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Abstract 

 

The identification of major histocompatibility complex (MHC) class-II 

restricted peptides is an important goal in human immunological 

research leading to peptide based vaccine designing. These MHC class – 

II peptides are predominantly recognized by CD4+ T-helper cells, 

which when turned on, have profound immune regulatory effects. Thus, 

prediction of such MHC class-II binding peptide is very helpful towards 

epitope based vaccine designing. HLA-DR proteins were found to be 

associated with autoimmune diseases e.g. HLA-DRB1*0401 with 

rheumatoid arthritis. It is important for the treatment of autoimmune 

diseases to determine which peptides bind to MHC class II molecules. 

The experimental methods for identification of these peptides are both 

time consuming and cost intensive. Therefore, computational methods 

have been found helpful in classifying these peptides as binders or non- 

binders. We have applied negative selection algorithm, an artificial 

immune system approach to predict MHC class – II binders and non-

binders. For the evaluation of the NSA algorithm, five fold cross 

validation has been used and six MHC class – II alleles have been taken. 

The average area under ROC curve for HLA-DRB1*0301, DRB1*0401, 

DRB1*0701, DRB1*1101, DRB1*1501, DRB1*1301 have been found 
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to be 0.75, 0.77, 0.71, 0.72, and 0.69, and 0.84 respectively indicating 

good predictive performance for the small training set. 
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Introduction  

 

The CD8+ Cytotoxic T cells (CTL) immune response and CD4+ T-

helper (Th) immune response is stimulated by binding of peptides to 

major histocompatibility complex (MHC) Class I and MHC Class II 

molecules respectively [1,2]. Intracellular antigens, cut into peptides in 

the cytosol of the antigen processing cell (APC), bind to MHC Class I 

molecules and are recognized by CD8+ Cytotoxic T cells (CTLs), which 

once activated, can directly kill a target cell (i.e. an infected cell). Extra 

cellular antigens that have entered the endocytic pathway of the APC 

are processed there. These are generally presented by MHC class II 

molecules to T-helper cells, which, when turned on, have profound 

immune regulatory effects. In humans, HLA -A, -B, and -C are the 

MHC class I type molecules and HLA-DR, -DP and –DQ are the MHC 

class II type molecules. There are known to be 2DRA, 126DRB, 

12DQA, 22DQB, 6DBA and 56 different expressed DPB. It is important 

to determine which peptides bind to MHC class II molecules that will 

help in treatment of the diseases [3, 4]. In our study we have considered 

six different MHC class II molecules:  HLA-DRB1*0301, HLA-

DRB1*0401, HLA-DRB1*0701, HLA-DRB1*1101, HLA-

DRB1*1501, HLA-DRB1*1301. 

 

The establishment of numerous MHC class-II epitope databases such as 

SYFPEITHI [5], MHCBN [6], AntiJen [7], EPIMHC [8], and IEDB [9], 

has facilitated the development of a large number of prediction 

algorithms. A number of methods have been developed for the 

prediction of MHC class - II binding peptides from an antigenic 

sequence, beginning with, early motif based methods [10-12], to 

different scoring matrices based methods [13-16]. The artificial neural 

network has also been applied for the prediction of HLA-DRB1*0401 

binding peptides [17, 18]. Some complex tools for identifying the HLA-

DRB1*0401 binding peptides have also been designed i.e. an iterative 

algorithm to optimize MHC class II binding matrix based stepwise 

discriminant analysis [19]. We have used an artificial immune system 

based algorithm – the negative selection algorithm to predict MHC 

Class II binders and non-binders.   

 

Methods and Materials  
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Negative Selection Algorithm 

 

Artificial immune system (AIS), a new computational intelligence 

paradigm be defined as a system of interconnected components, which 

emulates a particular subset of aspects originating from the natural 

immune system in order to accomplish a particular task within a 

particular environment/domain. The fundamental concept of artificial 

immune system is based on how lymphocytes (B-cells and T-cells) 

mature, adapt, react, and learn in response to a foreign antigen. Artificial 

immune system based models are either population based or network 

based models. The algorithms on population based model are negative 

selection algorithm (NSA) [20, 21],  and clonal selection algorithm 

(CSA), focusing mainly on generating initial population of 

lymphocytes, and improving and refining that population based on 

techniques emulated from natural immune system.  Network models are 

based on anti-idiaotypic activity within the natural immune system, 

which consequently regulate the population of lymphocytes. Artificial 

immune network approach is an example of network based model [22].  

 

The thymus is responsible for the maturation of T-cells; and is protected 

by a blood barrier capable of efficiently excluding non-self antigens 

from the thymic environment. Thus, most elements found within the 

thymus are representative of self instead of non-self. As a result, the T-

cells containing receptors capable of recognizing these self antigens 

presented in the thymus are eliminated from the repertoire of T-cells 

through a process called negative selection. All T-cells that leave the 

thymus to circulate throughout the body are said to be tolerant to self. 

