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Abstract—Diagnosis of Fabry disease (FD) remains a challenge
mostly due to its rare occurrence and phenotipical variability,
with considerable delay between onset and clinical diagnosis. It
is then of extreme importance to explore biomarkers capable
of assisting the earlier diagnosis of FD. There is growing
evidence supporting the use of gait assessment in the diagnosis
and management of several neurological diseases. In fact, gait
abnormalities have previously been observed in FD, justifying
further investigation. The aim of this study is to evaluate
the effectiveness of different machine learning strategies when
distinguishing patients with FD from healthy controls based
on normalized gait features. Gait features of an individual
are affected by physical characteristics including age, height,
weight, and gender, as well as walking speed or stride length.
Therefore, in order to reduce bias due to inter-subject variations
a multiple regression (MR) normalization approach for gait data
was performed. Four different machine learning strategies -
Support Vector Machines (SVM), Random Forest (RF), Multiple
Layer Perceptrons (MLPs), and Deep Belief Networks (DBNs)
- were employed on raw and normalized gait data. Wearable
sensors positioned on both feet were used to acquire the gait
data from 36 patients with FD and 34 healthy subjects. Gait
normalization using MR revealed significant differences in per-
centage of stance phase spent in foot flat and pushing (p <
0.05), with FD presenting lower percentages in foot flat and
higher in pushing. No significant differences were observed before
gait normalization. Support Vector Machine was the superior
classifier achieving an FD classification accuracy of 78.21% after
gait normalization, compared to 71.96% using raw gait data. Gait
normalization improved the performance of all classifiers. To the
best of our knowledge, this is the first study on gait classification
that includes patients with FD, and our results support the use
of gait assessment on the clinical assessment of FD.

Index Terms—Multiple regression models; Machine learning;
Walking; Fabry’s disease.
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I. INTRODUCTION

Fabry Disease (FD) is a rare and progressive disease that

greatly affects the quality of life and may lead to premature

death. This disease is an X-linked lysosomal storage disorder

caused by the deficiency or absent activity of the enzyme

α-Galactosidase A (α-Gal A). Progressive accumulation of
neutral glycosphingolipids, primarily globotriaosylceramide

(Gb3), in cells throughout the body leads to multisystem

pathology [16], [22]. The most severe clinical manifestations

of FD associated with life-threatening complications are the

damages to the kidneys, heart, and brain. Cerebrovascular

complications caused by cerebral vasculopathy are a major

cause of morbidity and premature death in patients with FD

[22]. The diagnosis of FD remains a challenge due to rare

occurrence, symptom variability, different ages of onset, and

severity of progression. The average delay between onset and

correct diagnosis of FD is 13.7 and 16.3 years and premature

death occurs on average 20 and 15 years earlier, in male

and female patients, respectively [16]. It is then of extreme

importance to explore different biomarkers that can assist

in the early diagnose of FD. Although the involvement of

motor function is not included in the manifestations typically

associated with FD, motor impairments during gait, such as

postural instability and slower gait, have been demonstrated in

FD [25]. Furthermore, the most common FD manifestations

are neurologic and gait has been hypothesized as the final

outcome of several neurological functions [5].

There has been growing evidence showing that gait assess-

ment can be a powerful complementary tool in the diagnosis

and management of patients with motor impairments [13],

[23], [26]. Gait features can be measured easily, quickly, and

at low cost using noninvasive technology such as wearable
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sensors. Different machine learning methods based on gait

features have been widely used to discriminate between normal

and abnormal gait patterns and among different pathological

gait patterns such as presented in patients with Parkinson’s

disease, Huntington’s disease, and Alzheimer’s disease. Some

examples of recently used machine learning methods for

gait classification include Support Vector Machines (SVM)

[3], [27], [30], [32], [34], [35], Random Forest (RF) [3],

[30], [34], [35], and Artificial Neural Networks (ANNs) [13],

[32], [35]. Good classification performance has been found

in the classification of pathological gait. To the best of our

knowledge, no studies have been conducted that have tried to

apply these algorithms to patients with FD.

