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Abstract

Architectural simulation is extremely time-consuming
given the huge number of instructions that need to be sim-
ulated for contemporary benchmarks. Sampled simulation
which selects a number of samples from the complete bench-
mark execution yields substantial speedups. However, there
is one major issue that needs to be dealt with in order to
minimize non-sampling bias, namely the hardware state at
the beginning of each sample. This is well known in the lit-
erature as the cold-start problem. The hardware structures
that suffer the most from the cold-start problem are cache
hierarchies.

In this paper we propose NSL-BLRL which combines two
previously proposed cache hierarchy warmup approaches,
namely No-State-Loss (NSL) and Boundary Line Reuse La-
tency (BLRL). The idea of NSL-BLRL is to warmup the
cache hierarchy using a hardware state checkpoint that
stores a truncated NSL stream. The NSL stream is a least-
recently used stream of (unique) memory references in the
pre-sample. This NSL stream is then truncated to form
the NSL-BLRL warmup checkpoint; this is done by inspect-
ing the sample for determining how far in the pre-sample
one needs to go back to accurately warmup the hardware
state for the given sample. We show using SPEC CPU2000
benchmarks that NSL-BLRL is (i) nearly as accurate as
BLRL and NSL for sampled processor simulation, (ii) yields
simulation time speedups of several orders of magnitude
compared to BLRL, and (iii) is more space-efficient than
NSL. As such, we conclude that NSL-BLRL is a highly effi-
cient and accurate cache warmup strategy for sampled pro-
cessor simulation.

1 Introduction

Current microarchitectural research and microprocessor
development relies heavily on cycle-level architectural sim-
ulations. Cycle-level simulations model a microarchitecture
at a fairly detailed level while executing real-life applica-

tions. The price paid for such detailed simulations of real-
life benchmarks obviously is simulation speed. Simulating
a full benchmark execution can take days or even weeks for
completion. If we take into account that during microarchi-
tectural research and microprocessor development a multi-
tude of design alternatives need to be evaluated, we easily
end up with months or even years of simulation. As such,
detailed simulation of full benchmark executions during de-
sign space exploration is infeasible.

Several approaches have been proposed in the recent lit-
erature to address this issue. One particular proposal is
sampled simulation [4, 5, 12, 15, 16, 19]. Sampled simu-
lation selects a number of execution intervals from a com-
plete benchmark execution, called samples, to be simu-
lated. Since the number of samples and their sizes are lim-
ited, significant simulation speedups are obtained. How-
ever, there is one particular issue that needs to be dealt
with, namely the cold-start problem. The cold-start prob-
lem refers to the unknown hardware state at the beginning
of each sample. An attractive solution to the cold-start
problem is to simulate a number of instructions from the
pre-sample without computing performance metrics. The
pre-sample is the sequence of contiguous instructions be-
fore the sample, i.e., from the end of the previous sam-
ple until the beginning of the current sample. This is to
warmup large hardware structures so that the hardware state
at the beginning of the sample is a close estimate of what
a detailed simulation would reach at the beginning of the
sample in case the full benchmark would have been sim-
ulated. Due to the extremely long history in microarchi-
tectural state (for example in large caches), the warmup
phase needs to be proportionally long. Since warm sim-
ulation can be a significant part of the total sampled sim-
ulation time, it is important to study efficient but accu-
rate warmup strategies. Reducing the warmup length can
yield significant simulation speedups. Several warmup pro-
posals have been made in the literature. No-State-Loss
(NSL) [4], Memory Hierarchy State (MHS) [17], Memory
Reference Reuse Latency (MRRL) [10] and Boundary Line
Reuse Latency (BLRL) [8] are the most accurate and flex-
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ible approaches existing today. In this paper we propose
a new warmup approach that combines NSL with BLRL,
called NSL-BLRL, which substantially outperforms exist-
ing warmup strategies in terms of warmup length and disk
space requirements. The efficiency of NSL-BLRL is evalu-
ated using SPEC CPU2000 benchmarks.

