-Fold Cross-Validation Method

To mitigate bias associated with random sampling in train-
ing and testing data when comparing the predictive accu-
racy of multiple methods, a k-fold cross-validation approach
was employed. In this methodology, the dataset S is ran-
domly partitioned into k mutually exclusive subsets, denoted
as {D1,D2, · · · ,Dk}, each of approximately equal size. The
model is trained and tested k times; for each iteration i ∈
{1,2,3, · · · ,k}, the model is trained on D/Dt and tested on
Dt . Accuracy in the cross-validation approach is estimated by
calculating the total number of correct classifications divided
by the total number of instances in the dataset. Formally, if
D(i) is a test set containing an instance xi =< vi,yi >, then the
cross-validation accuracy is expressed as follows:

accCV =
1
n ∑
(vi,yi)εD

σ (I(D\D(i),vi),yi), (22)

where σ(I(D\D(i),vi),yi) represents the accuracy measure for
each translation, with n denoting the number of translations.
Moreover, the accuracy of cross-validation is mainly influ-
enced by the random assignment of individual cases to k
different warehouses. A widely adopted strategy to address this
involves the stratification of the warehouses themselves [40].
For each subset, a classifier is created using 9 out of 10
multiples and tested on the 10th to obtain cross-validation of its
error rate. The 10 cross-validation estimates are then averaged
to obtain an estimate of the classifier’s accuracy constructed
from all data.

In our study, the best 880 cases are considered, and the
algorithms are trained and tested using the 10-fold cross-
validation method. The rating is based on the accuracy mea-
sures discussed above (accuracy, sensitivity, and specification).
The results are based on the average results obtained from the
test dataset (10th fold) for each fold as shown in Fig. 9. Naive
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Fig. 9. Statistical results at fog layer (a) Specificity (b) Accuracy (c) Sensitivity and (d) Response time of Fuzzy C-means algorithm.

TABLE III
DIT2BI-LSTM HYPERPARAMETER WITH THEIR OPTIMAL VALUES

Hyperparameters Values (%)
Number of epochs 100
Learning rate 0.004
Dropout rate 0.02
Batch size 32
Filter size 3*3
Pooling size 2*2
DIT2Bi-LSTM units 128

Bayes (NB), Nearest Neighbor With Weights (NNW), Fuzzy-
c means Clustering (FCM), and Fuzzy-k nearest neighbor
(FKNN) are used to validate our model. Comparing these
models, we found that NB achieved a classification accuracy
of 78.74% with a sensitivity and specificity of 80.82% and
75.89%, respectively. The NNW model achieved a classifica-
tion accuracy of 89.56% with a sensitivity and specificity of
91.86% and 80.87%, while the FKNN model achieved a clas-
sification accuracy of 81.01% with a sensitivity and specificity
82.57% and 77.22%, respectively. Moreover, the confusion
matrix for the above-mentioned state-of-the-art classifiers in
Fig. 10, also reveals the efficacy of the FCM in the proposed
methodology.

D. Temporal Efficiency

Temporal efficiency holds significance in applications where
real-time decisions are crucial for delivering time-sensitive
information to end-users. It measures the overall time taken
by the system to generate the required output, encompassing
various components: data sensing (Tsensing), data preprocessing
and classification (Tf og), and data analysis and decision mak-
ing (Tout put). The total delay time (Tdelay) is mathematically

expressed as the sum of these factors:

Tdelay = Tsensing +Tf og +Tout put . (23)

In Fig. 11(a), the results of the proposed system are illus-
trated, with a focus on time delay in the presence of a fog layer.
The x-axis emphasizes the increase in data instances and their
impact on the total delay, while the y-axis denotes the time for
each component in seconds. The results reveal the average time
(Tdelay) of 46.94 seconds throughout the entire experimental
process, up to 18,300 instances. Moreover, further analysis
shows that the data sensing component averaged approxi-
mately 13.93 seconds, followed by data pre-processing and
classification consuming an average of 14.79 seconds. Finally,
the data analysis and decision-making component required an
average of 18.22 seconds to generate the results.

In the analysis of the temporal efficiency of our proposed
system, significant modifications were introduced. Specifically,
the responsibility for data pre-processing and classification at
the fog layer was shifted to the cloud layer, which now also
encompasses predictive analysis. As depicted in Fig. 11(b),
this alteration illustrates the delay in data access and the final
prediction in the proposed system. A latency of an average
of 12.67 seconds is observed due to the data flow from the
data acquisition layer to the cloud layer. Consequently, the
overall average time is noted to be around 66.318 seconds.
This evaluation underscores the pivotal role of the fog layer
in addressing real-time data processing and latency concerns.

E. Statistical evaluation of DIT2Bi-LSTM model

This subsection focuses on the time series data predic-
tion model (DIT2Bi-LSTM). The parameter tuning for the
proposed predictive model is shown in Table III. Applying
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Fig. 10. Confusion matrix of Fuzzy C-mean and other state-of-the-art classifiers

Fig. 11. Temporal delays for the proposed model and the model without fog layer

TABLE IV
COMPARATIVE ANALYSIS OF PROPOSED PREDICTIVE MODEL WITH

CONVENTIONAL METHODS

Method AUC% CI% Recall Precision F−1
IT2FLS 80.07 [74-79] 82.44% 83.31% 83.57%
LSTM 84.73 [82-86] 87.32% 88.07% 88.23%
Fuzzy-LSTM 86.42 [84-89] 88.55% 89.92% 89.11%
IT2ANFIS 87.21 [87-91] 89.27% 89.84% 89.54%
DIT2FLSTM 90.39 [88-92] 91.63% 90.78% 90.03%
DIT2FBi-
LSTM Model

93.05 [91-96] 93.17% 92.43% 92.53%

these parameters, a comparative analysis is carried out with
other conventional methods. Table IV demonstrates the per-
formance comparison based on statistical parameters with
counterpart models, which include, IT2FLS, LSTM, Fuzzy-
LSTM, IT2ANFIS [41], and DIT2FLSTM for the yellow fever
time-series prediction. Moreover, a two-sample t − test has
also been considered for the applicability of the proposed
predictive model. The null hypothesis [42], [43] was defined
as P0 = µi > µ j and P1 = µi < µ j, where µi and µ j are the

means of the area under the ROC curve (AUC) of the proposed
predictive model (µi= 1/10 ∑

10
k=1 AUC j) and IT2FLS as per 10-

cross fold validation assessment. The obtained results show the
efficacy of the predictive model with a mean of 0.97 (IT2FLS
mean is 0.82) and the t-test failed to reject the null hypothesis.

