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Abstract— MHC (Major Histocompatibility Complex) is a key 

player in the immune response of an organism. It is important 

to be able to predict which antigenic peptides will bind to a 

specific MHC allele and which will not, creating possibilities 

for controlling immune response and for the applications of 

immunotherapy. However, a problem for MHC class I is the 

presence of bulges and loops in the peptides, changing the total 

length. Most machine learning methods in use today require 

the sequences to be of same length to successfully mine the 

binding motifs. We propose the use of time-based data mining 

methods in motif mining to be able to mine motifs position-

independently. Also, the information for both binding and non-

binding peptides is used on the contrary to the other methods 

which only rely on binding peptides. The prediction results are 

between 60-95% for the tested alleles. 

Keywords-motif mining, periodic pattern mining, major 

histocompatibility complex, machine learning 

I.  INTRODUCTION 

MHC (Major Histocompatibility Complex) is a large 

gene family with an important part of the immune system, 

autoimmunity and reproduction. MHC molecules take role 

in destruction of pathogens and diseased cells by showing 

self and non-self antigen peptides on their surface and 

coordinating the T-cells which identify these peptides. The 

T-Cells recognize the infected cell upon binding to the 

antigenic peptide-MHC complex and trigger the immune 

response to foreign bodies by a cascade of events. Since 

they have a key role in immune response, MHCs are critical 

in many diseases, and they can be used for controlling 

specific processes by creating peptides to bind to specific 

MHC alleles. This binding affinity to specific peptides may 

be exploited for creating peptide vaccines, suppressing 

specific alleles in organ transplants, and many other possible 

areas in immunotherapy.  

The peptide binding groove in the MHC molecules binds 

peptides with high promiscuity; it is estimated that each 

HLA (human leukocyte antigen system) class I protein can 

bind over  1000  peptides. Thus it is difficult to find specific 

motifs for experimental studies, and the large number of 

possible structures makes it infeasible to find them by 

experiments alone. Computational determination of binding 

specificity of a given peptide to specific alleles is an 

important problem in bioinformatics. Although many 

methods have been proposed, still the accuracy is not near 

what can be expected for such short motifs. The most state 

of art prediction servers can predict alleles with 75-95% 

accuracy for easy classes and 50-65% for hard classes [1, 2] 

leaving space for improvement.  

Various methods are employed for MHC binding 

peptide prediction [3]. These methods usually depend on 

identification of 2 to 3 specific anchors. ANN, quantitative 

matrices, most binding motif miners and other methods 

relying on sequence information requires the peptides to be 

in the same length, with appropriate aminoacids aligned to 

be in the same position. However the difficult classes of 

peptides show bulges and loops in their structure, changing 

the length of the peptide from the optimal length of 9. Since 

these methods cannot handle length variation, they require 

pre-processing and complex alignment of the data to get 

reasonable results. Newer methods use results of the 

sampling of random insertions for elongation and deletions 

for shortening, meant for fitting the peptide into the 9-length 

window, thus the 9 limitation is still present in the core. 

The required pre-processing step may not be always 

feasible or give good results on the training set, especially 

for such short and variable peptides. For this reason, we 

propose a method which does not require the peptides to be 

of same length and the anchor positions to be specific, using 

partial periodic pattern mining. We aim to include a novel 

method for extracting the motifs which include bulges that 

can be used on difficult sets which is based on application of 

sequence mining domain of data mining for ordered 

episodes. These temporal mining algorithms are usually 

used in intrusion detection and other future prediction 

methods, which try to capture the patterns which occur in an 

order but not necessarily consecutively. Another novel 

aspect is the use of both binding and non-binding motif 

information concurrently.  

II. METHODS 

A. Motif Mining 

The motif mining algorithm is based on the apriori 

algorithm that is used in frequent itemset discovery. Apriori 

algorithm uses the principle that all subsets of a frequent 
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itemset must also be frequent. Accordingly, it has a bottom-

up approach where the shorter frequent itemsets are 

extended to create longer candidates, which are then filtered 

by frequency of occurrence [4-6]. The longer frequent 

itemsets are also extended and this iterative extension 

process continues until no frequent itemsets of a length can 

be found.  

Our motif mining method is similar to temporal event 

mining in time-related databases. In general, the partial 

periodic pattern mining algorithms for time series data will 

try to find frequently co-occurring events, or causality 

relationships between them. In the domain of protein motifs, 

the aminoacids become the “events”, and the 

causality/future prediction aspects become the motifs that 

are sought [7]. In the approach, each sequence is taken as a 

separate time series, with many parallel events occurring at 

the same time. In these time series, if an event happens 

frequently after another event occurs, within a given time 

window, it is considered an episode of events, a motif. 