This paper makes the following contributions:

• We show that No-State-Loss (NSL) can be com-
bined with Boundary Line Reuse Latency (BLRL)
into an efficient warmup strategy called NSL-BLRL
for cache hierarchies in sampled processor simulation.
NSL-BLRL outperforms previously proposed warmup
strategies. The NSL-BLRL approach that we propose
is more than two orders of magnitude more efficient in
terms of warmup memory references compared to the
best performing contiguous warmup approaches such
as BLRL while achieving the same accuracy. Com-
pared to NSL, NSL-BLRL requires 30% less disk stor-
age. This is an important issue when numerous sam-
ples along with their warmup info need to be stored
on disk; the total amount of disk space requirements
might become very large. In addition, limiting the size
of the warmup info stored on disk also reduces sim-
ulation time; reading the warmup info from disk and
transfering over a network for the parallel simulation
of the various samples on a cluster of machines, can be
done substantially faster.

• This paper extends our previous work [6] in two ways.
Our previous work showed that NSL can be combined
with MRRL; here we show that NSL can be combined
with BLRL into a warmup strategy NSL-BLRL that
outperforms NSL-MRRL in both accuracy and effi-
ciency. Secondly, we show in this paper that NSL-
BLRL is also applicable to sampled processor sim-
ulation; our previous work on combining NSL with
MRRL focused on cache simulation only, processor
simulation was not considered there.

2 Sampled processor simulation

In sampled processor simulation, a number of samples
are chosen from a complete benchmark execution. The in-
structions between two samples are called the pre-sample.
Sampled simulation only uses the instructions in the sample
to report performance results; instructions in the pre-sample
are not considered.

There are basically two issues with sampling. The first
issue is the selection of representative samples. The prob-
lem is to select samples in such a way that the sampled ex-
ecution is an accurate picture of the complete execution of
the program. Several approaches have been described in the
recent literature to select such samples: random sampling

by Conte et al. [4], profile-driven sampling by scaling the
basic block execution counts by Dubey and Nair [5], peri-
odic selection as done in SMARTS [19], selection based on
clustering similarly behaving intervals as done by Lafage
and Seznec [12] as well as in SimPoint [15, 16].

The second issue next to the selection of representative
samples is the correct hardware state at the beginning of
each sample. This is well known in the literature as the
cold-start problem. At the beginning of a sample, the cor-
rect hardware state is unknown since the instructions from
the pre-sample are not simulated during sampled processor
simulation. Several techniques have been proposed in the
literature to address this important issue. Most of these use
a number of instructions preceding the sample to warmup
hardware state before each sample [4, 9, 11, 14, 18]. Un-
der such a warmup strategy, sampled simulation consists of
three steps. The first step is cold simulation in which the
program execution is fast-forwarded, i.e., functional simu-
lation without updating microarchitectural state. The sec-
ond step is warm simulation which updates microarchitec-
tural state. This is typically done for large hardware struc-
tures such as caches, TLBs, branch predictors, etc. Under
warm simulation, no performance metrics are calculated.
The warm simulation phase can be very long since microar-
chitectural state can have an extremely long history. The
third step is hot simulation which includes detailed proces-
sor simulation while computing performance metrics, e.g.,
calculating cache and branch predictor miss rates, number
of instructions retired per cycle, etc. These three steps are
repeated for each sample.

3 Warmup strategies

We now discuss a number of recently proposed warmup
strategies that are fairly accurate and efficient, namely
MRRL, BLRL and a number of hardware state checkpoint-
ing techniques including NSL.

3.1 Memory Reference Reuse Latency (MRRL)

Haskins and Skadron [10] propose Memory Reference
Reuse Latency (MRRL) for accurately warming up hard-
ware state at the beginning of each sample. As suggested,
MRRL refers to the number of instructions between consec-
utive references to the same memory location, i.e., the num-
ber of instructions between a reference to address A and the
next reference to A. MRRL basically computes the distri-
bution of the reuse latencies over the pre-sample as well as
the sample. Once the distribution of reuse latencies is com-
puted, they then compute the reuse latency that corresponds
to K% of the cumulative distribution, say w. In MRRL,
warmup then starts w instructions prior to the sample.
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An important disadvantage of MRRL is that if there is a
mismatch in the MRRL behavior in the pre-sample versus
the sample, that might result in a suboptimal warmup strat-
egy in which the warmup is either too short to be accurate,
or too long for the attained level of accuracy. For example,
if the reuse latencies are generally larger in the sample than
in the pre-sample/sample pair, the warmup will be too short
and by consequence, the accuracy might be poor. Reverse,
if reuse latencies are generally shorter in the sample than
in the pre-sample/sample pair, the warmup will be too long
for the attained level of accuracy. One way of solving this
problem is to choose the percentile K% large enough. The
result is that the warmup will be longer than needed for the
attained accuracy.