Gait characteristics of a subject are affected by his physical

properties including age, gender, height, and weight, as well

as by walking speed [33], [34]. In [33], [34] and more recently

in [28], a multiple regression (MR) normalization method was

employed on gait data to minimize the effect of inter-subject

physical differences and self-selected speed. Comparing to

other methods, such as dimensionless equations and detrending

methods, MR normalization revealed better results on reducing

the interference of subject-specific physical properties and its

gait variables, thereby improving parkinsonian gait classifi-

cation accuracy using machine learning methods [34]. It has

been shown that the accuracy of Parkinson’s disease diagnosis

using SVM and RF approaches improves from 81% to 89%

and 75% to 93%, respectively, when gait data is normalized

using the MR approach [34]. In this study, we implement

Wahid et al.’s method [33] to normalized various gait features.

As in [28], [33], [34] age, height, weight, gender, and self-

selected walking speed were used as independent variables.

Additionally, we also included the subjects’ stride length as an

independent variable, as it was shown to significantly affect

foot clearance gait features [4], [14].

The aim of the current study is twofold, firstly, use MR

normalization approach to identify differences in gait features

between FD patients and healthy subjects, and secondly, to

evaluate the effectiveness of different machine learning meth-

ods in classifying FD gait after applying MR normalization.

We hypothesized that it will be possible to distinguish FD gait

from healthy controls using machine learning approaches and

that by applying MR normalization to gait features classifica-

tion performance will be improved. The results of this study

have future implications for the use of the gait assessment

as a complementary non-invasive tool for FD diagnosis and

evaluation.

II. MATERIALS AND METHODS

A. Experimental Protocol

Data from thirty-six FD patients (24 females and 12 males)

and thirty-four healthy subjects (21 females and 13 males)

were collected. For all FD patients, the exclusion criteria

were: the presence of resting tremor, moderate-severe demen-

tia (CDR > 2), depression, less than eighteen years of age,

extensive intracranial lesions or neurodegenerative disorders,

musculoskeletal disease and rheumatological disorders. Local

hospital ethics committee approved the protocol of the study,

submitted by ICVS/UM and Center Algoritmi/UM. Written

consent was obtained from all subjects or their guardians.

Two Physilog ® sensors (Gait Up ®, Switzerland) positioned

on both feet were used to measure different gait variables

of each stride (also known as gait cycle). The participants

were asked to walk 60-meter continuous course (30 meters

corridor with one turn) in a self-selected walking speed while

the sensors were doing the data acquisition. The average

walking speed of FD patients and controls was 1.33 ± 0.18
m/s and 1.33± 0.15 m/s, respectively. The information about
the participant age, weight, height, and body mass index were

also collected. These physical characteristics are summarized

in Table I.

TABLE I
AGE AND ANTHROPOMETRIC CHARACTERISTICS

Controls FD Patients
Age(years) 53.32 ± 23.45 49.42 ± 18.00
Weight (kg) 68.39 ± 9.42 65.67 ± 9.17
Height (m) 1.68 ± 0.092 1.62 ± 0.084
BMI (kg/m2) 24.39 ± 2.92 25.16 ± 3.63

Characteristics are displayed as mean±standard deviation. BMI - Body mass
index.

B. Data analysis

The arithmetic mean of each gait variable was calculated

for all subjects’ stride time series. The collected gait variables

used in this work are: speed (velocity of one cycle), cycle

duration (duration of one gait cycle), cadence (number of gait

cycles in a minute), stride length (distance between successive

initial ground contact of the same foot), stance (percentage

of the gait cycle where the foot is on the ground), swing

(percentage of the gait cycle where the foot is in the air),

loading (percentage of stance between the heel strike and

the foot being fully on the ground), foot flat (percentage of

stance where the foot is fully at on the ground), pushing

(percentage of stance between the foot being fully on the

ground and the toe leaving the ground), double support (per-

centage of the gait cycle where both feet touch the ground),

peak swing (maximum angular velocity during swing), strike

angle (angle between the foot and the ground when the heel

hits the ground), lift-off angle (angle between the foot and

the ground when the toes are leaving the ground), maximum

heel clearance (maximum height above the ground reached by

the heel), maximum toe clearance 1 (maximum height above

the ground reached by the toes after heel max clearance),

minimum toe clearance (minimum height of the toes during

swing phase) and maximum toe clearance 2 (maximum height

above the ground reached by the toes just before heel strike).

