168,209 research outputs found

    ICNet for Real-Time Semantic Segmentation on High-Resolution Images

    Full text link
    We focus on the challenging task of real-time semantic segmentation in this paper. It finds many practical applications and yet is with fundamental difficulty of reducing a large portion of computation for pixel-wise label inference. We propose an image cascade network (ICNet) that incorporates multi-resolution branches under proper label guidance to address this challenge. We provide in-depth analysis of our framework and introduce the cascade feature fusion unit to quickly achieve high-quality segmentation. Our system yields real-time inference on a single GPU card with decent quality results evaluated on challenging datasets like Cityscapes, CamVid and COCO-Stuff.Comment: ECCV 201

    Multi-Domain Pose Network for Multi-Person Pose Estimation and Tracking

    Full text link
    Multi-person human pose estimation and tracking in the wild is important and challenging. For training a powerful model, large-scale training data are crucial. While there are several datasets for human pose estimation, the best practice for training on multi-dataset has not been investigated. In this paper, we present a simple network called Multi-Domain Pose Network (MDPN) to address this problem. By treating the task as multi-domain learning, our methods can learn a better representation for pose prediction. Together with prediction heads fine-tuning and multi-branch combination, it shows significant improvement over baselines and achieves the best performance on PoseTrack ECCV 2018 Challenge without additional datasets other than MPII and COCO.Comment: Extended abstract for the ECCV 2018 PoseTrack Worksho

    Software trace cache

    Get PDF
    We explore the use of compiler optimizations, which optimize the layout of instructions in memory. The target is to enable the code to make better use of the underlying hardware resources regardless of the specific details of the processor/architecture in order to increase fetch performance. The Software Trace Cache (STC) is a code layout algorithm with a broader target than previous layout optimizations. We target not only an improvement in the instruction cache hit rate, but also an increase in the effective fetch width of the fetch engine. The STC algorithm organizes basic blocks into chains trying to make sequentially executed basic blocks reside in consecutive memory positions, then maps the basic block chains in memory to minimize conflict misses in the important sections of the program. We evaluate and analyze in detail the impact of the STC, and code layout optimizations in general, on the three main aspects of fetch performance; the instruction cache hit rate, the effective fetch width, and the branch prediction accuracy. Our results show that layout optimized, codes have some special characteristics that make them more amenable for high-performance instruction fetch. They have a very high rate of not-taken branches and execute long chains of sequential instructions; also, they make very effective use of instruction cache lines, mapping only useful instructions which will execute close in time, increasing both spatial and temporal locality.Peer ReviewedPostprint (published version

    Modeling seasonal branch carbon dynamics in pistachio as a function of crop load

    Get PDF
    A simplified model for the prediction of carbon balance was developed to elucidate the seasonal trend of sink-source relationships in bearing and non-bearing pistachio (Pistacia vera L.) branches. Seasonal changes in growth rate of vegetative (leaf and shoot) and reproductive (infructescence) organs were monitored in branches of mature rainfed pistachio trees during the entire growing season (April–September). Simulations from the model were used to gain understanding of the implications of crop load on branch carbon (C) depletion and alternate bearing. Results showed that the pistachio branch was energetically able to sustain up to two infructescences (∼28 fruits) having a slightly positive carbon budget (2.6 g of C) at the end of the season. A branch with 4 infructescences (∼56 fruits) ended the season with a very negative carbon budget (-14.1 g of C) suggesting the implication of resource mobilization during heavy crop load. The simulations with the model allowed the identification of two energetically critical periods for pistachio, both characterized by a decreasing trend of the carbon budget. The first is at the beginning of the season, from leaf out until 35/40 days after full bloom (DAFB), when leaves are still not source of carbon, and the branch energetic need is largely satisfied by the remobilization of carbon from the reserves accumulated the previous year and stored through the winter. The second critical period is at the end of the season for bearing branches, at ∼100 DAFB, when a strong reduction in leaf area due to early leaf senescence and drop coincides with high carbon request for kernel growth. Overall, results demonstrate that the branch carbon budget model is a valid tool to study bearing dynamics in tree species and can help to develop physiologically-based management strategies for achieving increased and more constant productions in pistachio orchard systems

    Service Quality and Customer Loyalty in a Post-Crisis Context. Prediction-Oriented Modeling to Enhance the Particular Importance of a Social and Sustainable Approach

    Get PDF
    Research into the influence of service quality on customer loyalty has typically focused on confirming isolated direct causal influences regarding particular dimensions of quality, usually undertaken in the context of positive, firm-customer relations. The present study extends analysis of these factors through a new lens. First, the study was undertaken in a market context following a crisis that has had far-reaching consequences for customers’ relational behaviors. We explore the case of the Spanish banking industry, a sector that accurately reflects these new relational conditions, including a rising demand for more socially responsible banking. Second, we propose a holistic model that combines the effects of four key factors associated with service quality (outcome, personnel, servicescape and social qualities). We also apply an innovative predictive methodological technique using partial least squares (PLS) and qualitative comparative analysis (QCA) that enables us not only to determine the direct causal effects among variables, but also to consider different scenarios in which to predict customer loyalty. The results highlight the role of outcome and social qualities. The novelty of the social qualities factor helps to underscore the importance of social, ethical and sustainable practices to customer loyalty, although personnel and servicescape qualities must also be present to improve the predictive capability of service quality on loyalty

    Deep Predictive Models for Collision Risk Assessment in Autonomous Driving

    Full text link
    In this paper, we investigate a predictive approach for collision risk assessment in autonomous and assisted driving. A deep predictive model is trained to anticipate imminent accidents from traditional video streams. In particular, the model learns to identify cues in RGB images that are predictive of hazardous upcoming situations. In contrast to previous work, our approach incorporates (a) temporal information during decision making, (b) multi-modal information about the environment, as well as the proprioceptive state and steering actions of the controlled vehicle, and (c) information about the uncertainty inherent to the task. To this end, we discuss Deep Predictive Models and present an implementation using a Bayesian Convolutional LSTM. Experiments in a simple simulation environment show that the approach can learn to predict impending accidents with reasonable accuracy, especially when multiple cameras are used as input sources.Comment: 8 pages, 4 figure
    • …
    corecore