3.2 Boundary Line Reuse Latency (BLRL)

Boundary Line Reuse Latency (BLRL) [7, 8] is quite dif-
ferent from MRRL although it is also based on reuse laten-
cies. In BLRL, the sample is scanned for reuse latencies that
cross the pre-sample/sample boundary line, i.e., a memory
location is referenced in the pre-sample and the next refer-
ence to the same memory location is in the sample. For each
of these cross boundary line reuse latencies, the pre-sample
reuse latency is calculated. A distribution is then measured
for the pre-sample reuse latency, similar to what is done
in MRRL. Also very much like what happens in MRRL,
the warmup length w is then determined using a percentile
K%.

There are three key differences between BLRL and
MRRL. First, BLRL considers reuse latencies for memory
references originating from instructions in the sample only
whereas MRRL considers reuse latencies for memory refer-
ences originating from instructions in both the pre-sample
and sample. Second, BLRL only considers reuse laten-
cies that cross the pre-sample/sample boundary line; MRRL
considers all reuse latencies. Third, in contrast to MRRL
which uses the reuse latency to update the histogram, BLRL
uses the pre-sample reuse latency. Previous work [8] has
shown that BLRL substantially outperforms MRRL; the
warmup length of BLRL is nearly half the warmup length
of MRRL for the same level of accuracy.

3.3 Hardware state checkpointing

Another approach to the cold-start problem is to check-
point or to store the hardware state at the beginning of
each sample and impose this state during sampled simula-
tion. This approach yields perfectly warmed up hardware
state. However, the storage needed to store these check-
points can explode in case many samples are required. In
addition, the hardware state needs to be stored for each spe-
cific hardware configuration. For example, for each cache

and branch predictor configuration a checkpoint needs to
be made. Obviously, the latter constraint implies that the
complete program execution needs to be simulated for these
various hardware structures.

Since this is infeasible to do in practice, researchers
have proposed more efficient approaches to hardware state
checkpointing. One example is the No-State-Loss (NSL)
approach [3, 13] which scans the pre-sample and records
the latest reference to each unique memory location in the
pre-sample. The obtained stream is called the least recently
used (LRU) stream. For example, the LRU stream of the fol-
lowing reference stream ‘ABAACDABA’ is ‘CDBA’. The
LRU stream can be computed by building the LRU stack
for the given reference stream. It is easily understandable
that both reference streams, the original reference stream
as well as the LRU stream, yield the same state when ap-
plied to an LRU stack. The no-state-loss warmup method
exploits this property by computing the LRU stream of the
pre-sampling unit and applying this stream to the cache as
warmup. By consequence, the no-state-loss warmup strat-
egy yields perfect warmup for caches with an LRU replace-
ment policy. Barr et al. [1] extended this approach for re-
constructing the cache and directory state during sampled
multiprocessor simulation.

Van Biesbrouck et al. [17] proposed the Memory Hier-
archy State (MHS) approach. In MHS, the largest cache
of interest is simulated once for each sample. The cache’s
content is then stored on disk. The content of smaller-sized
caches can then be derived from the checkpoint. The dis-
advantage of this approach compared to NSL is that MHS
requires the cache line size to be fixed. Whenever a cache
needs to be simulated with a different cache line size, the
warmup info needs to be recomputed. NSL does not have
this disadvantage. The advantage of MHS over NSL how-
ever is that it is more space efficient, i.e., a smaller disk
space is required for storing the warmup info. The rea-
son is that NSL stores all unique pre-sample memory ref-
erences; MHS on the other hand, discards conflicting mem-
ory references from the warmup info for a given maximum
cache size. A second advantage of MHS over NSL is that
computing the MHS warmup is done faster than computing
the NSL warmup info; NSL does an LRU stack simulation
whereas MHS only simulates one particular cache configu-
ration.

Our NSL-BLRL approach could be viewed as a form
of hardware state checkpointing. When comparing NSL-
BLRL against existing hardware state checkpointing tech-
niques we conclude that (i) NSL-BLRL is more space-
efficient than NSL, i.e., requires less disk space than NSL,
and (ii) NSL-BLRL is more broadly applicable during de-
sign space exploration than MHS because the NSL-BLRL
warmup info is independent of the cache block size.