The negative selection presents alternative paradigm to perform the 

pattern recognition/classification by storing information about the 

complement set (non-self). The main concept behind the negative 

selection algorithm is to generate a set of detectors.  

 

The Negative selection algorithm works as follows: (i) the set of random 

candidates (generated using any random number generation algorithm) 

and the self set is given. (ii) Then each element of the randomly 

generated set is compared with the elements of self set. If a match 

occurs, then that random element is rejected; else that element is added 

to the detector set shown in Figure1. 
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After generating the detector set, the system is monitored for non-self 

element. The protected set is compared with the elements of detector 

set. If match occurs then the non-self is detected otherwise it continue to 

match as shown in Figure 2.   

 

The binding process of MHC class I or MHC class- II molecules with 

antigenic peptides within the natural immune systems is basically 

simulated by affinity threshold functions. For a given lymphocyte, x, 

and an antigen, y, a number of matching rules can be defined to 

determine whether x and y match.  Some of the commonly used affinity 

functions are as follows: Hamming distance rule, r-Contiguous bits rule, 

r-chunks rule. Hamming distance rule have been used to simulate the 

affinity threshold function in present study.  

 

Box 1: Algorithm for generation of detector set: 

1. Let S is the set of self tolerant artificial lymphocytes to train and ns 

is the numbers of elements in the set, and, the element s Є S.  

2. Let C is the set of self tolerant artificial lymphocytes to monitor 

i.e. to classify and nc is the number of elements in the set, and, the 

element c Є C. 

3. S U C is the set of total number of self tolerant artificial 

lymphocytes. 

4. Let R is the set of all randomly generated self tolerant artificial 

lymphocytes and nr is the number of elements in the set and the element 

r Є R. 

5. Let D is initially an empty set of detectors. 

6. While nr ≠ Null  

7.     read an element r from set R; 

8.     flag = false; 

9.     for each self element s Є S do 

10.          if MATCH (s, r) is greater than the affinity threshold t then 

11.          flag = true; 

12.          break;  

13.          end; 

14.     end; 

15.     if flag = false   

16.     add r to D; 

17.     end; 

18.  end; 
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The detector set for binders (Db) and non-binders (Dn) generated using 

the above algorithm. Monitoring the elements of the set Cx (x is 

replaced by either b or n depending upon the protected set for binders 

and non-binders) to test the resultant population of artificial 

lymphocytes against detector set Dbn (Dbn is union of Db and Dn). In 

case of match, value 1 is stored; otherwise value 0 is stored in the set Rx. 

The values in sets Rb and Rn are used to obtain the values of evaluation 

parameters FP, FN, TP, and TN. The algorithm for generation of 

detector set is given in Box 1 and algorithm for predicting the element 

of protected set is given in Box 2. 

 

Box 2: Algorithm for predicting the elements of set C: 

1. While nr ≠ Null  

2.     read an element c from set C; 

3.     flag = false; 

4.     for each self element dbn Є Dbn do 

5.          if MATCH (c, dbn) is less than equal to the affinity 

threshold t then 

6.          flag = true; 

7.          break;  

8.          end; 

9.     end; 

10.     if flag = true then add 1 to the set Rx   

11.     else add 0 to the set Rx; 

12.     end; 

 

The MATCH () function has been implemented based on the concept of 

Hamming distance. The Hamming distance between two binary vectors 

is the number of corresponding bits that differ. For example, if A = (1, 

0, 0, 1) and B = (1, 1, 0, 1) then the Hamming distance between A and 

B, is 1. Here, the MATCH () function calculates the Hamming distance 

between the self tolerant artificial lymphocyte, s, and randomly 

generated self tolerant artificial lymphocyte, r. The r and s is the binary 

vector of 180 bits long since these consists of 9 amino acids and an 

amino acid is represented by 20 bit vector.  
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Training and validation dataset 

 

We have assembled dataset of peptide binding and nonbinding affinities 

for six MHC class II allele’s molecules from DRFMLI repository 

(http://bio.dfci.harvard.edu/DFRMLI/). These dataset of high quality 

MHC binding and nonbinding peptides were taken from IEDB database 

[9]. The binding affinities (IC50) of these peptides, quantitatively 

measured by immunological experiments have been used for binders 

and non-binders. The IC50 values have been scaled to binding scores 

ranging from 0 to 100 using linear transformation, where score 

IC50>=33 are taken as binders IC50<33 as non-binders. The data sets 

have been shown in Table 1 after removing the duplication. In order to 

reduce biasness in prediction, the ratio of binder and non-binders has 

been kept 1:1 by adding randomly generated non-binders to the non-

binders set. The number epitopes in training sets as well as in the 

prediction set has also shown in the Table 1. Five fold cross validation 

have been used for prediction. This structure includes the extracellular 

portion of a class II MHC, with a peptide bound. Figure 3 shows crystal 

structure of the human class II MHC protein HLA-DRB1 complexed 

with an influenza virus peptide (PDB ID: 1DLH). 

