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A methodology to the multiobjective structural design of buildings based on an improved particle swarm optimization algorithm
is presented, which has proved to be very efficient and robust in nonlinear problems and when the optimization objectives are in
conflict. In particular, the behaviour of the particle swarm optimization (PSO) classical algorithm is improved by dynamically
adding autoadaptive mechanisms that enhance the exploration/exploitation trade-off and diversity of the proposed algorithm,
avoiding getting trapped in local minima. A novel integrated optimization system was developed, called DI-PSO, to solve this
problem which is able to control and even improve the structural behaviour under seismic excitations. In order to demonstrate
the effectiveness of the proposed approach, the methodology is tested against some benchmark problems. Then a 3-story-building
model is optimized under different objective cases, concluding that the improved multiobjective optimization methodology using
DI-PSO is more efficient as compared with those designs obtained using single optimization.

1. Introduction

The most popular and used evolutionary computation (EC)
techniques, known as Evolution Strategies [1–3], Genetic
Algorithms [4, 5], Genetic Programming [6], and Evolu-
tionary Programming [7], are nature-inspired algorithms
which mimic natural evolutionary principles such as The
Survival of Species [8]. In the field of structural engineering,
several authors have contributed in some applications, such as
damage detection in structures [9, 10], truss optimization [11],
identification of dynamical properties [12], structural design
[13], vibration controls [14], shape optimization [15], among
others.

Particle SwarmOptimization Methods, even though they
belong to EC new class of emerging methods, are based
on intelligent-sociocognitive behaviours observed in natural
species [16]. The PSOmethodology was initially proposed by
Eberhart and Kennedy in 1995 [17, 18] and shares with EC
optimization techniques the way the design space is searched.
Both of them use a population of candidate solutions to

exploit and explore the design space to find out the optimal
or quasi-optimal solution. They differ, however, on how the
swarm particles (or individuals) are created. In PSO, the
particles have memory, meaning that every single member
of the swarm has the ability to remember its best individual
position acquired so far while moving through the searching
space. Its final position is determined by the combination
of this knowledge and the influence exerted by the best
individual’s position of the topological configuration of the
neighbourhood where the particle inhabits or by the best
individual position in the whole swarm.

The swarm optimization methodology has been the base
of other variants of PSO, thus increasing the number of
algorithms that belong to this particular branch of stochas-
tic optimization methodologies. Among them, it is worth
mentioning Quantum-behaved Particle SwarmOptimization
(QPSO) [19]. QPSO has in common with the original PSO
theory the concept of a set of individual best vectors and also
uses the global best vector, to propose a global-convergent
PSO algorithm. The positions of the particles are obtained by
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probabilistic sampling throughout the domain and assuming
that the particles have quantumbehaviour andmust converge
to their local attractors. The search scope of each particle is
based on a normalized probability density function obtained
by solving the Schrödinger equation. Also, in QPSO the
algorithm does not use recursion, or the inertia term as in
the original version of PSO, to promote the perturbation
of the new sample points, but it uses a form of reference-
point elitism. In [20] the same authors introduced a modified
QPSO called MQPSO; the only difference is the way the local
attractor is chosen. In this case a randomly selected local
attractor vector is selected if its evaluation on the objective
function is better than the particle natural local attractor.
Recently, in [21] a novel position-update mechanism based
on the ring model and combining it with the classical QPSO
have been proposed to deal with multiobjective optimization
problems.

Several applications to complex problems in diverse fields
of engineering show that the methodology is efficient and
robust as global optimizer due to its easy implementation,
low computational cost, and no gradients, and no additional
information about the optimization function is needed. All
of the above together with its great ability and good perfor-
mance in changing and noisy environments has suggested
that this methodology would be a very suitable approach in
structural dynamics optimization problems discussed herein.

The general advantages offered by optimization algo-
rithms belonging to the class of evolutionary computation
over traditional optimization algorithms suggest the develop-
ment of improved approaches to solve engineering practical
problems. Thus, optimization of structural design systems in
concordance with best-design practices of modern buildings
and infrastructures could be faced. The main objective of
this work is to evaluate and propose a design methodology,
based on the paradigms of social behaviour, to optimize
building structural models which include different criteria
and objectives found on all disciplines involved.

This article is divided into the following sections: first,
the theoretical formulation of particle swarm optimization
and the proposed improvements to make the algorithm more
effective in the solution of structural design problems is
presented.Then, the multiobjective analysis by means of PSO
and the implementation of DI-PSO is described in detail. In
the next section, the proposed optimization methodology is
assessed by testing against different mathematical benchmark
problems. Then, a general description of a multiobjective
structural optimization problem is presented and described.
After that, the DI-PSOmethodology is used to optimize a real
structural frame-building model under different optimiza-
tion cases. Finally, the main recommendations and conclu-
sions will be derived to continue developing the proposed
methodology, based on social-cognitive paradigm, in the field
of structural optimization.