Note that efficient architectural checkpointing tech-
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niques can be implemented for cache hierarchies includ-
ing TLB structures. However, architectural checkpointing
techniques for branch predictors that can be re-used over a
number of branch predictors is not easy to do. Therefore,
researchers have proposed a pragmatic approach by storing
the contents of the branch predictors of interest as a check-
point.

4 NSL-BLRL: combining NSL and BLRL

This paper proposes to combine the no-state-loss (NSL)
warmup method with BLRL into NSL-BLRL. This is done
by computing both the LRU stream as well as the BLRL
warmup buckets corresponding to a given percentile K%.
Only the unique references that are within the warmup
buckets will be used to warmup the caches. This could
be viewed as pruning the LRU stream with BLRL informa-
tion. Reverse, this method could also be viewed as selecting
the LRU stream from the BLRL warmup buckets. Using
NSL-BLRL as a warmup approach then works as follows.
The reduced LRU stream as it is obtained through NSL-
BLRL is to be stored on disk as a hardware state check-
point. Upon simulation of a sampling unit, the reduced LRU
stream is then loaded from disk, the cache state is warmed
up and finally, the simulation of the sample gets started.
The advantage over NSL is that NSL-BLRL requires less
disk space to store the warmup memory references; in ad-
dition, the smaller size of the reduced LRU stream results
in faster warmup processing. The advantage over BLRL
is that loading the reduced LRU stream from disk is more
efficient than the warm simulation needed for BLRL. Ac-
cording to our results, the warmup length for BLRL is at
least two orders of magnitude longer than for NSL-BLRL.
As such, significant speedups are to be obtained compared
to BLRL. Note that NSL-BLRL inherits the limitation from
NSL of only guaranteeing perfect warmup for caches with
LRU replacement. Caches with other replacement policies
such as random, first-in first-out (FIFO), not-most-recently-
used (NMRU) are not guaranteed to get a perfectly warmed
up cache state under NSL-BLRL (as is the case for NSL)—
however, we believe the difference in warmed up hardware
state would be very small.

5 Experimental setup

For the evaluation we use 9 SPEC CPU2000 integer
benchmarks1; see Table 1. The binaries which were com-
piled and optimized for the Alpha 21264 processor, were
taken from the SimpleScalar website2. All measurements

1http://www.spec.org
2http://www.simplescalar.com

benchmark input

bzip2 program
crafty ref
eon rushmeier
gcc integrate
gzip graphic
parser ref
twolf ref
vortex lendian2
vpr route

Table 1. The SPEC CPU2000 integer bench-
marks used in this study along with their in-
put (all inputs are reference inputs).

L1 I-cache 16KB, 2-way set-assoc
L1 D-cache 32KB, 4-way set-assoc
L2 cache 1MB, 4-way set-assoc, 20 cycles access lat
I-TLB and D-TLB 32-entry 8-way set-assoc with 4KB pages
memory 150 cycle round trip access

branch predictor 8K-entry table hybrid predictor
branch miss penalty 14 cycles

IFQ 32-entry instruction fetch queue
RUU and LSQ 128 entries and 32 entries, respectively
processor width 8 wide
functional units 8 intALUs, 4 ld/st, 2 fp, 2 int and 2 fp mult/div

Table 2. Baseline processor simulation
model.

presented in this paper are obtained using the MRRL soft-
ware3 which on its turn is based on the SimpleScalar soft-
ware [2]. The baseline processor simulation model is given
in Table 2. The caches use write-allocate and write-back
policies. We consider 50 samples (each containing 1M in-
structions). We select a sample every 100M instructions un-
less mentioned otherwise. These samples were taken from
the beginning of the program execution to limit the sim-
ulation time while evaluating the various warmup strate-
gies with varying percentiles K%. Taking samples deeper
down the program execution would have been too time-
consuming given the large fast-forwarding needed. How-
ever, we believe this does not affect the conclusions from
this paper, since the warmup strategies that are evaluated in
this paper can be applied to any collection of samples. Once
a set of samples is provided, either warmup strategy can be
applied to it. We quantify the performance of a warmup
strategy using two metrics: accuracy and warmup length.
The warmup length is defined as the number of instructions
under warm simulation. The accuracy is quantified using
the IPC prediction error, i.e., the procentual difference be-
tween the IPC for perfect warmup against the IPC for the
warmup strategy of interest. A positive error means a IPC
overestimation of the warmup approach compared to the

3http://www.cs.virginia.edu/∼jwh6q/mrrl-web/
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Figure 1. IPC prediction error for BLRL versus
NSL-BLRL.

perfect warmup case.