  

 

Evaluation Parameters 

 

The prediction accuracy of the algorithm for generation of detector set 

(Box 1) and for predicting the elements of set (Box 2) have been 

determined using discrimination between binders and non-binders. In 

order to, classify peptides into binders (positive data) and non-binders 

(negative data), a threshold value between 0, 2, 4, 6, 8, 10, 12, 14, 16 

and 18 based on the Hamming distance between the binary vectors r and 

s may be taken. Here, in our study the threshold values 4, 6, 8, 10, 12 

have been used. A predicted peptide belongs to one of the four 

categories, i.e. True Positive (TP); an experimentally binding peptide 

predicted as a binder, False Positive (FP); an experimentally nonbinding 

peptide predicted as a binder, True Negative (TN); an experimentally 

nonbinding peptide predicted as a non-binder and False Negative (FN); 

an experimentally binding peptide predicted as non-binder. A non-

parametric performance measure, area under receiver operating 

characteristic (AROC) curve has been used to evaluate the prediction 
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performance of the applied algorithms. The ROC curve is a plot of the 

true positive rate TP/(TP+FN) on the vertical axis vs false positive rate 

FP/(TN+FP) on the horizontal axis for the complete range of the 

decision thresholds.   

 

Results and Discussion 

 

Predictions of T-cell epitopes have the potential to provide important 

information for rational research and development of vaccines and 

immunotherapy. To screen out the binders and non-binders although the 

experimental methods can be used, but this approach is time consuming 

as well as costly. Computational approaches can be applied to predict 

the binders and non-binders. Various computational methods viz. ANN, 

SVM etc. have been used for predictions. For a useful prediction, using 

any machine learning approach, the data in the training set should be 

sufficient. In case of small the training data set the prediction will not be 

useful. In many cases the numbers of known binders and non-binders 

for MHC class – II alleles is not sufficient for prediction using the 

machine leaning approaches. Further, the available HLA-II servers do 

not match prediction capabilities of HLA-I servers. Currently available 

HLA-II prediction server offer only limited prediction accuracy and the 

development of improved predictors is needed for large-scale studies, 

such as proteome-wide epitope mapping and for the cases where the 

small data sets are available. Here, in the present study the application 

of negative selection algorithm (an artificial immune system paradigm) 

has been applied for the prediction of MHC class – II T-cell epitopes 

which has shown useful predictions in case of small data sets also.   

 

Negative selection algorithm is preferred over the other two artificial 

immune algorithms because it is theoretical simple and also allows any 

matching function to be employed. Different matching functions have 

different detecting regions and thus have direct influence on the 

performance of the algorithm. We have taken a simple matching 

function based on Hamming distance rule. MATCH () function 

calculates the Hamming distance between the self tolerant artificial 

lymphocyte, s, and randomly generated self tolerant artificial 

lymphocyte, r. Hamming distance 0 indicates that the two strings are 

perfectly matched with each other. The maximum score is 18 that 

indicate the strings are fully mismatched. The value of affinity threshold 
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can be between 0, 2, 4, 6, 8, 10, 12, 14, 16 and 18. In our study the 

values of thresholds 4, 6, 8, 10, 12 are taken. The results for various 

evaluation parameters viz. sensitivity, specificity, positive predictive 

value (PPV; PPV = TP / (TP + FP)), negative predictive value (NPV; 

NPV = TN / (TN + FN)), accuracy and area under ROC curve for five 

sets are shown in Table 1 to 5 for various threshold levels. A general 

rule of thumb is that an AROC value > 0.7 indicates a useful prediction 

performance and a value > 0.85 indicates a good prediction. The 

summary of the average area under receiver operating characteristics 

curve for HLA-DRB1*0301, HLA-DRB1*0401, HLA-DRB1*0701, 

HLA-DRB1*1101, HLA-DRB1*1501, HLA-DRB1*1301 have been 

shown Tables 2-7 respectively. The value of AROC for HLA-

DRB1*1501 is 0.84 which has small training set size of 32.    

 

The comparison of AROC for various MHC class – II alleles for 

different sets has been shown in figure 4. The average area under ROC 

curve for HLA-DRB1*0301, DRB1*0401, DRB1*0701, DRB1*1101, 

DRB1*1501, DRB1*1301 have been found to be 0.75, 0.77, 0.71, 0.72, 

and 0.69, and 0.84 respectively indicating good predictive performance.   