2. Materials and Methods

2.1. Social Intelligent Paradigm Optimization and Its Improve-
ments. The classical PSO algorithm can be implemented in

two different versions. In the global version, the final position
of each particle results from the compromise relationship
between the particle’s best positions reached so far and the
best position of the best individual of the whole swarm.
In the local variant of the algorithm, instead of taking into
account the position of the best individual of the entire
swarm, it takes the position of the best individual of the
local neighbourhood where the particle belongs. The PSO
global approach is described below, as well as some of the
developedmechanisms that have been introduced to enhance
the optimization algorithm presented in this work (see [23]
for details).

The single-objective optimization (for simplicity a mini-
mization is assumed) problem of a function of real values f
consists in finding out a vector of design variables, X∗, such
that

f : 𝑆 → R

f (X∗) ≤ f (x) , ∀X ∈ S
(1)

where S ⊂ R𝐷 is a compact not empty set.
Let us assume that the searching space is J-dimensional

and the i-particle of the swarm can be represented as a J-
dimensional vector of his position Xi,

X𝑖 = ⟨x𝑖1 x𝑖2 x𝑖3 ⋅ ⋅ ⋅ x𝑖𝑗⟩ (2)

and defining V𝑛+1𝑖,𝑗 as the change of the particle’s velocity
(changes over time of its spatial position):

V𝑛+1𝑖,𝑗 = w ∗ V𝑛𝑖,𝑗 + c1 ∗ r𝑛1 ∗ (Pn
i best,j − x𝑛𝑖,𝑗) + c2 ∗ r𝑛2

∗ (PnGen best,j − x𝑛𝑖,𝑗) (3)

then the new position of the particle will be

X𝑛+1𝑖,𝑗 = X𝑛𝑖,𝑗 + V𝑛+1𝑖,𝑗 (4)

where V𝑖,𝑗 is the i-particle’s velocity in the jth dimension; w is
the inertia factor; c1 is the individual consciousness, which is
a weighting coefficient that measure and control the influence
of the best position reached so far for the i-particle (Pi best,j);
and c2 is the social or collective consciousness parameter of
the swarm; it represents a weighting coefficient that measure
the influence of the best position reached by the best particle
of the whole colony (PGen best,j). Finally, r1 and r2 are normal
distributed random numbers within the range of (0,1), and
the super indexes indicate the iterations.

The swarm behaviour is based on mechanisms which
have influence over the temporal-space position of each
individual of the swarm as well as the location of the entire
colony (those mechanisms are known as the principle of
proximity or the rule of simple space movements and time
computations; the quality principle or the response of the
swarm to quality factors in the environment; principle of
diverse response which indicates how the swarm allocates
and distributes its resources; the stability principle which
regulates how the swarm must react under every fluctuation
of the environment; and the adaptability principle that
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dictates the ability of the swarm to change its behaviour when
the benefits surplus are the cost to achieve such behavioural
change (see Millonas [24]). These mechanisms take into
account quality factors derived from the best position reached
so far for each particle and the position obtained by the best
particle of the swarm, allocating the response of each particle
over the searching space in a way that assures the required
diversity in the searching process. Moreover, the behaviour
of the colony changes only when the best individual of
the colony changes. It can be said that the response of the
algorithm is adaptable and stable at the same time.

Despite all these advantages, PSO suffers, as well as
others optimization algorithms belonging to EC, from lack of
diversity and adaptability in the latest stages of the searching
process. In the final stages of the searching process, these
kinds of algorithms show off a diminishing capacity of
exploration due to concentration of individuals in a particular
region of the design space. As a consequent, the algorithms
lose the ability to react and to find out better places to be
explored. Regarding this matter, the specialized literature
offers general recommendations for choosing the values
of the swarm’s optimization parameters. Kennedy [25] and
Shi & Eberhart [26] suggested a linear variation through
generations, ranging between 1,2 and 0,4 for the inertia factor
(w) and constant acceleration coefficients (c1; c2) equal to 2.
Despite these recommendations, it is always useful to tune up
these parameters to each particular problem.

According to the discussion above and to improve both
the diversity and quality of the colony when searching the
optimum or quasi-optimum solution, the required autoad-
aptive mechanisms for a better adjustment of the inertia
factor (w) and the acceleration constants associated with the
individual consciousness (c1) and the social consciousness
(c2) are proposed and implemented in this work:

(a) Related to the inertia factor (w): a success index
(Rate S(n)) of the swarm is evaluated at each gener-
ation in order to see in which percentage the swarm
particles have improved (or not) their objective val-
ues. Thus, the success of an individual of the swarm
(particle i) in the iteration n (si

(n)) is defined in terms
of the improvement (or not) of its personal score
compared to its performance at the previous iteration:

s(𝑛)𝑖 = {{{
1, Si f (P𝑛+1𝑖,𝑗 ) < f (P𝑛𝑖,𝑗)
0, Otherwise

(5)

