49,408 research outputs found

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRRā€™s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a ā€œtotal approach to rehabilitationā€, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970ā€™s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    Proposed best practice for projects that involve modelling and simulation

    Get PDF
    Modelling and simulation has been used in many ways when developing new treatments. To be useful and credible, it is generally agreed that modelling and simulation should be undertaken according to some kind of best practice. A number of authors have suggested elements required for best practice in modelling and simulation. Elements that have been suggested include the pre-specification of goals, assumptions, methods, and outputs. However, a project that involves modelling and simulation could be simple or complex and could be of relatively low or high importance to the project. It has been argued that the level of detail and the strictness of pre-specification should be allowed to vary, depending on the complexity and importance of the project. This best practice document does not prescribe how to develop a statistical model. Rather, it describes the elements required for the specification of a project and requires that the practitioner justify in the specification the omission of any of the elements and, in addition, justify the level of detail provided about each element. This document is an initiative of the Special Interest Group for modelling and simulation. The Special Interest Group for modelling and simulation is a body open to members of Statisticians in the Pharmaceutical Industry and the European Federation of Statisticians in the Pharmaceutical Industry. Examples of a very detailed specification and a less detailed specification are included as appendices

    Findings from a pilot randomised trial of an asthma internet self-management intervention (RAISIN)

    Get PDF
    <b>Objective </b>To evaluate the feasibility of a phase 3 randomised controlled trial (RCT) of a website (Living Well with Asthma) to support self-management.<p></p> <b>Design and setting</b> Phase 2, parallel group, RCT, participants recruited from 20 general practices across Glasgow, UK. Randomisation through automated voice response, after baseline data collection, to website access for minimum 12 weeks or usual care.<p></p> <b>Participants </b>Adults (ageā‰„16 years) with physician diagnosed, symptomatic asthma (Asthma Control Questionnaire (ACQ) score ā‰„1). People with unstable asthma or other lung disease were excluded.<p></p> <b>Intervention</b> Living Well with Asthmaā€™ is a desktop/ laptop compatible interactive website designed with input from asthma/ behaviour change specialists, and adults with asthma. It aims to support optimal medication management, promote use of action plans, encourage attendance at asthma reviews and increase physical activity.<p></p> <b>Outcome measures</b> Primary outcomes were recruitment/retention, website use, ACQ and mini- Asthma Quality of Life Questionnaire (AQLQ). Secondary outcomes included patient activation, prescribing, adherence, spirometry, lung inflammation and health service contacts after 12 weeks. Blinding postrandomisation was not possible.<p></p> <b>Results </b>Recruitment target met. 51 participants randomised (25 intervention group). Age range 16ā€“78 years; 75% female; 28% from most deprived quintile. 45/51 (88%; 20 intervention group) followed up. 19 (76% of the intervention group) used the website, for a mean of 18 min (range 0ā€“49). 17 went beyond the 2 ā€˜coreā€™ modules. Median number of logins was 1 (IQR 1ā€“2, range 0ā€“7). No significant difference in the prespecified primary efficacy measures of ACQ scores (āˆ’0.36; 95% CI āˆ’0.96 to 0.23; p=0.225), and mini-AQLQ scores (0.38; āˆ’0.13 to 0.89; p=0.136). No adverse events.<p></p> <b>Conclusions</b> Recruitment and retention confirmed feasibility; trends to improved outcomes suggest use of Living Well with Asthma may improve self-management in adults with asthma and merits further development followed by investigation in a phase 3 trial

    The benefits of in silico modeling to identify possible small-molecule drugs and their off-target interactions

    Get PDF
    Accepted for publication in a future issue of Future Medicinal Chemistry.The research into the use of small molecules as drugs continues to be a key driver in the development of molecular databases, computer-aided drug design software and collaborative platforms. The evolution of computational approaches is driven by the essential criteria that a drug molecule has to fulfill, from the affinity to targets to minimal side effects while having adequate absorption, distribution, metabolism, and excretion (ADME) properties. A combination of ligand- and structure-based drug development approaches is already used to obtain consensus predictions of small molecule activities and their off-target interactions. Further integration of these methods into easy-to-use workflows informed by systems biology could realize the full potential of available data in the drug discovery and reduce the attrition of drug candidates.Peer reviewe

    National Mesothelioma Virtual Bank: A standard based biospecimen and clinical data resource to enhance translational research

    Get PDF
    Background: Advances in translational research have led to the need for well characterized biospecimens for research. The National Mesothelioma Virtual Bank is an initiative which collects annotated datasets relevant to human mesothelioma to develop an enterprising biospecimen resource to fulfill researchers' need. Methods: The National Mesothelioma Virtual Bank architecture is based on three major components: (a) common data elements (based on College of American Pathologists protocol and National North American Association of Central Cancer Registries standards), (b) clinical and epidemiologic data annotation, and (c) data query tools. These tools work interoperably to standardize the entire process of annotation. The National Mesothelioma Virtual Bank tool is based upon the caTISSUE Clinical Annotation Engine, developed by the University of Pittsburgh in cooperation with the Cancer Biomedical Informatics Gridā„¢ (caBIGā„¢, see http://cabig.nci.nih.gov). This application provides a web-based system for annotating, importing and searching mesothelioma cases. The underlying information model is constructed utilizing Unified Modeling Language class diagrams, hierarchical relationships and Enterprise Architect software. Result: The database provides researchers real-time access to richly annotated specimens and integral information related to mesothelioma. The data disclosed is tightly regulated depending upon users' authorization and depending on the participating institute that is amenable to the local Institutional Review Board and regulation committee reviews. Conclusion: The National Mesothelioma Virtual Bank currently has over 600 annotated cases available for researchers that include paraffin embedded tissues, tissue microarrays, serum and genomic DNA. The National Mesothelioma Virtual Bank is a virtual biospecimen registry with robust translational biomedical informatics support to facilitate basic science, clinical, and translational research. Furthermore, it protects patient privacy by disclosing only de-identified datasets to assure that biospecimens can be made accessible to researchers. Ā© 2008 Amin et al; licensee BioMed Central Ltd

    Norton Healthcare: A Strong Payer-Provider Partnership for the Journey to Accountable Care

    Get PDF
    Examines the progress of an integrated healthcare delivery system in forming an accountable care organization with payer partners as part of the Brookings-Dartmouth ACO Pilot Program, including a focus on performance measurement and reporting
    • ā€¦
    corecore