Variance inflation factors (VIF) for the independent gait

variables were calculated to determine the severity of mul-

ticollinearity among the physical properties, speed and stride

length. The VIFs for all combinations of independent variables

are summarized in Table II.
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TABLE II
VARIANCE INFLATION FACTORS FOR AGE, HEIGHT, WEIGHT, GENDER,

SPEED AND STRIDE LENGTH.

Age Height Weight Gender Speed Stride Length

VIF
2.45 3.85 1.94 1.27 4.13 8.21
1.89 2.88 1.92 1.26 1.26 —
2.24 3.45 1.91 1.26 — 2.51

A VIF value is greater than 5 (8.21 for stride length)

when considering all six independent variables. Then, speed

and stride length independent variables are never considered

simultaneously. Physical characteristics combined with speed

or stride length were considered in the development of the

MR models since their VIFs were less than 5 [7]. For each

gait variable, the best regression model was selected based on

adjusted R2 and Akaike information criterion (AIC) values.

The Spearman’s rank-order correlation coefficients (ρ) were
computed to assess the influence of the independent variables

on the spatial-temporal and foot clearance gait variables before

and after MR normalization. The correlations between the gait

variables and gender were computed using a point biserial

coefficient of correlation method [24].

C. Data Normalization

Spatial-temporal gait variables including gait cycle duration,

cadence, stance, swing, loading, foot flat, pushing, double

support, stride length, peak swing, and foot clearance gait

variables including strike angle, lift-off angle, maximum heel

clearance, maximum toe clearance 1, minimum toe clearance

and maximum toe clearance 2 were normalized to subject

physical properties as follows:

ŷi = β0 +

p∑

j=1

βjxij + εi (1)

where ŷi represents the prediction for the dependent gait
variable for the ith observation; xij represents the jth physical
property including age, height, weight, gender, and speed or

stride length, β0 represents the intercept term, βj represents
the coefficient for the jth physical property and εi represents
the residual error for the ith observation.
The coefficients of the MR model are estimated using the

control subjects dataset. The best fitted MR models are then

used to normalize each gait variable by dividing the value of

the original dependent gait variable, yi, by the predicted gait
variable from (1), ŷi, according to:

yni =
yi
ŷi

(2)

where yni represents the normalized gait variable for the ith
observation.

D. Feature extraction

Before feature extraction all gait variables were scaled

to have zero mean and unit variance. Principal component

analysis (PCA) was applied to both raw and MR normalized

16 gait variables for feature extraction. PCA is a method that

projects the original set of features into the directions of the

highest variance [2], [31]. This method extracts meaningful

information from the original set of features and expresses it as

a new set of orthogonal features called principal components

(PCs). The PCs are linear combinations of the initial data

features and are sorted in decreasing order of significance.

The first principal component explains the maximum variance

and each principal component that follows it explains a lower

variance. A percentage of the total variance is set as threshold

to select the number of principal components. PCA is one

of the most fundamental and successful methods for dimen-

sionality reduction. Using PCA to reduce data dimensionality

results in a reduction of computational cost and may increase

the performance of the machine learning classifiers [2], [17].

For each dataset, the principal components were selected based

on a threshold of around 95% of the total explained variance.

E. Machine Learning

In this work, four classifier architectures were employed

for the differentiation task of controls vs. FD patients’ gait

patterns. The implemented classifiers were Support Vector

Machines (SVMs) [8], Random Forests (RFs) [9], Multilayer

Perceptrons (MLPs) [19] and Deep Belief Networks (DBNs)

[15], [20]. It is impossible to predict a priori which classifier

will obtain the best classification performance for a given

problem, so the implementation of different types of classifiers

is recommended [17]. The machine learning classifiers were

implemented using: 1) raw spatial-temporal and foot clearance

gait variables; 2) MR normalized spatial-temporal and foot

clearance gait variables.

The hyperparameters of each classifier were optimized using

a randomized search method and 10-fold cross-validation.