The above study shows that the negative selection algorithm gives 

useful predictive performance for MHC class - II binders and non-

binders even for small training sets. The above method can be applied 

for the classification of MHC class – II binders and non-binders even 

for the small data sets. The negative selection algorithm can be used to 

implement the servers for classification of MHC class – II binders and 

non-binders and help in designing the epitope based vaccine designing. 
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Table 1: Data sets for various MHC class – II alleles 

 

Allele Name Total  Bind>=33 NBind<33 Binders N_Binders Final N_B Train_Set Pred_Set 

DRB1-0301 605 430 175 396 156 396 317 79 

DRB1-0401 615 450 165 408 143 408 327 81 

DRB1-0701 608 468 140 430 120 430 344 86 

DRB1-1101 623 494 129 444 114 444 356 88 

DRB1-1301 133 55 78 40 57 40 32 8 

DRB1-1501 623 415 208 380 180 380 304 76 

 

Table 2: HLA-DRB1*0301  

  

Set # Sensitivity Specificity Accuracy  PPV   NPV  Area ROC 

1 0.70 0.72 0.71 0.72 0.71 0.73 

2 0.68 0.73 0.70 0.72 0.69 0.73 

3 0.72 0.72 0.72 0.72 0.72 0.75 

4 0.70 0.72 0.71 0.72 0.71 0.75 

5 0.72 0.71 0.72 0.72 0.71 0.79 

Average 0.70 0.72 0.71 0.72 0.71 0.75 

 

 

Table 3: HLA-DRB1*0401  

 

Set # Sensitivity Specificity Accuracy  PPV   NPV  Area ROC 

1 0.70 0.72 0.71 0.71 0.70 0.79 

2 0.71 0.70 0.71 0.70 0.71 0.76 

3 0.69 0.71 0.70 0.71 0.69 0.75 

4 0.68 0.71 0.70 0.71 0.69 0.77 

5 0.71 0.70 0.70 0.70 0.70 0.76 

Average 0.70 0.71 0.70 0.71 0.70 0.77 
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Table 4: HLA-DRB1*0701  

 

Set # Sensitivity Specificity Accuracy  PPV   NPV  Area ROC 

1 0.64 0.69 0.66 0.68 0.65 0.73 

2 0.65 0.67 0.66 0.67 0.65 0.71 

3 0.66 0.69 0.68 0.68 0.67 0.70 

4 0.63 0.69 0.66 0.69 0.64 0.70 

5 0.70 0.68 0.69 0.69 0.70 0.73 

Average 0.66 0.68 0.67 0.68 0.66 0.71 

 

Table 5: HLA-DRB1*1101  

 

Set # Sensitivity Specificity Accuracy  PPV   NPV  Area ROC 

1 0.65 0.70 0.67 0.69 0.66 0.70 

2 0.66 0.68 0.67 0.68 0.66 0.78 

3 0.65 0.69 0.67 0.68 0.65 0.70 

4 0.67 0.69 0.68 0.69 0.67 0.72 

5 0.68 0.66 0.67 0.66 0.68 0.71 

Average 0.66 0.69 0.67 0.68 0.66 0.72 

 

 

Table 6: HLA-DRB1*1301  

 

Set # Sensitivity Specificity Accuracy  PPV   NPV  Area ROC 

1 0.65 0.67 0.66 0.67 0.65 0.78 

2 0.63 0.65 0.64 0.65 0.63 0.94 

3 0.61 0.71 0.66 0.69 0.64 0.88 

4 0.69 0.69 0.69 0.68 0.70 0.78 

5 0.67 0.71 0.69 0.70 0.68 0.82 

Average 0.65 0.68 0.67 0.68 0.66 0.84 

 
 

Table 7: HLA-DRB1*1501  

 

Set # Sensitivity Specificity Accuracy  PPV   NPV  Area ROC 

1 0.65 0.66 0.66 0.66 0.66 0.69 

2 0.65 0.68 0.67 0.67 0.66 0.60 

3 0.68 0.66 0.67 0.67 0.68 0.72 

4 0.67 0.69 0.68 0.69 0.68 0.71 

5 0.67 0.68 0.67 0.68 0.67 0.71 

Average 0.67 0.67 0.67 0.67 0.67 0.69 
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Figure 1: Generating the set of detectors. 

 

 

 
 

Figure 2: Detecting non-self elements. 
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Figure 3: Molecular structure of Class II Histocompatibility antigen 
(HLA-DR1) (PDB ID: 1DLH) revealing binding domain in beta 

sheets representation of secondary structure sequence. 
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Area Under ROC Curve for various MHC Class II Allels
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Figure 4: Performance comparison of various MHC Class – II 

alleles for different sets.  
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