Based on this index, the success ratio in the n-
iteration (Rate S(n)) can be estimated as a function of
the success of the whole swarm (S) by

Rate S(n) = ∑𝑖 s(𝑛)𝑖
S

(6)

Rate S(n) (Rate S(n) ∈ [0, 1]) represents the per-
centage of the particles which have improved their
behaviour in the last iteration. A high value of
Rate S(n) indicates a high probability that most of
the particles have converged to a nonoptimum point

or they are slowly moving to the optimum. On the
contrary, a lower value of Rate S(n) indicates that the
particles are oscillating without much improvement
[27]. In order to dynamically adapt the inertia factor
in these cases, an exponential variation of the inertia
factor in terms of the number of iterations is used:

w(n) = eRate S(n)−1 (7)

(b) Related to the acceleration constants (c1, c2): it is
well known that the optimization process of any
evolutionary or sociocognitive algorithms is based on
the exploration and exploitation of the design space
by a population (or swarm’s particles) of candidate
solutions. At the initial stages of the searching process
it is always useful and recommended to encourage
exploration of the design space. And at the final stages
of this process, it is a better practice to increase and
improve the exploitation of the design space where
the possible quasi-optimal or optimal solution can be
found. To promote these behaviours, a mechanism
that linearly reduces the individual consciousness (c1)
and increases the social consciousness (c2) while the
searching process is running [28] is used in this work,
as follows:

cn1 = c1𝑚𝑎𝑥 − n
nmax

(c1𝑚𝑎𝑥 − c1𝑚𝑖𝑛)
cn2 = c2𝑚𝑎𝑥 + n

nmax
(c2𝑚𝑎𝑥 − c2𝑚𝑖𝑛)

0 < cn1 + cn2 < 4
(8)

(c) To preserve an adequate diversity during the search-
ing process: an exploration dynamic operator and a
kind of elitist crossover operator inspired by the ideas
discussed by Wu et al. [29] have been implemented
in this work. The authors developed an Improved
Chicken Swarm Optimization Method applied to
calculate reentry trajectories.
The exploration ability of the classical PSO algo-
rithm is improved, especially in the later stages of
the searching process, by implementing the idea of
an exploration dynamic operator. This operator is
defined through a dynamic mutation factor (Pmut)
which represents the mutation probability of the
particle positions. It has the following expression:

P𝑚𝑢𝑡

= (P𝑚𝑎𝑥 − P𝑚𝑖𝑛) 𝑥 (Inter𝑒𝑠𝑡 − ItercurrentmodInter𝑒𝑠𝑡)
Inter𝑒𝑠𝑡+ P𝑚𝑖𝑛

(9)

where

Pmax, Pmin: maximum and minimum value of
Pmut ;
Interest: not improvement interval;
Itercurrent : current iteration.
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When the swarm stagnates during the searching
process, detected by no improvement in the values of
the objective function in the span of several iterations
(e.g., 5 generations), Pmut probability is calculated at
the current iteration and is applied independently
to each coordinates of the particles, updating their
positions randomly in the range of values allowed for
the design variables of each parameter. The mutation
probability is dynamically adjustedwithin the interval
[Pmax, Pmin]. If in the subsequent iterations Pmut
value gets less than Pmin, its value is locked at Pmin
(Pmut=Pmin) and the positions of the particles of
the colony are modified. The next iteration Pmut is
restored to its maximum value and the iteration
counter is reset to one.
Elitist Crossover Operator: it has been shown [30]
that the performances of swarm intelligence algo-
rithms in solving high-dimensional optimization
problems are prone to easily fall into local optimum
and suffer from premature convergence. To overcome
these drawbacks, a kind of real crossover operator
is implemented in the following way: after updating
the particles spatial position, a random number a
(𝑎 ∈ [0, 1]) is generated. If a is less than the
default crossover probability pc, the best two particles
of the swarm (without taking in consideration the
best particle of the swarm (PGen best,j)) are chosen
to perform the elitist crossover operation. The new
particles are then created by using the following
equations:

𝑁𝑒𝑤𝑃𝑎𝑟𝑡1 = 𝐼𝑃𝐼 ∗ 𝐵𝑒𝑠𝑡𝑃𝑎𝑟𝑡1 + (1 − 𝐼𝑃𝐼)
∗ 𝐵𝑒𝑠𝑡𝑃𝑎𝑟𝑡2

𝑁𝑒𝑤𝑃𝑎𝑟𝑡2 = (1 − 𝐼𝑃𝐼) ∗ 𝐵𝑒𝑠𝑡𝑃𝑎𝑟𝑡1 + 𝐼𝑃𝐼
∗ 𝐵𝑒𝑠𝑡𝑃𝑎𝑟𝑡2

(10)

where the parameter IPI represents the percentage
of information that each new particles can inherit
from their parents. After the crossover operation, the
two new particles will substitute the two particles
with the worst fitness values and themingling process
will continue with the rest of the particles. When
the algorithm is trapped into the local optimum, the
elitist crossover operator can change the position of
some of the best particles trapped into local optimum.
Therefore and within certain probability, the fitness
value of the new particles can be better than the best
particle of the swarm (pg,j), replacing it and taking the
algorithm out of the local optimum.