6 Results

In this section, we extensively evaluate our NSL-BLRL
approach and compare it against NSL and BLRL. We have
a number of criteria to evaluate our improved warmup pro-
posal, namely accuracy, number of warm simulation in-
structions, overall simulation and the amount of storage re-
quirements.

6.1 Accuracy

Our first criterion to evaluate NSL-BLRL is its accuracy.
Figure 1 shows the IPC prediction error for BLRL, NSL and
NSL-BLRL for the various benchmarks and for varying per-
centiles K%. (Note that NSL yields the same accuracy as
NSL-BLRL 100%.) The IPC prediction error is the relative
error compared to a full warmup run, i.e., all instructions
prior to the sample are simulated. In the IPC prediction er-
rors that we present here, we assume that there is no stale
state (no stitch) when warming up the hardware state be-
fore simulating a sample. This is to stress the warmup tech-
niques; in addition, this is also the error one would observe
under checkpointed parallel sampled simulation. A number
of comments and observations need to be made here. As
reported in previous work, BLRL results in a highly accu-
rate warmup. BLRL yields small IPC prediction errors of
only a few percent. Especially for large percentiles K%,
the IPC prediction error due to incorrect hardware state is
very small. For example, for BLRL 95%, the maximum
error is only 1.6% (twolf). For BLRL 100%, the error is al-
most zero. Comparing NSL-BLRL versus BLRL for a given
percentile K% typically gives slightly higher IPC predic-
tion errors, however, the difference is very small (less than
1%). There are two reasons for these slightly higher IPC
prediction errors. First, NSL-BLRL only warms the cache
state but does not warm branch predictor state. BLRL on
the other hand warms both the cache hierarchy and branch
predictor state. However, we found this influence to be
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Figure 2. The number of warm simulation in-
structions for BLRL versus the number of
warm simulation references for NSL-BLRL.

very small. To experimentally verify this, we compared
the accuracy of NSL-BLRL versus BLRL for perfect branch
predictors—this was to exclude the branch predictor com-
ponent in the warmup state—and we obtained very simi-
lar results to what is being reported here in Figure 1. As
such, we conclude that the impact of the branch predictor
state is very small. The second reason for the difference be-
tween the NSL-BLRL and BLRL is that while warming the
caches through NSL-BLRL we do not keep track of dirty
cache blocks, whereas BLRL does keep track of dirty cache
blocks. Our results show that not warming dirty cache block
info only has a small impact on overall accuracy. This is to
be expected given the fact that contemporary out-of-order
microprocessors give priority to load operations over writ-
ing back dirty data to upper layers of the memory hierarchy.
However, if warming dirty cache blocks needs to be sup-
ported, extending our framework for supporting this would
not be difficult.

In summary, we can conclude that NSL-BLRL is a
highly accurate cache warmup approach that is nearly as
accurate as BLRL. Especially, high percentiles K% yield
highly accurate performance estimates. The maximum er-
ror for K = 95% equals 1.4% (twolf); for K = 100%, the
maximum error is even less, 0.66%.

6.2 Warmup length

We now compare the number of warm simulation in-
structions that need to be processed. Figure 2 shows the
number of warm simulation instructions for BLRL as well
as the number of warm simulation references for NSL-
BLRL for different percentiles K%. Note that the verti-
cal axis is on a logarithmic scale. We observe that NSL-
BLRL yields a reduction in the number of warm simulation
instructions by two to three orders of magnitude compared
to BLRL. The reason for this dramatic reduction is that the
number of warm simulation instructions for NSL-BLRL is
proportional to the number of unique references in the pre-
sample. BLRL on the other hand, uses all references from a
given warmup starting point up to the sample starting point.
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Figure 4. The number of warm simulation in-
structions for NSL-BLRL and NSL as a func-
tion of the pre-sample size. This is for bzip2.

Note that these results were obtained for 100M instruction
pre-samples prior to each sample. For larger pre-samples,
the difference in the number of warm simulation instruc-
tions will even increase when comparing BLRL versus be-
tween NSL-BLRL.

