17,743 research outputs found

    Motif Discovery through Predictive Modeling of Gene Regulation

    Full text link
    We present MEDUSA, an integrative method for learning motif models of transcription factor binding sites by incorporating promoter sequence and gene expression data. We use a modern large-margin machine learning approach, based on boosting, to enable feature selection from the high-dimensional search space of candidate binding sequences while avoiding overfitting. At each iteration of the algorithm, MEDUSA builds a motif model whose presence in the promoter region of a gene, coupled with activity of a regulator in an experiment, is predictive of differential expression. In this way, we learn motifs that are functional and predictive of regulatory response rather than motifs that are simply overrepresented in promoter sequences. Moreover, MEDUSA produces a model of the transcriptional control logic that can predict the expression of any gene in the organism, given the sequence of the promoter region of the target gene and the expression state of a set of known or putative transcription factors and signaling molecules. Each motif model is either a kk-length sequence, a dimer, or a PSSM that is built by agglomerative probabilistic clustering of sequences with similar boosting loss. By applying MEDUSA to a set of environmental stress response expression data in yeast, we learn motifs whose ability to predict differential expression of target genes outperforms motifs from the TRANSFAC dataset and from a previously published candidate set of PSSMs. We also show that MEDUSA retrieves many experimentally confirmed binding sites associated with environmental stress response from the literature.Comment: RECOMB 200

    A new procedure to analyze RNA non-branching structures

    Get PDF
    RNA structure prediction and structural motifs analysis are challenging tasks in the investigation of RNA function. We propose a novel procedure to detect structural motifs shared between two RNAs (a reference and a target). In particular, we developed two core modules: (i) nbRSSP_extractor, to assign a unique structure to the reference RNA encoded by a set of non-branching structures; (ii) SSD_finder, to detect structural motifs that the target RNA shares with the reference, by means of a new score function that rewards the relative distance of the target non-branching structures compared to the reference ones. We integrated these algorithms with already existing software to reach a coherent pipeline able to perform the following two main tasks: prediction of RNA structures (integration of RNALfold and nbRSSP_extractor) and search for chains of matches (integration of Structator and SSD_finder)

    Prediction of peptides binding to MHC class I alleles by partial periodic pattern mining

    Get PDF
    MHC (Major Histocompatibility Complex) is a key player in the immune response of an organism. It is important to be able to predict which antigenic peptides will bind to a spe-cific MHC allele and which will not, creating possibilities for controlling immune response and for the applications of immunotherapy. However a problem encountered in the computational binding prediction methods for MHC class I is the presence of bulges and loops in the peptides, changing the total length. Most machine learning methods in use to-day require the sequences to be of same length to success-fully mine the binding motifs. We propose the use of time-based data mining methods in motif mining to be able to mine motifs position-independently. Also, the information for both binding and non-binding peptides are used on the contrary to the other methods which only rely on binding peptides. The prediction results are between 70-80% for the tested alleles

    Detecting Strong Ties Using Network Motifs

    Full text link
    Detecting strong ties among users in social and information networks is a fundamental operation that can improve performance on a multitude of personalization and ranking tasks. Strong-tie edges are often readily obtained from the social network as users often participate in multiple overlapping networks via features such as following and messaging. These networks may vary greatly in size, density and the information they carry. This setting leads to a natural strong tie detection task: given a small set of labeled strong tie edges, how well can one detect unlabeled strong ties in the remainder of the network? This task becomes particularly daunting for the Twitter network due to scant availability of pairwise relationship attribute data, and sparsity of strong tie networks such as phone contacts. Given these challenges, a natural approach is to instead use structural network features for the task, produced by {\em combining} the strong and "weak" edges. In this work, we demonstrate via experiments on Twitter data that using only such structural network features is sufficient for detecting strong ties with high precision. These structural network features are obtained from the presence and frequency of small network motifs on combined strong and weak ties. We observe that using motifs larger than triads alleviate sparsity problems that arise for smaller motifs, both due to increased combinatorial possibilities as well as benefiting strongly from searching beyond the ego network. Empirically, we observe that not all motifs are equally useful, and need to be carefully constructed from the combined edges in order to be effective for strong tie detection. Finally, we reinforce our experimental findings with providing theoretical justification that suggests why incorporating these larger sized motifs as features could lead to increased performance in planted graph models.Comment: To appear in Proceedings of WWW 2017 (Web-science track

    Prediction of peptides binding to MHC class I alleles by partial periodic pattern mining

    Get PDF
    MHC (Major Histocompatibility Complex) is a key player in the immune response of an organism. It is important to be able to predict which antigenic peptides will bind to a specific MHC allele and which will not, creating possibilities for controlling immune response and for the applications of immunotherapy. However, a problem for MHC class I is the presence of bulges and loops in the peptides, changing the total length. Most machine learning methods in use today require the sequences to be of same length to successfully mine the binding motifs. We propose the use of time-based data mining methods in motif mining to be able to mine motifs position-independently. Also, the information for both binding and non-binding peptides is used on the contrary to the other methods which only rely on binding peptides. The prediction results are between 60-95% for the tested alleles

    Identification of MHC Class II Binders/ Non-binders using Negative Selection Algorithm

    Get PDF
    The identification of major histocompatibility complex (MHC) class-II restricted peptides is an important goal in human immunological research leading to peptide based vaccine design. These MHC class–II peptides are predominantly recognized by CD4+ T-helper cells, which when turned on, have profound immune regulatory effects. Thus, prediction of such MHC class-II binding peptides is very helpful towards epitope-based vaccine design. HLA-DR proteins were found to be associated with autoimmune diseases e.g. HLA-DRB1*0401 with rheumatoid arthritis. It is important for the treatment of autoimmune diseases to determine which peptides bind to MHC class II molecules. The experimental methods for identification of these peptides are both time consuming and cost intensive. Therefore, computational methods have been found helpful in classifying these peptides as binders or non-binders. We have applied negative selection algorithm, an artificial immune system approach to predict MHC class–II binders and non-binders. For the evaluation of the NSA algorithm, five fold cross validation has been used and six MHC class–II alleles have been taken. The average area under ROC curve for HLA-DRB1*0301, DRB1*0401, DRB1*0701, DRB1*1101, DRB1*1501, DRB1*1301 have been found to be 0.75, 0.77, 0.71, 0.72, and 0.69, and 0.84 respectively indicating good predictive performance for the small training set
    corecore