Following the recommendations of Van den Bergh [31], a
series of experiments have been done to select and tune
the values of the different optimization parameters needed
to implement the above-mentioned operators. Accordingly
with these results, the maximum and minimum values of
the dynamical mutation factor are Pmax=0,8 and Pmin=0,4.
The stagnation interval has been limited to ten iterations

(Interest=10), the stagnation threshold to five generations, the
default crossover probability pc (pc=0,8), and the information
percentage inheritance IPI=0,5 or 50%.

2.2. Swarm Intelligence andMultiobjective Optimization Prob-
lems. Most real-world search and optimization problems
are naturally posed as multiobjective optimization problems
(MOOPs). They pose a real challenge that has attracted
the attention of scientific researchers in different disciplines,
especially in engineering and science, due to their inherent
complexities and due to the lack of suitable and efficient
solution techniques.

To solve MOOPs many evolutionary-based and swarm
intelligence-based optimization algorithms have been pro-
posed. The first ones adopt the evolutionary computation
strategy that simulates principles observed in biological
evolution, such as selection, mating, mutation, cloning,
among others techniques, and mechanisms inspired from
natural evolution. A variety of these approaches can be found
elsewhere [32, 33].The second kind of algorithms follows the
computational intelligence paradigm in imitating the swarm
behaviour by adjusting position and velocity for each particle
as well as its neighbours. Their application to solve multiob-
jective optimization problems is investigated in [13, 34].

The solution of a multiobjective optimization problem
results in a number of optimal solutions due to the presence
of conflicting multiple objectives. The complexities of this
problem arise in the fact that an ideal MOOP algorithm must
be able to find multiple optimal solutions and to seek for
optimal solutions with a good diversity in objective and/or
decision variable space(s). Traditional solution approaches
are based in a decomposition concept or strategy; they
transform the multiobjective problem in several single-
objective optimization problems that are simultaneously
optimized. There are several methodologies for constructing
aggregation functions of decomposition (e.g., Weighted Sum
Method, 𝜀-Constraint Method, Weighted Metric Methods,
Tschebyscheff, Weighted Tschebyscheff, and penalty based
boundary intersection (PBI)). On the other hand, there are
approaches based on the concept of domination in their
search. These methods use the domination concept as a way
to compare solutions with multiple objectives, casting this
information into the fitness function to correlatively treat all
objectives to find optimal solutions, known as Pareto-optimal
solutions. Dominance guarantees the impossibility to find a
solution that improves an objective without degrading at least
another one.

Due to the advantages of dominance strategies to deal
with multiobjective problem (MOP), i.e., there is no need to
transformMOP to one objective problem and their capability
of generating a diverse set of Pareto-optimal solutions in a
single run, a NSGA-II [35] inspired strategy is now used to
customize the dynamically improved particle swarm opti-
mization (DI-PSO) methodology proposed herein. A general
view of the MOP problem is introduced below as well as
the Pareto dominance criterion and the elitist nondominated
sorting methodology used in DI-PSO. In general, MOOPs
consist to simultaneously optimize a set of objective functions
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which are to be minimized or maximized. The problem is
constrained by a number of equality and inequality functions
that must be satisfied by any feasible solution (including the
optimal solution). The problem formulation is written as

Minimize
Maximize

fm (x) = 𝑓 (𝑥)1, 𝑓 (𝑥)2, ⋅ ⋅ ⋅ , 𝑓 (𝑥)𝑀

Subjected to

{{{{{{{{{

g𝑙 (𝑥) ≤ 0, l = 1, 2, ⋅ ⋅ ⋅ , L
h𝑘 (𝑥) = 0, k = 1, 2, ⋅ ⋅ ⋅ ,K
x(L)𝑗 ≤ x𝑗 ≤ x(U)𝑗 , 𝑗 = 1, 2, ⋅ ⋅ ⋅ , J

(11)

The idea is to find a design vector of variables, X∗, such that

𝑓i (X∗) = min𝑓i (X) , i = 1, 2, ⋅ ⋅ ⋅ ,M (12)

However, this is not the common situation and the objective
functions behave among them in the opposite sense. One way
to solve this problem is to find the greater number of solutions
which fulfilled domination criteria of Pareto optimization for
multiobjective problems. In Pareto optimization, a solution
vector, X(1), is said to dominate a solution vector X(2), if the
following conditions are simultaneously satisfied:

(1) Evaluation of solutionX(1) is noworse than evaluation
of solution X(2) in all objectives (in an objective
functionminimization “noworse than”means “is less
or equal than...”):

𝑓i (X(1)) ≤ 𝑓i (X(2)) , i = 1, 2, ⋅ ⋅ ⋅ ,M (13)

(2) Evaluation of solution X(1) is strictly better than
solution X(2) in at least one objective function:

∃m ∈ {1, 2, ⋅ ⋅ ⋅ ,M} : 𝑓m (X(1)) < 𝑓m (X(2)) (14)

Applying the Pareto criteria to a set of solutions P, it is possible
to find out the nondominated set of solutions P’ that are not
dominated by any member of the set P. When the set P is the
entire feasible search space, the resulting nondominated set
P’ is called the Pareto-optimal set or the Pareto frontier (PF).