For the SVM classifiers, different configurations between

the regularization C, Kernel functions and Kernel functions
specific hyperparameters (e.g. degree of the polynomial kernel

function) were evaluated. For the RF classifiers different

configurations between the number of trees, the functions to

measure the quality of a split (Gini or Entropy), the minimum

number of samples required to split an internal node, the

minimum number of samples required to be a leaf node and

the maximum number of features to consider at each node split

were evaluated. Finally, for the DBN and MLP classifiers dif-

ferent configurations between the number of hidden neurons,

learning rates, dropout rates and epochs were evaluated. Both

MLP and DBN classifiers were implemented with two hidden

layers. The TensorFlow [1], Keras [12] and scikit-learn [29]

libraries within the Python programming language were used

to develop and implement the classifiers.

To evaluate the performance of the different classifiers a

set of metrics including Accuracy (i.e., the proportion of the
total number of classifications that were correctly classified),

Specificity (i.e., the proportion of actual negative cases which
are correctly classified), and Sensitivity (i.e., the proportion of
actual positive cases which are correctly classified), and area

under curve (AUC) were used.
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Sensitivity and Specificity are very useful in assessing the
risks and benefits associated with a classifier. The cost asso-

ciated with a false negative, in this case incorrectly predicting

that an FD patient is a control subject, is far greater than the

cost of a false positive. The receiver operating characteristic

(ROC) curve is a tool used to analyze the trade-off between

sensitivity and specificity [17]. Associated with the ROC curve

is the area under the curve (AUC), this measure indicates the

performance of a classifier using varying threshold values. The

AUC value lies between 0.5 to 1, where 1 denotes a perfect

classifier and 0.5 represents the worst possible classification.

III. RESULTS

Normalization using the MR approach (see Table III) was

able to reduce the great majority of correlations between the

independent variables and gait variables, however few strong

correlations remained after normalization (Table IV and Table

V). For both groups, controls and FD, all raw gait variables

were strongly correlated with at least one of the independent

variables: age, weight, height, speed, gender, stride length

and speed. Regarding the control subjects (Table IV), after

normalization all gait variables were weakly correlated except

the cycle duration which was mildly correlated with stride

length (ρ = 0.39) and maximum toe clearance 1 which was

mildly correlated with age (ρ = −0.38). Concerning to the
FD patients (Table V), after normalization the percentage of

gait cycle in stance and swing were still strongly correlated

with speed (ρ = −0.42, ρ = 0.43) and gender (ρ = −0.48,
ρ = 0.48), the percentage of gait cycle in double support was
strongly correlated with speed (ρ = −0.53), peak swing was
strongly correlated with age (ρ = −0.51), speed (ρ = 0.52)
and stride length (ρ = 0.39), and finally strike angle was
mildly correlated with weight (ρ = 0.41).
Using raw data, no statistically significant differences were

found. After normalization using MR approach, significant

differences between controls and FD patients were observed

in foot flat (mean difference: 0.11, 95%CI: [0.10;0.14], p =
.011) and pushing (mean difference: 0.10, 95%CI: [0.08,0.12],
p = .019), with FD presenting lower percentages in foot flat

and higher in pushing.

Classification accuracy of FD gait using machine learning

was lowest when using the principal components (PCs) ex-

tracted from the raw gait variables, and highest when based

on the PCs extracted from the MR normalized gait variables

(see Table VI). The SVM classifier performed the best, it was

able to yield an accuracy of 78.21% (76.89% sensitivity and

88.50% specificity) in predicting FD gait based on the PCs

extracted from the MR normalized gait. The MLP, DBN and

RF classifiers based on the PCs extracted from MR normalized

gait achieved an accuracy of 72.20%, 65.12% and 76.37%,
respectively.

ROC curves for all machine learning strategies are shown in

Figure 2. The maximum AUC value (0.78) was yielded by the

SVM classifier when based on the MR normalized gait PCs.

The AUC values of all classifiers also increased when using

the MR normalized gait PCs, the only exception was the AUC

value for the DBN classifier which remained the same (0.61)

for both raw and MR normalized gait datasets.

Peak machine learning performances (both classification

accuracies and AUC value) were observed when using the

PCs extracted from gait data normalized by the MR approach.

IV. DISCUSSION

The developed work was twofold, firstly it aimed to in-

vestigate the capabilities of MR normalization approach for

de-correlation between spatial-temporal and foot clearance

gait variables, physical properties, speed and stride length.

Secondly, it evaluated the performance of machine learning

classifiers based on raw and MR normalized gait variables

when distinguishing FD patients and control subjects.

