1,605 research outputs found

    Maintaining consistency in distributed systems

    Get PDF
    In systems designed as assemblies of independently developed components, concurrent access to data or data structures normally arises within individual programs, and is controlled using mutual exclusion constructs, such as semaphores and monitors. Where data is persistent and/or sets of operation are related to one another, transactions or linearizability may be more appropriate. Systems that incorporate cooperative styles of distributed execution often replicate or distribute data within groups of components. In these cases, group oriented consistency properties must be maintained, and tools based on the virtual synchrony execution model greatly simplify the task confronting an application developer. All three styles of distributed computing are likely to be seen in future systems - often, within the same application. This leads us to propose an integrated approach that permits applications that use virtual synchrony with concurrent objects that respect a linearizability constraint, and vice versa. Transactional subsystems are treated as a special case of linearizability

    S-Store: Streaming Meets Transaction Processing

    Get PDF
    Stream processing addresses the needs of real-time applications. Transaction processing addresses the coordination and safety of short atomic computations. Heretofore, these two modes of operation existed in separate, stove-piped systems. In this work, we attempt to fuse the two computational paradigms in a single system called S-Store. In this way, S-Store can simultaneously accommodate OLTP and streaming applications. We present a simple transaction model for streams that integrates seamlessly with a traditional OLTP system. We chose to build S-Store as an extension of H-Store, an open-source, in-memory, distributed OLTP database system. By implementing S-Store in this way, we can make use of the transaction processing facilities that H-Store already supports, and we can concentrate on the additional implementation features that are needed to support streaming. Similar implementations could be done using other main-memory OLTP platforms. We show that we can actually achieve higher throughput for streaming workloads in S-Store than an equivalent deployment in H-Store alone. We also show how this can be achieved within H-Store with the addition of a modest amount of new functionality. Furthermore, we compare S-Store to two state-of-the-art streaming systems, Spark Streaming and Storm, and show how S-Store matches and sometimes exceeds their performance while providing stronger transactional guarantees

    Compensation methods to support cooperative applications: A case study in automated verification of schema requirements for an advanced transaction model

    Get PDF
    Compensation plays an important role in advanced transaction models, cooperative work and workflow systems. A schema designer is typically required to supply for each transaction another transaction to semantically undo the effects of . Little attention has been paid to the verification of the desirable properties of such operations, however. This paper demonstrates the use of a higher-order logic theorem prover for verifying that compensating transactions return a database to its original state. It is shown how an OODB schema is translated to the language of the theorem prover so that proofs can be performed on the compensating transactions

    Distributed operating systems

    Get PDF
    In the past five years, distributed operating systems research has gone through a consolidation phase. On a large number of design issues there is now considerable consensus between different research groups.\ud \ud In this paper, an overview of recent research in distributed systems is given. In turn, the paper discusses overall system structure, protection issues, file system designs, problems and solutions for fault tolerance and a mechanism that is rapidly becoming very important for efficient distributed systems design: hints.\ud \ud An attempt was made to provide sufficient references to interesting research projects for the reader to find material for more detailed study

    Design and evaluation of a new transaction execution model for multidatabase systems

    Get PDF
    Cataloged from PDF version of article.In this paper, we present a new transaction execution model that captures the formalism and semantics of various extended transaction models and adopts them to a multidatabase system (MDBS) environment. The proposed model covers nested transactions, various dependency types among transactions, and commit independent transactions. The formulation of complex MDBS transaction types can be accomplished easily with the extended semantics captured in the model. A detailed performance model of an MDBS is employed in investigating the performance implications of the proposed transaction model. © Elsevier Science Inc. 1997

    Real-time databases : an overview

    Get PDF

    Abstracting object interactions using composition filters

    Get PDF
    It is generally claimed that object-based models are very suitable for building distributed system architectures since object interactions follow the client-server model. To cope with the complexity of today's distributed systems, however, we think that high-level linguistic mechanisms are needed to effectively structure, abstract and reuse object interactions. For example, the conventional object-oriented model does not provide high-level language mechanisms to model layered system architectures. Moreover, we consider the message passing model of the conventional object-oriented model as being too low-level because it can only specify object interactions that involve two partner objects at a time and its semantics cannot be extended easily. This paper introduces Abstract Communication Types (ACTs), which are objects that abstract interactions among objects. ACTs make it easier to model layered communication architectures, to enforce the invariant behavior among objects, to reduce the complexity of programs by hiding the interaction details in separate modules and to improve reusability through the application of object-oriented principles to ACT classes. We illustrate the concept of ACTs using the composition filters model
    corecore