Generally, in MOP there is not a common minimum
(or maximum) for all objective functions. Strictly speaking,
there is not a minimization (or maximization) at all, so that
the task of the designer is to identify the greater number
of possible Pareto minimum and in terms of them select
the most suitable solution that in a compromise way allows
solving the set of objective functions.

An elitist nondominated sorting strategy is implemented
inside the architecture of DI-PSO in order to deal with
multiple-objective problems as a way to find out the non-
dominated set of solutions. This strategy was inspired on
the well-known NSGA-II algorithm formulated by Deb et
al. [22]. It was chosen due to its efficiency and faster
speed to deal with multiobjective problems and also by
incorporating elitism and assigning characteristics based on
the concepts of dominance and density. Elitism is possible
within the algorithm due to the combination of frontiers of

nondominated solutions extracted from two successive iter-
ations of the algorithm, parent, and offspring populations in
the case of the GA.The adaptation process is firstly evaluated
by using a Pareto nondomination classification procedure
[36] of the total population created by the combination of par-
ent and offspring, followed by a procedure that measures the
density of solutions surrounding a particular solution in the
population. The first step belongs to the nondomination clas-
sification procedure initially suggested by Goldberg [4] while
the last one consists in the assignation of a density index based
on theManhattan distance between the nearest neighbours of
a particular solution that belongs to the same rank or frontier.

2.3. Nondominated Sorting Strategy. The sorting strategy and
how to obtain the Pareto frontier, which is saved in an
external file for later evaluation and processing, are described
in a step-by-step format. Initially, a random N-sized swarm
population (Sw Pt) is created. AN-sized offspring population
(Sw Qt) is then obtained from the previous one by applying
intelligence-swarmoperators.Thepopulations are sorted into
nondomination levels or frontiers. Each solution is assigned
a fitness equal to its nondomination level (1 is the best level).
Thus minimization of the fitness is assumed.

Step 1. Combine swarm populations (Sw Pt) and (Sw Qt)
and create Sw Rt (Sw R𝑡 = Sw Pt ∪ Sw Qt). Perform a
nondominated sorting to Sw Rt and identify different fronts:
Fi, i= 1,2,. . ., etc.
Step 2. Set new swarm Sw Pt+1 = 0. Set counter i=1. Until|Sw Pt+1| + |𝐹𝑖| < N, perform Sw P𝑡+1 = Sw P𝑡+1 ∪ 𝐹𝑖 and
i= i+1.

Step 3. Perform the Crowding-sort procedure (Crowd Sort)
on the last frontier which cannot be completely assigned in
the remaining slots remain in Sw Pt+1 and include the most
widely spread (N–|Sw P𝑡+1|) solutions by using the crowding
distance values in the sorted 𝐹i to Sw Pt+1. Such procedure is
based on the crowding distance metric (Crowd di), explained
below.

Step 4. Create a new offspring swarm population (Sw Qt+1)
derived from swarm population Sw Pt+1 by using position
and velocity swarm equations.

In the above procedure, it is assumed that every solution
has two attributes: a nondominated rank (ri) that is the
nondominated front where the solution lies, and a local
crowding distance (Crowd di) which is a measure of the
search space around the solution i and is not occupied by any
other solution in the population.

2.4. Evaluation of the Crowding Distance Metric (Crowd di).
Crowd di is an estimate of the density of solutions surround-
ing a particular solution i that belongs to a frontier (F) of the
swarmpopulation sorted in nondomination levels. To get this
metric, the average distance of two solutions on either side of
solution i along each of the objectives is taken. The distance
assignment procedure is described below step by step.
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Elitist Non-dominated
Sorting

Crowding distance
Sorting

F1

F2

F3
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Sw_Rt
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Sw_Pt

Sw_Pt+1

Figure 1: Schematic view of elitist nondominated sorting strategy and crowding distance sorting processes (based on NSGA-II [22]).

Step Crw 1. Call the number of solutions in F as l = |𝐹|. For
each i-solution in the set, first assign Crow di = 0.
Step Crw 2. For each objective function m = 1, 2, ⋅ ⋅ ⋅ ,M, sort
the set in the worse order of their function objective values
(fm).