After gait data normalization using MR approach weak to

moderate correlations (0.00 < |ρ| < 0.49) were observed
between physical characteristics, speed, stride length, and

gait features, while for raw gait data these correlations were

weak to strong (0.01 < |ρ| < 0.82). Strong correlations
between most of spatial-temporal gait variables and speed

were observed, especially in FD patients. After MR nor-

malization all correlations decreased to weak or moderate

values (0.00 < |ρ| < 0.54). Speed has shown a profound
role in predicting spatial-temporal gait variables, all the MR

models make use of speed for spatial-temporal prediction (see

Table III). This goes in line with the hypothesis that normal

ranges for gait variables should be defined with reference to

speed of walking [21]. Speed has also been correlated with

most spatial-temporal gait variables previously [6], [28], [33],

[34]. Another study also concluded that differences in gait

parameters between healthy subjects and osteoarthritis patients

decrease when walking speed is accounted for in the gait

analysis [36]. Additionally, in this work stride length was

included as an independent variable for the development of

the MR models. Stride length has been shown to affect gait

variables, more specifically foot clearance measurements [4],

[14]. Our results show that foot clearance measurements from

FD patients and controls were strongly correlated with stride

length, the variables most correlated with stride length were

strike angle (ρ = 0.73 and ρ = 0.66), lift-off angle (ρ = −0.77
and ρ = −0.77) and maximum toe clearance 2 (ρ = 0.69
and ρ = 0.77). After MR normalization, using stride length

as an independent variable, the correlation between stride

length, strike angle, lift-off angle and maximum toe clearance

2 were all weakened to non significant values (|ρ| < 0.25 and
|ρ| < 0.18). In fact, the regression models for strike angle,
lift-off angle and maximum toe clearance 2 explain 54.2%

to 66.0% in the observed variance using stride length as an

independent variable (Table III). Stride length seems to be the

strongest predictor for foot clearance variables, suggesting that

future gait evaluation should account for the effect of stride

length on those variables. In this work, the developed MR

models that are best able to predict foot clearance patterns

have stride length as an independent variable. Overall the MR

normalization was able to significantly reduce the correlations

between physical properties, speed, stride length and gait
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TABLE III
RESULTING MULTIPLE LINEAR REGRESSION MODELS FOR THE GAIT VARIABLES. THE ADJUSTED R2 AND AKAIKE INFORMATION CRITERION (AIC) ARE

SHOWN. THE INDEPENDENT VARIABLES ARE AGE (A), HEIGHT (H ), SPEED (S), GENDER (G), WEIGHT (W ) AND STRIDE LENGTH (SL).

Gait variable Multiple Linear Regression Model AIC Ajusted R2

Spatial-Temporal Variables
Cycle Duration = 1.04 −0.00095 ·A +0.277 ·H −0.308 · S −109.19 0.615
Cadence = 112.22 +0.130 ·A −29.0 ·H +34.96 · S 203.12 0.680
Stance = 62.44 −3.35 · S +1.41 ·G 132.17 0.188
Swing = 37.60 −3.35 · S −1.41 ·G 132.17 0.188
Loading = 22.37 +3.32 · S −2.30 ·G −0.154 ·W 154.73 0.315
Foot Flat = 78.31 −8.95 ·H −16.59 · S +0.194 ·W 176.89 0.543
Pushing = 17.23 −0.036 ·A +13.25 · S 168.30 0.469
Double Support = 25.57 −6.41 · S +1.81 ·G 176.12 0.121
Stride Length = 0.24 −0.0018 ·A +0.361 ·H +0.455 · S −105.97 0.864
Peak Swing = 231.52 −41.22 ·H +129.90 · S +0.833 ·W 305.71 0.526
Foot Clearance Variables
Strike Angle = 19.24 −3.03 ·G −0.165 ·W +16.51 · SL 167.54 0.542
Lift-Off Angle = −46.51 +0.218 ·A −0.137 · SL 206.11 0.660
MaxHC = 0.101 +0.17 ·H −0.039 ·G −0.00091 ·W −137.25 0.474
MaxTC1 = 0.136 −0.022 ·G −0.00055 ·W −143.17 0.078
MinTC = −0.015 +0.00049 ·A +0.0121 ·H −184.17 0.309
MaxTC2 = 0.095 −0.00070 ·A −0.033 ·G +0.110 · SL −142.60 0.602

MaxHC: Maximum Heel Clearance; MaxTC1: Maximum Toe Clearance 1; MinTC: Minimum Toe Clearance; MaxTC2: Maximum Toe Clearance 2.

