14,424 research outputs found

    Challenges in Collaborative HRI for Remote Robot Teams

    Get PDF
    Collaboration between human supervisors and remote teams of robots is highly challenging, particularly in high-stakes, distant, hazardous locations, such as off-shore energy platforms. In order for these teams of robots to truly be beneficial, they need to be trusted to operate autonomously, performing tasks such as inspection and emergency response, thus reducing the number of personnel placed in harm's way. As remote robots are generally trusted less than robots in close-proximity, we present a solution to instil trust in the operator through a `mediator robot' that can exhibit social skills, alongside sophisticated visualisation techniques. In this position paper, we present general challenges and then take a closer look at one challenge in particular, discussing an initial study, which investigates the relationship between the level of control the supervisor hands over to the mediator robot and how this affects their trust. We show that the supervisor is more likely to have higher trust overall if their initial experience involves handing over control of the emergency situation to the robotic assistant. We discuss this result, here, as well as other challenges and interaction techniques for human-robot collaboration.Comment: 9 pages. Peer reviewed position paper accepted in the CHI 2019 Workshop: The Challenges of Working on Social Robots that Collaborate with People (SIRCHI2019), ACM CHI Conference on Human Factors in Computing Systems, May 2019, Glasgow, U

    Symbiotic Navigation in Multi-Robot Systems with Remote Obstacle Knowledge Sharing

    Get PDF
    Large scale operational areas often require multiple service robots for coverage and task parallelism. In such scenarios, each robot keeps its individual map of the environment and serves specific areas of the map at different times. We propose a knowledge sharing mechanism for multiple robots in which one robot can inform other robots about the changes in map, like path blockage, or new static obstacles, encountered at specific areas of the map. This symbiotic information sharing allows the robots to update remote areas of the map without having to explicitly navigate those areas, and plan efficient paths. A node representation of paths is presented for seamless sharing of blocked path information. The transience of obstacles is modeled to track obstacles which might have been removed. A lazy information update scheme is presented in which only relevant information affecting the current task is updated for efficiency. The advantages of the proposed method for path planning are discussed against traditional method with experimental results in both simulation and real environments

    Resilience of multi-robot systems to physical masquerade attacks

    Full text link
    The advent of autonomous mobile multi-robot systems has driven innovation in both the industrial and defense sectors. The integration of such systems in safety-and security-critical applications has raised concern over their resilience to attack. In this work, we investigate the security problem of a stealthy adversary masquerading as a properly functioning agent. We show that conventional multi-agent pathfinding solutions are vulnerable to these physical masquerade attacks. Furthermore, we provide a constraint-based formulation of multi-agent pathfinding that yields multi-agent plans that are provably resilient to physical masquerade attacks. This formalization leverages inter-agent observations to facilitate introspective monitoring to guarantee resilience.Accepted manuscrip

    Adaptive modality selection algorithm in robot-assisted cognitive training

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Interaction of socially assistive robots with users is based on social cues coming from different interaction modalities, such as speech or gestures. However, using all modalities at all times may be inefficient as it can overload the user with redundant information and increase the task completion time. Additionally, users may favor certain modalities over the other as a result of their disability or personal preference. In this paper, we propose an Adaptive Modality Selection (AMS) algorithm that chooses modalities depending on the state of the user and the environment, as well as user preferences. The variables that describe the environment and the user state are defined as resources, and we posit that modalities are successful if certain resources possess specific values during their use. Besides the resources, the proposed algorithm takes into account user preferences which it learns while interacting with users. We tested our algorithm in simulations, and we implemented it on a robotic system that provides cognitive training, specifically Sequential memory exercises. Experimental results show that it is possible to use only a subset of available modalities without compromising the interaction. Moreover, we see a trend for users to perform better when interacting with a system with implemented AMS algorithm.Peer ReviewedPostprint (author's final draft

    Face-to-face and online collaboration: appreciating rules and adding complexity

    Get PDF
    This paper reports how 6-8 year-old children build, play and share video-games in an animated programming environment. Children program their games using rules as creative tools in the construction process. While working both face-to-face and remotely on their games, we describe how they can collaboratively come to explain phenomena arising from programmed or 'system' rules. Focusing on one illustrative case study of two children, we propose two conjectures. First, we claim that in face-to-face collaboration, the children centre their attention on narrative, and address the problem of translating the narrative into system rules which can be =programmed‘ into the computer. This allowed the children to debug any conflicts between system rules in order to maintain the flow of the game narrative. A second conjecture is that over the Internet children were encouraged to add complexity and innovative elements to their games, not by the addition of socially-constructed or 'player' rules but rather through additional system rules which elaborate the mini-formalism in which they engaged. This shift of attention to system rules occurred at the same time, and perhaps as a result of, a loosening of the game narrative that was a consequence of the remoteness of the interaction

    Realization of reactive control for multi purpose mobile agents

    Get PDF
    Mobile robots are built for different purposes, have different physical size, shape, mechanics and electronics. They are required to work in real-time, realize more than one goal simultaneously, hence to communicate and cooperate with other agents. The approach proposed in this paper for mobile robot control is reactive and has layered structure that supports multi sensor perception. Potential field method is implemented for both obstacle avoidance and goal tracking. However imaginary forces of the obstacles and of the goal point are separately treated, and then resulting behaviors are fused with the help of the geometry. Proposed control is tested on simulations where different scenarios are studied. Results have confirmed the high performance of the method
    corecore