Step Crw 3. Form = 1, 2, ⋅ ⋅ ⋅ ,M, assign a large distance to the
boundary solutions: Crow d𝑙m1 = Crow d𝑙mL = ∞, and for all
other solutions j = 2 to (l – 1), assign

Crow dlm𝑗 = Crow dlmj + f
(lm𝑗+1)
m − f

(lm𝑗−1)
m

fmax
m − fmin

m
(15)

The index lj denotes the solution index of the j-th member
in the sorted list. Thus, for any objective, the indexes l1 and
lL denote the lowest and highest objective function values,
respectively. The parameters fmax

m and fmin
m can be set as the

population-maximum and population-minimum values of
the m-th objective function. To illustrate the above described
mechanisms, Figure 1 depicts a schematic view of the elitist
nondominated sortingmechanism and the crowding distance
sorting processes developed in this work.

The basic DI-PSO algorithm can be written as follows:

Begin
Parameter settings and initialize swarm
Evaluate fitness and initialize leaders (P𝑛i GenBest,j)
keeps them in a leader pool
Identify the top best leader from the leader pool
through Crowd di.quality measure
K = 0 // K = Iteration count
While (the stopping criterion is not met, say, K <
Kmax)
For each particle in (Sw P𝑡𝑖,𝑗) do (to obtain Sw Q𝑡𝑖,𝑗)

Select leader in the leader pool (Pi GenBest,j)
Update velocity
Update position

Apply auto-adaptive mechanisms and operators
Evaluate fitness
Update Pi best,j

End For
With (Sw P𝑡𝑖,𝑗 and Sw Q𝑡𝑖,𝑗) do
Elitist Non-dominated Sorting
Crowding distance Sorting
Obtain 𝑆𝑤 𝑃𝑡+1

End with
If Stagnation then do
Apply exploration dynamic operator
Elitist Crossover Operator

End do
Update the top best into the external archive
K = K + 1.

End While
Report results in the external archive
End

As it can be observed, the first step is the swarm initialization.
Then, a set of leaders is also initialized with the nondomi-
nated particles from the swarm. This set of leaders is stored
in an external file called leader pool. Later on, the attributes
of each particle (its rank (ri) and local crowding distance
(Crowd di)) are calculated for all particles and leaders to
select the best among them. At each generation and for each
particle, a leader is selected and the flight is performed. Next
the autoadaptive mechanisms discussed above are applied.
Then, the particle is evaluated and its corresponding Pi best,j
is updated. A new particle replaces its Pi best,j particle usually
when this particle is dominated or if both are incomparable
(i.e., they are both nondominated with respect to each other).
After all the particles have been updated, the set of leaders is
updated, too. Finally, the quality measure of the set of leaders
is recalculated. This process is repeated for a certain fixed
number of iterations.
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Table 1: Mathematical test problem formulation.

Problem Type n Variable Bounds Objective Functions

ZDT3 Unconstrained 30 [0, 1]
𝑓1 (𝑥) = 𝑥1

𝑓2 (𝑥) = 𝑔 (𝑥) [1 − √ 𝑥1𝑔 (𝑥) − 𝑥1𝑔 (𝑥) sin (10𝜋𝑥1)]
𝑔 (𝑥) = 1 + 9𝑛 − 1

𝑛∑
𝑖=2

𝑥𝑖

TNK Constrained 2 [0, 𝜋]
𝑓1 (𝑥) = 𝑥1 𝑓2 (𝑥) = 𝑥2

𝐶1 (𝑥) ≡ 𝑥21 + 𝑥22 − 1 − 0.1 cos(16 ∗ arctan 𝑥1𝑥2) ≥ 0
C2 (𝑥) ≡ (𝑥1 − 0.5)2 + (𝑥2 − 0.5) 𝑥21 ≤ 0.5

Table 2: Comparison of the average convergence and diversity metrics between NSGA-II and the proposed methodology DI-PSO.

Convergence Diversity
Problem NSGA-II [22] DI-PSO NSGA-II [22] DI-PSO
ZDT3 0.00139 0.00137 0.55060 0.54492
TNK 0.02470 0.02350 0.56080 0.55010

3. Results and Discussion

3.1. Application onMathematical Test Cases. The algorithm is
applied to test cases to evaluate its performance on closed-
form mathematical functions, before to apply the developed
method in real situations. Technical literature describes a
great number of test cases for single and multiple objectives,
almost as varied as the number of EC algorithms that have
been written. It is of course impossible to be completely
general when establishing a test suite, so some subjective
viewing of the subject is required and some generalizing
assumptions must be made. In this sense and for illustration
purposes two test cases were chosen: test case ZDT3 from
benchmark problems presented in Zitzler et al. [37] and
test case TNK from Coello et al. [32]. Table 1 shows their
formulation.