TABLE IV
SPEARMAN CORRELATION COEFFICIENTS FOR THE CONTROLS GAIT DATA BEFORE (RAW) AND AFTER MR NORMALIZATION.

Correlations Age Weight Height Speed Stride Length Gender
Raw Norm Raw Norm Raw Norm Raw Norm Raw Norm Raw Norm

Spatial-Temporal Variables
Cycle Duration −0.28 −0.05 0.28 0.23 0.46 0.26 −0.36 −0.02 0.18 0.39 −0.29 −0.11
Cadence 0.3 0.11 −0.3 −0.27 −0.45 −0.27 0.35 0.02 −0.18 −0.41 0.28 0.1
Stance 0.13 0.0 0.01 0.14 −0.08 0.18 −0.27 −0.01 −0.29 −0.01 0.37 0.0
Swing −0.13 −0.03 −0.01 −0.15 0.08 −0.18 0.27 −0.01 0.29 0.01 −0.37 −0.01
Loading −0.05 0.04 −0.38 −0.0 −0.09 0.01 0.12 0.0 0.08 0.03 −0.26 0.01
Foot Flat 0.42 0.1 0.34 0.04 −0.16 −0.11 −0.64 −0.25 −0.58 −0.29 0.03 0.17
Pushing −0.44 −0.01 −0.06 −0.12 0.3 −0.05 0.68 0.14 0.62 0.11 0.15 0.23
Double Support 0.07 −0.04 0.12 0.2 0.0 0.15 −0.23 −0.01 −0.23 −0.03 0.25 −0.01
Stride Length −0.63 −0.07 0.23 0.21 0.68 0.24 0.82 0.28 1.0 0.56 −0.11 −0.02
Peak Swing −0.03 0.13 0.21 0.01 0.25 0.05 0.69 0.14 0.57 0.16 −0.02 −0.07
Foot Clearance Variables
Strike Angle −0.44 −0.05 −0.1 0.06 0.36 0.07 0.49 0.06 0.66 0.18 −0.33 0.01
Lift-Off Angle 0.7 −0.03 −0.08 −0.05 −0.54 0.08 −0.65 0.13 −0.77 0.15 0.12 −0.06
Maximum Heel Clearance −0.38 −0.22 0.22 0.1 0.59 0.18 0.27 0.12 0.52 0.27 −0.56 −0.02
Maximum Toe Clearance 1 0.3 0.36 −0.01 0.14 −0.07 −0.11 −0.33 −0.27 −0.2 −0.18 −0.32 0.01
Minimum Toe Clearance 0.66 0.07 0.02 −0.05 −0.34 −0.17 −0.42 −0.23 −0.47 −0.17 0.09 0.03
Maximum Toe Clearance 2 −0.62 0.02 0.08 −0.19 0.59 −0.08 0.54 0.05 0.77 0.11 −0.45 −0.02

variables. The MR normalization results of this work are

comparable to previous works and further corroborate the

favorable outcomes of using MR normalization [28], [33],

[34].

The interpretation of Figure 1 indicates that the MR nor-

malization was able to uncover significant differences in foot

flat and pushing which indicates that MR normalization would

improve the classification performance of FD gait patterns.

This hypothesis is corroborated by the performance of the

developed classifiers. All machine learning classifiers per-

formed better based on the MR normalized variables, SVM

was the best classifier achieving an accuracy of 78.2%, a
sensitivity of 76.9% and a specificity of 88.5%, the accuracy
of the SVM classifier increased 6.3% when MR normalization

is applied before classification (see Table VI). The SVM

classifier displayed the most consistent and best performances

among all classifiers both based on raw and normalized gait,

these results are in accordance with previous studies that used

gait variables to classify gait patterns of various neurological

disorders. A previous study used various machine learning

classifiers to differentiate between Parkinson’s disease and

Alzheimer’s disease gait patterns, the best performance was

achieved by the SVM classifier (92.6% accuracy) [3]. Another

study compared the performance of SVM, MLP, RF, and k-NN

when differentiating between controls and neurodegenerative

disorders based on gait rhythm signals, the best classifier also

was the SVM with an accuracy of 96.83% [35].

