5,172 research outputs found

    Improved dynamical particle swarm optimization method for structural dynamics

    Get PDF
    A methodology to the multiobjective structural design of buildings based on an improved particle swarm optimization algorithm is presented, which has proved to be very efficient and robust in nonlinear problems and when the optimization objectives are in conflict. In particular, the behaviour of the particle swarm optimization (PSO) classical algorithm is improved by dynamically adding autoadaptive mechanisms that enhance the exploration/exploitation trade-off and diversity of the proposed algorithm, avoiding getting trapped in local minima. A novel integrated optimization system was developed, called DI-PSO, to solve this problem which is able to control and even improve the structural behaviour under seismic excitations. In order to demonstrate the effectiveness of the proposed approach, the methodology is tested against some benchmark problems. Then a 3-story-building model is optimized under different objective cases, concluding that the improved multiobjective optimization methodology using DI-PSO is more efficient as compared with those designs obtained using single optimization.Peer ReviewedPostprint (published version

    Genetic learning particle swarm optimization

    Get PDF
    Social learning in particle swarm optimization (PSO) helps collective efficiency, whereas individual reproduction in genetic algorithm (GA) facilitates global effectiveness. This observation recently leads to hybridizing PSO with GA for performance enhancement. However, existing work uses a mechanistic parallel superposition and research has shown that construction of superior exemplars in PSO is more effective. Hence, this paper first develops a new framework so as to organically hybridize PSO with another optimization technique for “learning.” This leads to a generalized “learning PSO” paradigm, the *L-PSO. The paradigm is composed of two cascading layers, the first for exemplar generation and the second for particle updates as per a normal PSO algorithm. Using genetic evolution to breed promising exemplars for PSO, a specific novel *L-PSO algorithm is proposed in the paper, termed genetic learning PSO (GL-PSO). In particular, genetic operators are used to generate exemplars from which particles learn and, in turn, historical search information of particles provides guidance to the evolution of the exemplars. By performing crossover, mutation, and selection on the historical information of particles, the constructed exemplars are not only well diversified, but also high qualified. Under such guidance, the global search ability and search efficiency of PSO are both enhanced. The proposed GL-PSO is tested on 42 benchmark functions widely adopted in the literature. Experimental results verify the effectiveness, efficiency, robustness, and scalability of the GL-PSO

    Modelling arterial pressure waveforms using Gaussian functions and two-stage particle swarm optimizer

    Get PDF
    Changes of arterial pressure waveform characteristics have been accepted as risk indicators of cardiovascular diseases. Waveform modelling using Gaussian functions has been used to decompose arterial pressure pulses into different numbers of subwaves and hence quantify waveform characteristics. However, the fitting accuracy and computation efficiency of current modelling approaches need to be improved. This study aimed to develop a novel two-stage particle swarm optimizer (TSPSO) to determine optimal parameters of Gaussian functions. The evaluation was performed on carotid and radial artery pressure waveforms (CAPW and RAPW) which were simultaneously recorded from twenty normal volunteers. The fitting accuracy and calculation efficiency of our TSPSO were compared with three published optimization methods: the Nelder-Mead, the modified PSO (MPSO), and the dynamic multiswarm particle swarm optimizer (DMS-PSO). The results showed that TSPSO achieved the best fitting accuracy with a mean absolute error (MAE) of 1.1% for CAPW and 1.0% for RAPW, in comparison with 4.2% and 4.1% for Nelder-Mead, 2.0% and 1.9% for MPSO, and 1.2% and 1.1% for DMS-PSO. In addition, to achieve target MAE of 2.0%, the computation time of TSPSO was only 1.5 s, which was only 20% and 30% of that for MPSO and DMS-PSO, respectively

    Force-imitated particle swarm optimization using the near-neighbor effect for locating multiple optima

    Get PDF
    Copyright @ Elsevier Inc. All rights reserved.Multimodal optimization problems pose a great challenge of locating multiple optima simultaneously in the search space to the particle swarm optimization (PSO) community. In this paper, the motion principle of particles in PSO is extended by using the near-neighbor effect in mechanical theory, which is a universal phenomenon in nature and society. In the proposed near-neighbor effect based force-imitated PSO (NN-FPSO) algorithm, each particle explores the promising regions where it resides under the composite forces produced by the “near-neighbor attractor” and “near-neighbor repeller”, which are selected from the set of memorized personal best positions and the current swarm based on the principles of “superior-and-nearer” and “inferior-and-nearer”, respectively. These two forces pull and push a particle to search for the nearby optimum. Hence, particles can simultaneously locate multiple optima quickly and precisely. Experiments are carried out to investigate the performance of NN-FPSO in comparison with a number of state-of-the-art PSO algorithms for locating multiple optima over a series of multimodal benchmark test functions. The experimental results indicate that the proposed NN-FPSO algorithm can efficiently locate multiple optima in multimodal fitness landscapes.This work was supported in part by the Key Program of National Natural Science Foundation (NNSF) of China under Grant 70931001, Grant 70771021, and Grant 70721001, the National Natural Science Foundation (NNSF) of China for Youth under Grant 61004121, Grant 70771021, the Science Fund for Creative Research Group of NNSF of China under Grant 60821063, the PhD Programs Foundation of Ministry of Education of China under Grant 200801450008, and in part by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1 and Grant EP/E060722/2

    A Multi Hidden Recurrent Neural Network with a Modified Grey Wolf Optimizer

    Full text link
    Identifying university students' weaknesses results in better learning and can function as an early warning system to enable students to improve. However, the satisfaction level of existing systems is not promising. New and dynamic hybrid systems are needed to imitate this mechanism. A hybrid system (a modified Recurrent Neural Network with an adapted Grey Wolf Optimizer) is used to forecast students' outcomes. This proposed system would improve instruction by the faculty and enhance the students' learning experiences. The results show that a modified recurrent neural network with an adapted Grey Wolf Optimizer has the best accuracy when compared with other models.Comment: 34 pages, published in PLoS ON

    Adaptive particle swarm optimization

    Get PDF
    An adaptive particle swarm optimization (APSO) that features better search efficiency than classical particle swarm optimization (PSO) is presented. More importantly, it can perform a global search over the entire search space with faster convergence speed. The APSO consists of two main steps. First, by evaluating the population distribution and particle fitness, a real-time evolutionary state estimation procedure is performed to identify one of the following four defined evolutionary states, including exploration, exploitation, convergence, and jumping out in each generation. It enables the automatic control of inertia weight, acceleration coefficients, and other algorithmic parameters at run time to improve the search efficiency and convergence speed. Then, an elitist learning strategy is performed when the evolutionary state is classified as convergence state. The strategy will act on the globally best particle to jump out of the likely local optima. The APSO has comprehensively been evaluated on 12 unimodal and multimodal benchmark functions. The effects of parameter adaptation and elitist learning will be studied. Results show that APSO substantially enhances the performance of the PSO paradigm in terms of convergence speed, global optimality, solution accuracy, and algorithm reliability. As APSO introduces two new parameters to the PSO paradigm only, it does not introduce an additional design or implementation complexity
    corecore