Fig. 12. System stability with varying data instances.
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TABLE V
PARAMETER-BASED COMPARATIVE ANALYSIS OF DEEP LEARNING MODELS

Parameter Convolutional Neural Networks
(CNNs)

Long Short-Term Memory (LSTM) Recurrent Neural Networks (RNNs)

Definition A type of neural network optimized for
processing grid-like data such as images,
using convolutional layers to detect fea-
tures and patterns.

An advanced RNN capable of learning long-
term dependencies in sequence data through
specialized gating mechanisms.

A neural network designed to handle se-
quential data, with connections that loop
back, allowing it to use previous informa-
tion to inform current processing.

Memory No internal memory Long-term memory Short-term memory
Overfitting Less prone due to weight sharing More prone due to complex architecture and

longer training times.
More prone due to sequential dependencies.

Advantages Excellent for extracting spatial features,
translational invariance, parameter shar-
ing, and robust to input variation

Effective in capturing long-range dependen-
cies, mitigates vanishing gradient problems
and is suitable for sequential tasks with com-
plex patterns.

Simple and efficient for processing sequen-
tial data, suitable for real-time applications,
and can handle varying lengths of input
sequences.

Applications Image recognition, object detection, im-
age segmentation, natural language pro-
cessing (NLP)

Speech recognition, language translation, text
generation, time series prediction.

Language modeling, handwriting recogni-
tion, video analysis, sequential data classi-
fication.

Complexity Simple layers Complex with gates, but better at capturing
long-term dependencies.

Simple but recurrent connections.

Internal
Structure
Components

Input layer, conventional layer, Activa-
tion Layer, Pooling Layer, Fully con-
nected Layer, & output layer.

Input layer, LSTM Cell consists of four com-
ponents (Input modulation layer, Input gate,
Forget gate & Output gate), and Output layer.

Input layer, Recurrent Layer, Activation
Layer, Output layer.

F. Stability Analysis

Stability analysis is a crucial parameter for assessing the
consistency of the proposed system over its operational dura-
tion. The stability value, ranging from 0 to 100, is indicative
of the system’s performance reliability. In the yellow fever
environment, a healthy Average Absolute Shift (ASS) con-
cerning the increase in the number of data instances serves as
a key metric. As illustrated in Fig. 12, the system consistently
maintains an ASS of greater than 70 throughout its lifespan or
evaluation period. This observation underscores the robustness
and reliability of the proposed system in the context of a
yellow fever environment. The stability results presented in
Fig. 12, affirm the efficacy and suitability of the proposed
system for addressing challenges related to yellow fever.

G. Discussions

Experimental results of SVD and FCM at the fog layer and
predictive model at the cloud layer revealed the efficacy of
the proposed yellow fever prediction framework. SVD’s first
four singular vectors have been utilized for better results at
the fog layer. FCM classifier outperforms other state-of-the-art
models in terms of accuracy and other statistical parameters
results. The latency issues without the fog layer were also
considered for better decision-making at the cloud layer.
Moreover, the predictive model is showing better statistical
results compared with other counterparts;13.5% greater than
IT2FLS, 9% greater than LSTM, 7.5% greater than fuzzy-
LSTM, 7% greater than IT2ANFIS, and around 2.5% greater
than DIT2FLSTM in terms of AUC. The predictive model
being proposed demonstrates an average AUC of 93.6%, with
a 95% confidence interval ranging from 91% to 96%, in
forecasting yellow fever outbreak occurrences.

To gain deeper insights into the application domains and in-
ternal mechanisms of deep learning models such as Recurrent
Neural Networks (RNNs), Convolutional Neural Networks
(CNNs) and LSTM, a comprehensive comparative analysis

was conducted, as detailed in Table V. Moreover, the envi-
sioned horizon for the proposed predictive model suggests
its potential applicability in biomedical fields, encompassing
healthcare and biopharmaceutical research, particularly within
the realm of time series analysis.

IV. CONCLUSIONS AND FUTURE WORK

With the progression of medical devices utilizing IoT-fog
computing, data analytics, and cloud computing, numerous
interactions can be efficiently and effectively managed. This
paper focuses on incorporating novel methodology to handle
yellow fever disease. SVD and FCM classifier plays a pivotal
role at the fog layer in generating yellow fever cases. More-
over, a novel DIT2FBi-LSTM predictive model is proposed to
deal with uncertainties in time series data for better decision-
making at the cloud layer. In addition to that, the SOM-
based U-matrix technique, alert-based processing, and utilizing
the GPS for precise prediction and severity calculation also
increase the efficacy of the proposed system. The proposed
predictive model gets an accuracy of more than 93% for large
samples and can be easily updated with new cases because
of its deep architecture. Further studies can be carried out
in the future to tune the predictive model cell structure for
other real-world applications with non-stationary certainities.
The evolutionary algorithms or optimization techniques can
be incorporated in the future for the better performance of the
proposed predictive model.
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