Our results also show that RF has an impressive per-
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TABLE V
SPEARMAN CORRELATION COEFFICIENTS FOR THE FD PATIENTS GAIT DATA BEFORE (RAW) AND AFTER MR NORMALIZATION.

Correlations Age Weight Height Speed Stride Length Gender
Raw Norm Raw Norm Raw Norm Raw Norm Raw Norm Raw Norm

Spatial-Temporal Variables
Cycle Duration 0.12 0.06 0.38 0.25 0.32 0.24 −0.63 −0.24 −0.08 0.27 −0.46 −0.37
Cadence −0.16 −0.17 −0.43 −0.28 −0.4 −0.34 0.63 0.24 0.08 −0.26 0.43 0.34
Stance 0.36 0.11 0.19 0.29 −0.05 0.26 −0.66 −0.42 −0.39 −0.07 −0.15 −0.48
Swing −0.36 −0.13 −0.19 −0.29 0.05 −0.25 0.66 0.43 0.39 0.08 0.15 0.48
Loading −0.37 −0.19 0.05 0.37 0.11 −0.04 0.53 0.27 0.56 0.28 −0.29 0.0
Foot Flat 0.4 0.07 0.17 −0.16 −0.05 0.12 −0.63 −0.15 −0.6 −0.22 0.04 0.06
Pushing −0.32 0.24 −0.22 −0.18 0.01 −0.29 0.5 −0.21 0.45 −0.16 0.15 0.17
Double Support 0.46 0.25 0.17 0.17 −0.15 0.11 −0.75 −0.53 −0.49 −0.2 −0.02 −0.26
Stride Length −0.7 −0.01 0.01 0.23 0.61 0.38 0.79 0.12 1.0 0.54 −0.25 −0.3
Peak Swing −0.61 −0.51 −0.07 −0.02 0.17 0.12 0.78 0.52 0.57 0.39 −0.05 −0.13
Foot Clearance Variables
Strike Angle −0.63 −0.39 0.08 0.41 0.36 0.0 0.62 0.25 0.73 0.19 −0.29 0.07
Lift-Off Angle 0.7 −0.04 −0.22 0.22 −0.43 0.17 −0.6 0.04 −0.77 0.25 0.26 −0.34
Maximum Heel Clearance −0.51 −0.34 0.38 0.27 0.48 −0.07 0.33 0.3 0.46 0.22 −0.47 0.19
Maximum Toe Clearance 1 −0.05 0.02 0.07 0.28 0.12 −0.11 0.2 0.12 0.11 −0.07 −0.28 0.23
Minimum Toe Clearance 0.6 −0.16 −0.29 −0.21 −0.28 0.11 −0.31 0.26 −0.45 0.13 0.04 −0.01
Maximum Toe Clearance 2 −0.67 0.05 0.13 0.02 0.55 −0.25 0.53 −0.09 0.69 −0.19 −0.34 0.4
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Fig. 1. Comparison between the mean value of gait features in patient with FD and controls. Data are shown for the MR normalized gait and the raw gait
data. Significant differences in gait features between FD patients and controls are indicated with one asterisk (∗p < .05). Whiskers represent 95% confidence
interval (CI) values. The data was scaled between 0 and 1 to fit onto the same plot.

formance increase when based on the MR normalized gait

variables, the RF classifier accuracy increased from 59.5%
when using raw gait data to 76.4% when using the MR

normalized gait data, it seems that the RF classifier benefits

the most from the MR normalization approach. These findings

are also alined with a previous study where a RF classifier

went from being the worst classifier when classifying PD

gait patterns based on raw gait variables to the best classifier

when based on MR normalized gait variables, the accuracy

increased from 75.0% to 92.6% [34]. We also observed that the

AUC measurements indicate significant improvements in the

classifiers performance when based on the MR normalized gait

data, the only exception was the DBN classifier which yielded

the same AUC performance with raw or MR normalized gait

data. A previous study indicates that the ROC curves and AUC

measure should be used with caution unless one has a very

large dataset, according to this study smaller datasets might

lead to inaccurate results [18]. However, our results indicate
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TABLE VI
CLASSIFICATION PERFORMANCE MEASURES OBTAINED WITH EACH CLASSIFIER BASED ON THE PRINCIPAL COMPONENTS DERIVED FROM THE RAW AND

MR NORMALIZED GAIT VARIABLES. VALUES IN PARENTHESES INDICATE STANDARD DEVIATION OF THE PERFORMANCE. ALL PERFORMANCE RESULTS
ARE IN PERCENTAGE.

