CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Adaptive modality selection algorithm in robot-assisted cognitive training
Authors
Aleksandar Jevtic
Aleksandar Taranovic
Carme Torras
Publication date
1 January 2018
Publisher
'Institute of Electrical and Electronics Engineers (IEEE)'
Doi
Abstract
© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Interaction of socially assistive robots with users is based on social cues coming from different interaction modalities, such as speech or gestures. However, using all modalities at all times may be inefficient as it can overload the user with redundant information and increase the task completion time. Additionally, users may favor certain modalities over the other as a result of their disability or personal preference. In this paper, we propose an Adaptive Modality Selection (AMS) algorithm that chooses modalities depending on the state of the user and the environment, as well as user preferences. The variables that describe the environment and the user state are defined as resources, and we posit that modalities are successful if certain resources possess specific values during their use. Besides the resources, the proposed algorithm takes into account user preferences which it learns while interacting with users. We tested our algorithm in simulations, and we implemented it on a robotic system that provides cognitive training, specifically Sequential memory exercises. Experimental results show that it is possible to use only a subset of available modalities without compromising the interaction. Moreover, we see a trend for users to perform better when interacting with a system with implemented AMS algorithm.Peer ReviewedPostprint (author's final draft
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 10/08/2021
UPCommons (Universitat Politècnica de Catalunya)
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:upcommons.upc.edu:2117/129...
Last time updated on 28/02/2025
UPCommons
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:upcommons.upc.edu:2117/129...
Last time updated on 17/04/2020
UPCommons. Portal del coneixement obert de la UPC
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:upcommons.upc.edu:2117/129...
Last time updated on 24/02/2019
Digital.CSIC
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:digital.csic.es:10261/1794...
Last time updated on 15/05/2019