In our method, first the frequent itemsets of size 1, F(1), 

are found. The first step is straightforward, only the 

aminoacid counts at different positions within the sequences 

are counted, and if their frequency (support of the rule) is 

below the given threshold, they are filtered out. Then the 

candidate set of size 2, C(2) is created from the aminoacids 

by F(1)  F(1); a motif of length 2 which is created by 

concatenating every aminoacid (frequent motif of length 1) 

to each other, creating motifs such as LeuVal. The 

sequences in the dataset are checked for whether Leu is 

followed by Val within a window. A specific window is 

defined as being between at least (minimum space) away 

and at most (maximum space) away. If the aminoacids co-

occur within this window by a specific order, at least 

(minimum support x sequence count) times, then the motif is 

considered frequent. By this method, all of the candidate 

motifs are filtered by the minimum support and confidence 

values given, creating F(2). Thus, iteratively F(n) is created 

from filtering of C(n)=F(n-1)F(1).  

In the motif mining context, the frequent rules are not 

association rules as in a shopping basket analysis; they have 

a time value which is used for relations such as 

“before”/”after”. Then the episodes become, “if A occurs in 

a given position, B will likely to occur within n to m 

positions after A with probability of p and confidence of c”. 

There are two parameters, the slack length (s), which is the 

length after an event within which we do not look for a rule, 

and the window size (w), in which the consequent event 

may occur. Thus, n=s+1 and m=s+w-1 in the above 

definition, and the rule is given as AB (p, c) for 

parameters (s, w). The rule may also consist of 3 or longer 

events, such as ABC. 

While experimenting, we used window size of 3 and 

slack length of 0 to 8, which produced different rulesets. For 

s=0, the rules that consist of consecutive/nearby aminoacids 

are mined whereas for larger values of s, the motifs 

consisting of aminoacids at separate ends of the peptide are 

found. Since the anchor positions of MHC motifs may be 

different, different slack lengths are needed to mine them 

all. 

B. Prediction 

Once the rules are mined, these rules are used in the 

prediction and scoring process. Before prediction, rules 

from both the binding and non-binding sequences are mined 

separately. During classification of an unknown peptide, the 

peptide is scored independently by both of the binding and 

non-binding rules. The simplest classification method is the 

direct comparison of the scores for binding/non-binding by 

summing the support values of the rules that occur in the 

given peptide. However, the binding and non-binding 

datasets are usually not balanced due to the very low count 

of non-binding peptides resulting in the support values thus 

the rule count for negative class to be substantially higher. 

To overcome this problem, sum of both classes are 

normalized. Hence, for two rules with the same support 

value, one that is found in the dataset with the lower count 

of rules has a higher score, considering that rule is much 

important for that class separation than the other. For a 

training dataset an optimal multiplier for both binding and 

non-binding may be found that separates the scores with the 

greatest threshold. We added an optimization step for the 

weights for positive and negative classes and also the best 

cut-off value to use as a threshold for class separation. 

III. RESULTS 

A. Data Set 

The dataset used is MHCBN from Raghava et al. [8]. 

The total database consists of 25860 peptides, 20717 

binders and 4022 non-binders. The alleles HLA-A*0201, 

HLA-A*2, H-2Kb and HLA-B*3501 that have sufficient 

binder/non-binder data are used in testing. The binding 

affinity values of high/medium/low are combined to create 

the binder dataset and the rest are taken as non-binder for a 

binary value. The actual affinity values are not used in the 

mining/scoring process. 

B. Experiments 

Unbalanced datasets reduce the accuracy dramatically. 

However, resampling the non-binding peptides or 

undersampling the binding peptides does not increase the 

accuracy and sometimes decrease it as well [9]. To 

overcome this problem, we used the binding peptides to 

generate non-binding samples. While the patterns for non-

binding can be mined by looking at what occurs in non-

binding sequences, they can also be mined by looking at 

what does not happen in the binding peptides. Since the 

binding peptide count is high, the distribution of the 

aminoacids on a specific position was found and a new 

sequence was generated with aminoacids inversely 

proportional to the ones found in the binding sequence, i.e. 

for every position i, a random aminoacid is placed, with 



probability of the aminoacid R being selected inversely 

proportional to the occurrence of R in position i  in all of the 

binding sequences. Thus, for example, if none or very few 

of the peptides binding allele HLA-A*0201 have { D, E, R, 

K } in position 3, then it is likely that these aminoacids are 

negatively affecting the binding affinity of the peptide [10]. 

Since it is possible that the non-binding peptides are not 

varied enough to capture this pattern, newly generated non-

binder sequences can help in this process. However care 

must be taken to not suppress the actual non-binding 

sequences since there is no guarantee that the generated 

sequences actually have patterns that help in the 

classification. 

