935 research outputs found

    A new genetic algorithm for multi-label correlation-based feature selection.

    Get PDF
    This paper proposes a new Genetic Algorithm for Multi-Label Correlation-Based Feature Selection (GA-ML-CFS). This GA performs a global search in the space of candidate feature subset, in order to select a high-quality feature subset is used by a multi-label classification algorithm - in this work, the Multi-Label k-NN algorithm. We compare the results of GA-ML-CFS with the results of the previously proposed Hill-Climbing for Multi-Label Correlation-Based Feature Selection (HC-ML-CFS), across 10 multi-label datasets

    Incorporating feature ranking and evolutionary methods for the classification of high-dimensional DNA microarray gene expression data

    Get PDF
    Background: DNA microarray gene expression classification poses a challenging task to the machine learning domain. Typically, the dimensionality of gene expression data sets could go from several thousands to over 10,000 genes. A potential solution to this issue is using feature selection to reduce the dimensionality. Aim The aim of this paper is to investigate how we can use feature quality information to improve the precision of microarray gene expression classification tasks. Method: We propose two evolutionary machine learning models based on the eXtended Classifier System (XCS) and a typical feature selection methodology. The first one, which we call FS-XCS, uses feature selection for feature reduction purposes. The second model is GRD-XCS, which uses feature ranking to bias the rule discovery process of XCS. Results: The results indicate that the use of feature selection/ranking methods is essential for tackling high-dimensional classification tasks, such as microarray gene expression classification. However, the results also suggest that using feature ranking to bias the rule discovery process performs significantly better than using the feature reduction method. In other words, using feature quality information to develop a smarter learning procedure is more efficient than reducing the feature set. Conclusion: Our findings have shown that extracting feature quality information can assist the learning process and improve classification accuracy. On the other hand, relying exclusively on the feature quality information might potentially decrease the classification performance (e.g., using feature reduction). Therefore, we recommend a hybrid approach that uses feature quality information to direct the learning process by highlighting the more informative features, but at the same time not restricting the learning process to explore other features

    Wavelet feature extraction and genetic algorithm for biomarker detection in colorectal cancer data

    Get PDF
    Biomarkers which predict patient’s survival can play an important role in medical diagnosis and treatment. How to select the significant biomarkers from hundreds of protein markers is a key step in survival analysis. In this paper a novel method is proposed to detect the prognostic biomarkers ofsurvival in colorectal cancer patients using wavelet analysis, genetic algorithm, and Bayes classifier. One dimensional discrete wavelet transform (DWT) is normally used to reduce the dimensionality of biomedical data. In this study one dimensional continuous wavelet transform (CWT) was proposed to extract the features of colorectal cancer data. One dimensional CWT has no ability to reduce dimensionality of data, but captures the missing features of DWT, and is complementary part of DWT. Genetic algorithm was performed on extracted wavelet coefficients to select the optimized features, using Bayes classifier to build its fitness function. The corresponding protein markers were located based on the position of optimized features. Kaplan-Meier curve and Cox regression model 2 were used to evaluate the performance of selected biomarkers. Experiments were conducted on colorectal cancer dataset and several significant biomarkers were detected. A new protein biomarker CD46 was found to significantly associate with survival time

    Gene masking - a technique to improve accuracy for cancer classification with high dimensionality in microarray data

    Get PDF
    Background: High dimensional feature space generally degrades classification in several applications. In this paper, we propose a strategy called gene masking, in which non-contributing dimensions are heuristically removed from the data to improve classification accuracy. Methods: Gene masking is implemented via a binary encoded genetic algorithm that can be integrated seamlessly with classifiers during the training phase of classification to perform feature selection. It can also be used to discriminate between features that contribute most to the classification, thereby, allowing researchers to isolate features that may have special significance. Results: This technique was applied on publicly available datasets whereby it substantially reduced the number of features used for classification while maintaining high accuracies. Conclusion: The proposed technique can be extremely useful in feature selection as it heuristically removes non-contributing features to improve the performance of classifiers

    ClgR regulation of chaperone and protease systems is essential for Mycobacterium tuberculosis parasitism of the macrophage

    Get PDF
    Chaperone and protease systems play essential roles in cellular homeostasis and have vital functions in controlling the abundance of specific cellular proteins involved in processes such as transcription, replication, metabolism and virulence. Bacteria have evolved accurate regulatory systems to control the expression and function of chaperones and potentially destructive proteases. Here, we have used a combination of transcriptomics, proteomics and targeted mutagenesis to reveal that the clp gene regulator (ClgR) of Mycobacterium tuberculosis activates the transcription of at least ten genes, including four that encode protease systems (ClpP1/C, ClpP2/C, PtrB and HtrA-like protease Rv1043c) and three that encode chaperones (Acr2, ClpB and the chaperonin Rv3269). Thus, M. tuberculosis ClgR controls a larger network of protein homeostatic and regulatory systems than ClgR in any other bacterium studied to date. We demonstrate that ClgR-regulated transcriptional activation of these systems is essential for M. tuberculosis to replicate in macrophages. Furthermore, we observe that this defect is manifest early in infection, as M. tuberculosis lacking ClgR is deficient in the ability to control phagosome pH 1 h post-phagocytosis

    Triclustering on TemporaryMicroarray Data using the TriGen Algorithm

    Get PDF
    The analysis of microarray data is a computational challenge due to the characteristics of these data. Clustering techniques are widely applied to create groups of genes that exhibit a similar behavior under the conditions tested. Biclustering emerges as an improvement of classical clustering since it relaxes the constraints for grouping allowing genes to be evaluated only under a subset of the conditions and not under all of them. However, this technique is not appropriate for the analysis of temporal microarray data in which the genes are evaluated under certain conditions at several time points. In this paper, we propose the TriGen algorithm, which finds triclusters that take into account the experimental conditions and the time points, using evolutionary computation, in particular genetic algorithms, enabling the evaluation of the gene’s behavior under subsets of conditions and of time points

    Combining Bayesian Approaches and Evolutionary Techniques for the Inference of Breast Cancer Networks

    Get PDF
    Gene and protein networks are very important to model complex large-scale systems in molecular biology. Inferring or reverseengineering such networks can be defined as the process of identifying gene/protein interactions from experimental data through computational analysis. However, this task is typically complicated by the enormously large scale of the unknowns in a rather small sample size. Furthermore, when the goal is to study causal relationships within the network, tools capable of overcoming the limitations of correlation networks are required. In this work, we make use of Bayesian Graphical Models to attach this problem and, specifically, we perform a comparative study of different state-of-the-art heuristics, analyzing their performance in inferring the structure of the Bayesian Network from breast cancer data

    A lexicographic multi-objective genetic algorithm for multi-label correlation-based feature selection

    Get PDF
    This paper proposes a new Lexicographic multi-objective Genetic Algorithm for Multi-Label Correlation-based Feature Selection (LexGA-ML-CFS), which is an extension of the previous single-objective Genetic Algorithm for Multi-label Correlation-based Feature Selection (GA-ML-CFS). This extension uses a LexGA as a global search method for generating candidate feature subsets. In our experiments, we compare the results obtained by LexGA-ML-CFS with the results obtained by the original hill climbing-based ML-CFS, the single-objective GA-ML-CFS and a baseline Binary Relevance method, using ML-kNN as the multi-label classifier. The results from our experiments show that LexGA-ML-CFS improved predictive accuracy, by comparison with other methods, in some cases, but in general there was no statistically significant different between the results of LexGA-ML-CFS and other methods
    corecore