17,614 research outputs found

    A study on classification using machine learning for dementia evaluation

    Get PDF
    Recently, the number of dementia patients has been increasing due to the aging society. In Japan, a paper-based examination is the main-stream to measure the cognitive function of a subject, but these paper-based tests give much burden to not only patients but also evaluators like facility and medical staff. Therefore, it is necessary to develop a system that can automatically judge the degree of dementia progression, not to burden the doctor. Also, it is required to add play ability not to be a burden on the elderly. From this point of view, the authors developed a recreation game like a puzzle game. This system is easy to play for elderly people and is not a burden. Also, the question-answer is clear, so it is suitable for automatic judgment. We use the obtained features during recreation game to diagnose the degree of dementia progression. We committed the capability of machine learning techniques. Finally, we discussed that the collected features are sufficient to diagnose the degree of dementia progression

    Predicting progression of mild cognitive impairment to dementia using neuropsychological data: a supervised learning approach using time windows

    Get PDF
    Background: Predicting progression from a stage of Mild Cognitive Impairment to dementia is a major pursuit in current research. It is broadly accepted that cognition declines with a continuum between MCI and dementia. As such, cohorts of MCI patients are usually heterogeneous, containing patients at different stages of the neurodegenerative process. This hampers the prognostic task. Nevertheless, when learning prognostic models, most studies use the entire cohort of MCI patients regardless of their disease stages. In this paper, we propose a Time Windows approach to predict conversion to dementia, learning with patients stratified using time windows, thus fine-tuning the prognosis regarding the time to conversion. Methods: In the proposed Time Windows approach, we grouped patients based on the clinical information of whether they converted (converter MCI) or remained MCI (stable MCI) within a specific time window. We tested time windows of 2, 3, 4 and 5 years. We developed a prognostic model for each time window using clinical and neuropsychological data and compared this approach with the commonly used in the literature, where all patients are used to learn the models, named as First Last approach. This enables to move from the traditional question "Will a MCI patient convert to dementia somewhere in the future" to the question "Will a MCI patient convert to dementia in a specific time window". Results: The proposed Time Windows approach outperformed the First Last approach. The results showed that we can predict conversion to dementia as early as 5 years before the event with an AUC of 0.88 in the cross-validation set and 0.76 in an independent validation set. Conclusions: Prognostic models using time windows have higher performance when predicting progression from MCI to dementia, when compared to the prognostic approach commonly used in the literature. Furthermore, the proposed Time Windows approach is more relevant from a clinical point of view, predicting conversion within a temporal interval rather than sometime in the future and allowing clinicians to timely adjust treatments and clinical appointments.FCT under the Neuroclinomics2 project [PTDC/EEI-SII/1937/2014, SFRH/BD/95846/2013]; INESC-ID plurianual [UID/CEC/50021/2013]; LASIGE Research Unit [UID/CEC/00408/2013

    Identifying Key Predictors of Cognitive Dysfunction in Older People Using Supervised Machine Learning Techniques: Observational Study

    Get PDF
    Background: Machine learning techniques, specifically classification algorithms, may be effective to help understand key health, nutritional, and environmental factors associated with cognitive function in aging populations. Objective: This study aims to use classification techniques to identify the key patient predictors that are considered most important in the classification of poorer cognitive performance, which is an early risk factor for dementia. Methods: Data were used from the Trinity-Ulster and Department of Agriculture study, which included detailed information on sociodemographic, clinical, biochemical, nutritional, and lifestyle factors in 5186 older adults recruited from the Republic of Ireland and Northern Ireland, a proportion of whom (987/5186, 19.03%) were followed up 5-7 years later for reassessment. Cognitive function at both time points was assessed using a battery of tests, including the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), with a score Results: In the classification of a low RBANS score ( Conclusions: The results suggest that it may be possible for a health care professional to make an initial evaluation, with a high level of confidence, of the potential for cognitive dysfunction using only a few short, noninvasive questions, thus providing a quick, efficient, and noninvasive way to help them decide whether or not a patient requires a full cognitive evaluation. This approach has the potential benefits of making time and cost savings for health service providers and avoiding stress created through unnecessary cognitive assessments in low-risk patients

    Modeling Big Medical Survival Data Using Decision Tree Analysis with Apache Spark

    Get PDF
    In many medical studies, an outcome of interest is not only whether an event occurred, but when an event occurred; and an example of this is Alzheimer’s disease (AD). Identifying patients with Mild Cognitive Impairment (MCI) who are likely to develop Alzheimer’s disease (AD) is highly important for AD treatment. Previous studies suggest that not all MCI patients will convert to AD. Massive amounts of data from longitudinal and extensive studies on thousands of Alzheimer’s patients have been generated. Building a computational model that can predict conversion form MCI to AD can be highly beneficial for early intervention and treatment planning for AD. This work presents a big data model that contains machine-learning techniques to determine the level of AD in a participant and predict the time of conversion to AD. The proposed framework considers one of the widely used screening assessment for detecting cognitive impairment called Montreal Cognitive Assessment (MoCA). MoCA data set was collected from different centers and integrated into our large data framework storage using a Hadoop Data File System (HDFS); the data was then analyzed using an Apache Spark framework. The accuracy of the proposed framework was compared with a semi-parametric Cox survival analysis model

    Robust automated detection of microstructural white matter degeneration in Alzheimer’s disease using machine learning classification of multicenter DTI data

    Get PDF
    Diffusion tensor imaging (DTI) based assessment of white matter fiber tract integrity can support the diagnosis of Alzheimer’s disease (AD). The use of DTI as a biomarker, however, depends on its applicability in a multicenter setting accounting for effects of different MRI scanners. We applied multivariate machine learning (ML) to a large multicenter sample from the recently created framework of the European DTI study on Dementia (EDSD). We hypothesized that ML approaches may amend effects of multicenter acquisition. We included a sample of 137 patients with clinically probable AD (MMSE 20.6±5.3) and 143 healthy elderly controls, scanned in nine different scanners. For diagnostic classification we used the DTI indices fractional anisotropy (FA) and mean diffusivity (MD) and, for comparison, gray matter and white matter density maps from anatomical MRI. Data were classified using a Support Vector Machine (SVM) and a Naïve Bayes (NB) classifier. We used two cross-validation approaches, (i) test and training samples randomly drawn from the entire data set (pooled cross-validation) and (ii) data from each scanner as test set, and the data from the remaining scanners as training set (scanner-specific cross-validation). In the pooled cross-validation, SVM achieved an accuracy of 80% for FA and 83% for MD. Accuracies for NB were significantly lower, ranging between 68% and 75%. Removing variance components arising from scanners using principal component analysis did not significantly change the classification results for both classifiers. For the scanner-specific cross-validation, the classification accuracy was reduced for both SVM and NB. After mean correction, classification accuracy reached a level comparable to the results obtained from the pooled cross-validation. Our findings support the notion that machine learning classification allows robust classification of DTI data sets arising from multiple scanners, even if a new data set comes from a scanner that was not part of the training sample
    • …
    corecore