Classifier
Controls vs. FD patients

Raw Dataset MR Normalized Dataset
Mean 95% CI Mean 95% CI

MLP
Accuracy 68.87 (± 16.08) (56.75:80.99) 72.20 (± 15.11) (60.81:83.59)
Sensitivity 70.0 (± 19.05) (55.62:84.38) 76.83 (± 20.20) (61.60:92.06)
Specificity 71.33 (± 19.5) (56.63:86.04) 72.33 (± 16.33) (60.02:84.65)

DBN
Accuracy 61.55 (± 11.27) (53.05:70.04) 65.12 (± 13.87) (54.66:75.57)
Specificity 62.0 (± 14.47) (51.09:72.91) 64.33 (± 17.05) (51.48:77.19)
Sensitivity 64.83 (± 15.75) (52.96:76.71) 67.33 (± 14.95) (56.06:78.60)

SVM
Accuracy 71.96 (± 12.57) (62.48:81.44) 78.21 (± 9.63) (70.95:85.47)
Sensitivity 75.83 (± 18.05) (62.22:89.44) 76.89 (± 12.57) (67.35:86.31)
Specificity 73.0 (± 16.41) (60.62:85.38) 88.50 (± 14.67) (77.44:99.56)

RF
Accuracy 59.52 (± 14.86) (48.32:70.73) 76.37 (± 10.78) (68.24:84.50)
Sensitivity 58.50 (± 24.16) (40.28:76.72) 80.50 (± 18.23) (66.76:94.24)
Specificity 70.50 (± 21.86) (54.02:86.98) 84.67 (± 16.91) (72.14:97.19)
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Fig. 2. ROC curves for the developed machine learning classifiers applied to
(a) raw gait data, (b) MR normalized gait data. Performance is shown for the
following machine learning classifiers: DBN, MLP, SVM and RF.

significant improvements over all the evaluated metrics (not

only AUC and ROC curves) when the classifiers are based on

MR normalized gait data.

There are various limitations that should be addressed

to correctly interpret our results. Firstly, the developed MR

models were based on a fairly small number of control subjects

(n = 34), some weak correlations were still present after
normalization which may be related to the restricted number of

controls or may also be related to the fact that non-linearities

have been observed in gait variability, specially in people

above 60 years old [10], [11], the developed MR models

are not able to capture non-linearities. Nevertheless, a larger

number of control subjects might improve MR models and

further reduce the correlations. It is important to also keep

in mind that there are other factors besides speed, stride

length and physical properties that impact gait variables, an

example is cognition [5]. For future research it would be

interesting to collect a greater group of control subjects and

collect cognitive measures to further evaluate the capabilities

of MR normalization for the de-correlation of gait variables

and ability to increase the classification performances.

Finally and most importantly, to the best of our knowledge,

this is the first work that includes a FD group and analysis

the capabilities of different machine learning classifiers for the

prediction of FD when based on gait data. The results obtained

in this work are extremely promising for the diagnosis and

evaluation of FD.

V. CONCLUSION

Inter-subject variability in physical properties, speed and

stride length, significantly impacts final gait performance. Our

results show that spatial-temporal gait variables are predomi-

nantly affected by speed, whereas foot clearance gait variables

seem to be predominantly affected by stride length. A MR

normalization approach is able to de-correlate spatial-temporal

and foot clearance gait variables from physical properties,

speed and stride length.

In this work, all classifiers improved their performance

when based on the MR normalized gait variables. The com-

parative classification using four different classifiers suggests

that the superior classifier at every performance measure was

the SVM, both when based on raw and MR normalized gait

variables. Random Forest classifiers showed an extremely

significant performance increase when based on the MR

normalized gait achieving the second best overall performance.

Machine learning classifiers, specially SVMs and RFs, using

gait variables normalized using a MR approach can reasonably
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support doctors in the objective of diagnosing and evaluating

FD.
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