The first case (ZDT3) is an example of an optimal
discontinuous Pareto front and thus would not be able to
be treated by a deterministic optimizer. Among some of its
characteristics its PF has five separate convex bands. It was
solved with 150-particles swarm.The second case (TNK) also
has a discontinuous PF and was chosen due to the nature
of its nonlinear constraints. It was solved with 100-particles
swarm. Even though it is evident when the entire population
has converged to the PF which can be seen by inspection in
Figures 2 and 3, the performances of the proposed algorithm
are also measured in terms of convergence towards the
optimal Pareto front and diversity of solutions along that
front by using the two metrics introduced by Deb et al.
[22]. Convergence is measured as the average minimum
Euclidean distance between last generation individuals and
uniformly sampled points on the optimal Pareto front. As
reference points for the Pareto front, a 1000-points set is
used for each problem, provided elsewhere (see, for instance,
[38]) or in the website of the System Optimization group
of the Swiss Federal Institute of Technology of Zurich. The
smaller the value for this metric is, the better the convergence
towards the optimal Pareto front is. Diversity is measured as
the nonuniformity of the average distance between adjacent
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Figure 2: Pareto front obtained for ZDT3 test case.

solutions of the optimal Pareto front. The closer the metric is
to 0, the better the diversity of solutions are (see Table 2).

3.2. Multiobjective Structural Optimization Problem. A
seismic-structural problem is presented and discussed in
this section. It consists in finding out a compromise solution
between the building structural topology and the seismic
input energy that the building can safely take. The above
problem can be restated as how the elements dimensions,
the allowed elements displacements, and story drifts of a
building should be selected in order to obtain an optimized
building seismic design which represents the better trade-off
between the building minimum weight and the maximum
seismic input energy that the building can resist.

In this sense, the structural-seismic design system
requires the definition of a merit function that includes the
different variables needed to perform the seismic design of
the building structure. The technical literature is plenty of
different evaluation functions to optimize the distribution
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and localization of the building masses as well as criteria
to improve the safety of the resulting structure [39]. In the
present work, the building structure is optimized using the
following functions:

Fobj 1 = W = 𝑁𝑒𝑙𝑠∑
𝑖=1

𝜌𝑖A𝑖l𝑖 (16)

where 𝜌 is the specific weight, A is the cross-section area,
and l is element length. Nels is the number of elements of the
structure.

When a structure is subjected to seismic actions, the
design’s objective seeks to decrease the dynamic response of
the building in order to reduce its damage due to seismic
loads. This objective can be accomplished by either mini-
mizing the acceleration taken by the masses of the building
or by reducing the seismic energy absorbed by the building
structure. According to [39], the input energy (Ei) provided
by the earthquake is the work done by the shear base force of
the structure (Svi) through soil displacements due to seismic
waves. It can be obtained as

Fobj 2 = Ei = 𝑁𝑚𝑜𝑑𝑒∑
𝑖=1

({𝜙𝑖}𝑇 {𝑚}
√M

)(12MS2vi) (17)

where {𝜙i} is the ith normalized mode; {m} = {m1,m2, ...,
mNmode} is the vector of masses assigned to each dynamic
degree of freedom of the structural model, and M = Σmi is
the total mass of the structure. The seismic design is based
on the International Building Code [40], and the following
design criteria and stress limit are assumed:

(a) The maximum stress in the columns will be bounded
by the maximum allowed combined stress of the
columns material. This stress is obtained as

𝜎 = P
A

+ Mxy
Ix

+ Myx
Iy

(18)

(b) The drift of i-storey (𝛿i) is limited to
𝛿𝑖 ≤ 1400hi (19)

where hi is the height between floors.
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Figure 4: Structural model, elements dimensions, material proper-
ties, and loading.

(c) The fundamental period of the example structure
should be greater than 0,3 s.

T1 ≥ 0,3 s (20)

(d) The stiffness relation between two consecutives floors
is bounded by

0,5 ≤ Ki+1
Ki

≤ 1 (21)

Several techniques have been developed to deal with con-
straints and to drive the algorithm to the feasible design space.
Among them, some can be mentioned [41]: penalization
techniques, repair techniques, separation techniques, and
hybrid techniques. In this work, the external penalization
technique is used to allow the optimization process to start in
any region of the design space, making this technique more
flexible than the internal penalization technique, where the
searching process must start in feasible regions of the design
space. The basic idea of the external penalization method is
to move solutions from the nonfeasible region to the feasible
region adding extra weight (penalizing) to objective function
values of the solutions that violate constraints. A detailed
description on how to handle constraints can be seen in
Annicchiarico et al. [42].

3.3. Real Example Application. Figure 4 depicts the structural
model of a shear three-story steel building. Rigid floor
diaphragms are considered in every building storey while
column axial deformations are neglected. Each floor is loaded
with a vertical dead and live combinational load of 56 kN/m.
The weight of columns was neglected.

In order to show the flexibility and versatility of the
dynamically improved particle swarm optimization method-
ology proposed herein the three-story building is subjected
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Table 3: Test cases for the single and multiobjective design of the 3-story shear building.