Comparing now NSL-BLRL versus NSL we also ob-
serve a substantial decrease in the number of warm sim-
ulation instructions. Figure 3 shows the number of warm
simulation instructions of NSL-BLRL as a fraction of NSL.
Some benchmarks do not benefit substantially from NSL-
BLRL compared to NSL. However, we observe that NSL-
BLRL 100% yields substantial warm simulation reduc-
tions for some benchmarks—up to 39% for bzip2; i.e., the
warmup length for NSL-BLRL 100% is 61% of the NSL
warmup length. For smaller K% percentiles the reduction
in warmup length increases significantly. Again, these num-
bers are given for a 100M instruction pre-sample. For larger
pre-sample sizes, the benefit for NSL-BLRL over NSL in
terms of the number of warm simulation instructions even
increases. This is illustrated in Figure 4 where the num-
ber of warm simulation instructions is shown as a function
of the pre-sample size for NSL and NSL-BLRL for bzip2.
Similar curves were obtained for other benchmarks. The

600

700

800

900

1000

1100

1200

bzip2 crafty eon gcc gzip parser twolf vortex vpr

ti
m

e
(s

e
c
o
n
d
s
)

full warmup

BLRL 80%

BLRL 85%

BLRL 90%

BLRL 95%

BLRL 100%

NSL-BLRL 80%

NSL-BLRL 85%

NSL-BLRL 90%

NSL-BLRL 95%

NSL-BLRL 100%

no warmup

Figure 5. Simulation time for BLRL and NSL-
BLRL in case of sampled simulation using
fastforwarding.
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Figure 6. Simulation time for BLRL and NSL-
BLRL in case of checkpointed sampled simu-
lation.

important trend to be observed from this graph is that the
number of warm simulation instructions does not increase
that fast for NSL-BLRL as it does for NSL. As such, we
can conclude that NSL-BLRL is better scalable for larger
pre-sample sizes and thus, longer running applications.

6.3 Simulation time

The number of warm simulation instructions only gives
a vague idea of what the overall simulation time speedup
would be for NSL-BLRL compared to BLRL. We identify
two scenarios for sampled simulation, namely using fast-
forwarding to navigate between samples, and checkpoint-
ing to restore machine state at the beginning of each sam-
ple. We first consider the case where fast-fowarding is used
to go from one sample to the next sample. In this scenario,
cold simulation is done through fast-forwarding. When the
warm simulation starting point is reached for BLRL, warm
simulation gets started until the beginning of the sample is
reached. Then, simulation switches to hot simulation. For
NSL-BLRL, cold simulation is done until the beginning of
the sample, then the NSL-BLRL checkpoint is loaded from
disk and the hardware state is updated. Once the hardware
state is updated, hot simulation of the sample gets started.
The results in Figure 5 show the simulation time in seconds
under fast-forwarding. We observe that BLRL achieves
a substantial simulation time reduction compared to full
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warmup. NSL-BLRL reduces the overall simulation time
even further, even onto a level where warmup using NSL-
BLRL is nearly as fast as no-warmup. In other words, the
cost for warming up hardware state under fast-forwarding
is nearly zero under NSL-BLRL. Note also that different
percentiles K% do not affect overall simulation time. As
such, we could conclude that a percentile K = 100% is the
optimal choice since it gives the highest accuracy while in-
curring no additional simulation time overhead compared to
smaller percentiles K%.

We now consider checkpointing instead of fast-
forwarding for jumping between the various samples. Un-
der checkpointed sampled simulation, there is no cold sim-
ulation. Simulating a sample starts by loading a machine
state checkpoint from disk and initiating the warm simu-
lation. Under BLRL, the warm simulation phase involves
warming up caches while functionally simulating all in-
structions prior to the sample. Under NSL and NSL-BLRL,
warm simulation involves loading a machine state check-
point. Once the machine state is updated, hot simulation
gets started. Under checkpointed sampled simulation we
obtain the simulation time results presented in Figure 6.
BLRL yields substantial simulation time reductions over
full warmup. Note that the simulation time reductions under
checkpointing are even bigger than under fast-forwarding.
This is to be expected as checkpointed simulation does not
require cold simulation opposed to fast-forwarding. An-
other interesting note is that the simulation time reduction
when comparing NSL-BLRL versus BLRL under check-
pointing is higher than under fast-forwarding. Under fast-
forwarding, NSL-BLRL achieves a reduction in simulation
time over BLRL up to a factor 1.4X; under checkpointing,
NSL-BLRL achieves a 2.9X up to 14.9X simulation time
speedup over BLRL. This is to be explained for the same
reason; checkpointed simulation does not involve cold sim-
ulation.

