24,939 research outputs found

    Gender classification based on gait analysis using ultrawide band radar augmented with artificial intelligence

    Get PDF
    The identification of individuals based on their walking patterns, also known as gait recognition, has garnered considerable interest as a biometric trait. The use of gait patterns for gender classification has emerged as a significant research domain with diverse applications across multiple fields. The present investigation centers on the classification of gender based on gait utilizing data from Ultra-wide band radar. A total of 181 participants were included in the study, and data was gathered using Ultra-wide band radar technology. This study investigates various preprocessing techniques, feature extraction methods, and dimensionality reduction approaches to efficiently process Ultra-wide band radar data. The data quality is improved through the utilization of a two-pulse canceller and discrete wavelet transform. The hybrid feature dataset is generated through the creation of gray-level co-occurrence matrices and subsequent extraction of statistical features. Principal Component Analysis is utilized for dimensionality reduction, and prediction probabilities are incorporated as features for classification optimization. The present study employs k-fold cross-validation to train and assess machine learning classifiers, Decision Tree, Random Forest, Support Vector Machine, Logistic Regression, Multi-Layer Perceptron, K-Nearest Neighbors, and Extra Tree Classifier. The Multilayer Perceptron exhibits superior performance, achieving an accuracy of 0.936. The Support Vector Machine and k-Nearest Neighbors classifiers closely trail behind, both achieving an accuracy of 0.934. This research is of the utmost importance due to its capacity to offer solutions to crucial problems in multiple domains. The findings indicate that the utilization of UWB radar data for gait-based gender classification holds promise in diverse domains, including biometrics, surveillance, and healthcare. The present study makes a valuable contribution to the progress of gender classification systems that rely on gait patterns

    Neural and Neuromimetic Perception: A Comparative Study of Gender Classification from Human Gait

    Get PDF
    Humans are adept at perceiving biological motion for purposes such as the discrimination of gender. Observers classify the gender of a walker at significantly above chance levels from a point-light distribution of joint trajectories. However, performance drops to chance level or below for vertically inverted stimuli, a phenomenon known as the inversion effect. This lack of robustness may reflect either a generic learning mechanism that has been exposed to insufficient instances of inverted stimuli or the activation of specialized mechanisms that are pre-tuned to upright stimuli. To address this issue, the authors compare the psychophysical performance of humans with the computational performance of neuromimetic machine-learning models in the classification of gender from gait by using the same biological motion stimulus set. Experimental results demonstrate significant similarities, which include those in the predominance of kinematic motion cues over structural cues in classification accuracy. Second, learning is expressed in the presence of the inversion effect in the models as in humans, suggesting that humans may use generic learning systems in the perception of biological motion in this task. Finally, modifications are applied to the model based on human perception, which mitigates the inversion effect and improves performance accuracy. The study proposes a paradigm for the investigation of human gender perception from gait and makes use of perceptual characteristics to develop a robust artificial gait classifier for potential applications such as clinical movement analysis

    Gait classification of patients with Fabry's disease based on normalized gait features obtained using multiple regression models

    Get PDF
    Diagnosis of Fabry disease (FD) remains a challenge mostly due to its rare occurrence and phenotipical variability, with considerable delay between onset and clinical diagnosis. It is then of extreme importance to explore biomarkers capable of assisting the earlier diagnosis of FD. There is growing evidence supporting the use of gait assessment in the diagnosis and management of several neurological diseases. In fact, gait abnormalities have previously been observed in FD, justifying further investigation. The aim of this study is to evaluate the effectiveness of different machine learning strategies when distinguishing patients with FD from healthy controls based on normalized gait features. Gait features of an individual are affected by physical characteristics including age, height, weight, and gender, as well as walking speed or stride length. Therefore, in order to reduce bias due to inter-subject variations a multiple regression (MR) normalization approach for gait data was performed. Four different machine learning strategies - Support Vector Machines (SVM), Random Forest (RF), Multiple Layer Perceptrons (MLPs), and Deep Belief Networks (DBNs) - were employed on raw and normalized gait data. Wearable sensors positioned on both feet were used to acquire the gait data from 36 patients with FD and 34 healthy subjects. Gait normalization using MR revealed significant differences in percentage of stance phase spent in foot flat and pushing (p < 0.05), with FD presenting lower percentages in foot flat and higher in pushing. No significant differences were observed before gait normalization. Support Vector Machine was the superior classifier achieving an FD classification accuracy of 78.21% after gait normalization, compared to 71.96% using raw gait data. Gait normalization improved the performance of all classifiers. To the best of our knowledge, this is the first study on gait classification that includes patients with FD, and our results support the use of gait assessment on the clinical assessment of FD.This work was partially supported by the projects NORTE-01-0145- FEDER- 000026 (DeM-Deus Ex Machina) financed by NORTE2020 and FEDER, and the Pluriannual Funding Programs of the research centres CMAT and Algoritm

    Automatic learning of gait signatures for people identification

    Get PDF
    This work targets people identification in video based on the way they walk (i.e. gait). While classical methods typically derive gait signatures from sequences of binary silhouettes, in this work we explore the use of convolutional neural networks (CNN) for learning high-level descriptors from low-level motion features (i.e. optical flow components). We carry out a thorough experimental evaluation of the proposed CNN architecture on the challenging TUM-GAID dataset. The experimental results indicate that using spatio-temporal cuboids of optical flow as input data for CNN allows to obtain state-of-the-art results on the gait task with an image resolution eight times lower than the previously reported results (i.e. 80x60 pixels).Comment: Proof of concept paper. Technical report on the use of ConvNets (CNN) for gait recognition. Data and code: http://www.uco.es/~in1majim/research/cnngaitof.htm
    corecore