Design case Objective(s) Constraints
1 Min. weight: (Fobj 1) Structural and seismic

2 Min. weight: (Fobj 1) Structural and seismic
Min. input energy: (Fobj 2)

to a set of loading cases and analysis. Table 3 collects the
different optimization cases. Case 1 deals with the single-
objective optimization to obtain a structure with minimum
weight. In case 2 the structure is optimized to find out a design
able to absorb the maximum seismic input energy without
failing and finally themultiobjective optimization case to find
out a compromise solution between minimum weight and
minimum input seismic energy.

In all cases the structure is subjected to both vertical and
lateral loads due to seismic action. For the design case 1 the
sectional cross areas (Ai) of the columns were considered
as design variables, but in case 2 the inertias (Ii) were used
instead. To consider the variability of the mass of each story
(mi) and its stiffness (EIi), the mass of floor i of the structure
is obtained as

m𝑖 = (56KN/m) ∗ 6m
g

+ 2 ∗ (4m) ∗ Ai ∗ 𝜌 (22)

where g is the gravity acceleration; 𝜌 and E are the specific
weight and elasticity module of steel, respectively (𝜌= 7800
kg/m3 and E=200∗106 kN/m2). The columns are designed
as “I” wide flange following the AISC-2005 design criteria
while the cross-sectional area (A) and section modulus (S)
are expressed in terms of the inertia moment:

A = 0,80√I

S = 0,78 4√I3
(23)

By means of a spectral analysis of N-S direction of El Centro
earthquake 1940, the seismic lateral load was obtained as
shown in Figure 4 (F1= 34 kN, F2= 52 kN, and F3= 36 kN).
In real-life problems there is no certainty that the real Pareto
frontier can be found. Whether such solution exists or not,
it is clear that by using evolutionary and social-cognitive
algorithms, supported bymany research studies in thismatter
(see, for example, [22, 43, 44]) the solutions given by these
kinds of new methodologies are very close to the exact
solution (if they are not in the exact solution) and this
solution can be taken as the best known solution of the
problem.

In this sense, the proposed methodology herein allows
obtaining a high-quality set of compromise solutions and
the greater possible certainty, allowing the final user (the
decision maker) make the best decision to solve the problem.
Also, due to the inherent heuristics in EC algorithms when
exploring the design space, the reported results are the best
average compromise solution from a set of 20 different runs
of the algorithm.The final weight of the building, considering
only its minimum weight (case 1) in it design, was 1,5605 kN.
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Figure 5: Pareto frontier in design case 2: multiobjective optimiza-
tion minimum weight-minimum absorbed energy.

Table 4 shows also the cross-sectional areas of the columns of
the building.

Figure 5 shows the Pareto frontier obtained in design case
2. It can be observed how the structure minimum weight
(Wi) is 1,5605kN, while the minimum input energy (Ei) is
2,85kNm. The inverse relationship between both objectives
can also be noted, which means when the weight of the
structure (Wi) is reduced, it tends to bemore flexible, making
the structure more prone to be adversely affected by the
seismic loading that causes higher values of the input energy
(Ei).

Finally, Table 5 contains the quality metrics (convergence
and diversity) for the PF obtained in design case 2. Both
values are close to zero which shows the good quality of the
solution sought.

The compromise solution in this case, calculated from the
Pareto frontier’s elbow, is (2,8111 kN; 5,1635KNm).Aiming for
a minimumweight objective could only lead tomore damage
to the structure, causing higher reparation cost or evenworse,
and be prone to the structure in risk of collapse.

4. Concluding Remarks

An improvedmultiobjective methodology, based in an autoa-
daptive social intelligent algorithm for seismic-structural
optimization, was presented and discussed among some of
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Table 4: Results for the design case of minimum weight of the 3-story shear building.

Case A1(cm
2) A2(cm

2) A3(cm
2) Final weight(kN)

1 1020,81 866,56 612,94 1,5605

Table 5: Convergence and diversity metrics for the multiobjective
optimization of the 3-story shear building.

Problem Convergence Diversity
3-story building 0.01227 0.3271

the new characteristics introduced in the proposed optimiza-
tion methodology included: a dynamically adapted inertia
factor based on particle success index, social and individual
particle factors varying according to exploration/exploitation
relationship as the searching process of the optimum advance
through iterations, dynamic mutation factor, and elitist
crossover operator were introduced to promote diversity
among swarm particles avoiding the algorithm to get trapped
in local optimum. The proposed structural optimization
methodology was tested in some test and real problems
showing its efficiency and applicability to solve structural-
seismic design problems.

It is needed to consider conflicting design objectives to
get a better understanding of the behaviour of real structures.
Thus, structures found in the real world have to be designed
under multiple objectives and constraints. Its optimization
considering one goal usually leads to ideal structural designs
that do not reproduce their actual observed behaviour. In this
sense, the study and development of new tools for optimizing
the structural design to get closer to reality, where goals are
often contradictory among themselves (as that presented in
this work), must be considered an important task, which
will help designers to conceive more efficient structures in
different scenarios or objectives. The incorporation of this
type of tool ensures that the engineering design process
would be more reliable and robust.
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