6.4 Storage

We now quantify the storage requirements of NSL-
BLRL for storing the hardware state checkpoints on disk.
Figure 7 shows the amount of storage requirements for
NSL-BLRL compared to NSL. (Note that BLRL does not
require any significant storage.) The numbers shown in
Figure 7 represent the number of KBs of storage needed
to store one hardware state checkpoint in compressed for-
mat. For NSL, the average storage requirement per sample
is 810KB; the maximum observed is for bzip2, 2.5MB. For
NSL-BLRL, the storage requirements are greatly reduced
compared to NSL. For example, for K = 100%, the aver-
age storage requirement is 553KB (a 32% reduction); for
K = 95%, the average storage requirement is 425KB (a
48% reduction). As such, we conclude that the real bene-
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Figure 7. Storage requirements for NSL-BLRL
compared to NSL: average number of KBs of
disk storage needed for storing one hardware
state checkpoint in compressed format.

fit of NSL-BLRL compared to NSL is its reduced storage
requirements. (Recall that NSL-BLRL and NSL are com-
parable in terms of accuracy and simulation time.) In case a
large number of checkpoints need to be stored on disk for a
complete benchmark suite, then we can easily end up with
thousands of samples and corresponding checkpoint files.
For example, for SimPoint there are 7,392 1M instruction
samples for the whole SPEC CPU2000 benchmark suite4. If
810KB needs to be stored on disk per sample, then approxi-
mately 6GB disk space is required for storing the NSL hard-
ware state warmup info. Note that this is an optimistic ap-
proximation. In our experimental setup we assumed 100M
instruction pre-samples. Larger pre-samples will results in
even larger NSL warmup checkpoints to be stored on disk,
as discussed previously, see also Figure 4. As such, the
total storage requirements are expected to be substantially
larger than the 6GB mentioned above. In addition, machine
state checkpoints need to be stored on disk as well. Even
though disks are cheap these days, maintaining such large
checkpoint files might be impractical to do. We conclude
that NSL-BLRL is capable of reducing the total disk space
requirements for hardware state checkpointing by at least
30% without any loss in accuracy.

7 Conclusions

Sampled simulation is an important tool for computer ar-
chitecture research and development. The idea behind sam-
pled simulation is to select a well chosen number of sam-
ples from a complete program execution. There are two
major issues related to sampled simulation, (i) the selection
of representative samples and (ii) warming up the correct
hardware state at the beginning of each sample, well known
as the cold-start problem.

This paper proposed to combine No-State-Loss (NSL)
with Boundary Line Reuse Latency (BLRL) in a new

4http://www.cs.ucsd.edu/ calder/simpoint/
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warmup strategy called NSL-BLRL. The basic idea is to
truncate the NSL stream of memory references in a pre-
sample using BLRL information. The NSL stream is the
least recently used sequence of memory references in the
pre-sample. BLRL then selects a fraction of this NSL
stream based on how far back warmup needs to go in the
pre-sample to accurately warmup the hardware state for the
given sample. The NSL-BLRL warmup info could then
be viewed as a hardware state checkpoint. Warming up a
cache hierarchy using NSL-BLRL is then done by load-
ing the checkpoint from disk and warming the caches using
the NSL-BLRL reference stream. Compared to other exist-
ing hardware state checkpointing techniques, NSL-BLRL
is more flexible in the sense that the warmup info can be
used for a broader range of hardware configurations. For
example, whereas Memory Hierarchy State (MHS) requires
a fixed cache block size, NSL-BLRL does not.

Our experimental results using SPEC CPU2000 bench-
marks show that NSL-BLRL is substantially faster than
BLRL. In other words, the number of warmup instruc-
tions is reduced up to three orders of magnitude. NSL-
BLRL is nearly as accurate as BLRL. The small devia-
tion is due to not modeling dirty cache lines in NSL-BLRL
but we found this difference to be very small. The shorter
warmup length for NSL-BLRL results in substantial simu-
lation speedups against BLRL. Under fast-forwarding, the
simulation speedup is up to 1.4X. Under checkpointing,
the simulation speedup varies between 2.9X and 14.9X.
Compared to NSL, the real benefit of NSL-BLRL is in the
reduced checkpoint files that need to be stored on disk.
(In terms of accuracy and simulation time, NSL-BLRL is
nearly as efficient as NSL.) NSL-BLRL typically yields
30% smaller hardware state checkpoint files which is ex-
tremely important when it comes to storing a large number
of checkpoint files on disk for a large number of samples.
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