For HLA-A*0201, the ratio of positive to negative class 

was about 23 to 1, to balance this ratio to more acceptable 

levels without under-representing the actual non-binder 

data, an additional of 100 synthetic non-binder peptides 

were created to compare the effects with and without these 

synthetic peptides. Each allele is tested by dividing the data 

into 80% training 20% testing sets randomly, a total of 25 

times for an allele. The average, maximum and minimum 

results for the 4 datasets, with both training and testing set 

accuracies can be found in Table 1. 

It can be seen that the predictions have acceptable 

accuracy values of 70 to 80%. For HLA-A*0201, the false 

positive rate is the result of low non-binding count. If we 

look at the peptides that are classified as binding, when in 

fact non-binding, they carry very strong binding patterns, 

such as the L{L-I-V} pattern in anchor positions of HLA-

A*0201. These aminoacids in the 2-9 positions are accepted 

by the literature as good binders. The peptides that are 

classified as false positives carry these patterns and other 

strong patterns. It is obvious that they carry another part that 

suppresses the affinity of the binding motif to the MHC 

allele. While the method marks some peptides with good 

positive scores as non-binding due to the presence of a non-

binding signal, it cannot catch them all, possibly due to the 

lower count of the negative dataset. However an important 

point to consider is that the non-binding accuracies given do 

not reflect the whole domain of the non-binders, since the 

dataset has an experimental bias. The sequences tested and 

marked as non-binding are either poly-alanine sequences or 

known binding sequences, on which mutations are carried 

out repeatedly to find the binding position and rules. Our 

prediction method will accurately find non-binders that do 

not carry the binding patterns, which are under-represented 

in this dataset, showing lower negative prediction accuracy 

than the actual value. To solve these problems, the method 

of rule cascade was proposed. Basically, the algorithm will 

try to cascade the rules for the optimal decision making. If a 

binding motif in a peptide is followed by a non-binding 

signal, it would most likely non-binding, if the non-binding 

signal is strong to inhibit binding process. A decision tree 

like structure and a SVM classifier was built on the presence 

of the different signals in each class to assist in 

classification. Predictor vectors to be used in these 

classifiers are created by the binary values of rules in a 

given peptide. If a peptide contains a motif, it is 1 for that 

column, otherwise 0. When coupled with the class value of 

binder (1) and non-binder (0), the dataset can be classified 

with different classifiers.  

The accuracy values for different classifiers are given in 

Table 2. The classifiers were all tested with 5-fold cross 

validation. However some of them were tested by creating 

the whole vector set, i.e. whole dataset was used to mine the 

rules, and then when the dataset is created, it is tested by 

TABLE 1: The results for the prediction of 4 MHC class I alleles, with 80% training, 20% testing set separation repeated for 25 times. 

DataSet 
Accuracy Sensitivity Specificity Precision 

Avg Max Min Avg Max Min Avg Max Min Avg Max Min 

HLA-A*0201 
(1390 Pos, 60 Neg) 

Train 0.806 0.838 0.757 0.808 0.843 0.754 0.756 0.854 0.646 0.987 0.992 0.984 

Test 0.794 0.852 0.762 0.802 0.860 0.773 0.620 0.917 0.333 0.980 0.995 0.964 

HLA-A*0201 +  
100 Synthetic Neg 

Train 0.807 0.876 0.712 0.808 0.890 0.708 0.771 0.854 0.708 0.988 0.992 0.978 

Test 0.795 0.883 0.728 0.804 0.914 0.720 0.607 0.917 0.417 0.979 0.995 0.962 

HLA-A*2 
(682 Pos, 222 Neg) 

Train 0.720 0.751 0.684 0.714 0.772 0.655 0.739 0.853 0.684 0.897 0.919 0.883 

Test 0.747 0.808 0.676 0.809 0.891 0.715 0.556 0.733 0.378 0.849 0.888 0.803 

H-2Kb 
(255 Pos, 43 Neg) 

Train 0.639 0.769 0.492 0.601 0.775 0.422 0.871 0.971 0.735 0.967 0.992 0.942 

Test 0.580 0.750 0.400 0.577 0.824 0.333 0.596 0.889 0.222 0.890 0.972 0.854 

HLA-B*3501 
(295 Pos, 22 Neg) 

Train 0.811 0.941 0.680 0.812 0.958 0.657 0.798 1.000 0.647 0.983 1.000 0.972 

Test 0.775 0.941 0.609 0.793 0.958 0.593 0.563 1.000 0.200 0.957 1.000 0.891 

 
TABLE 2: The results for HLA-A0201 dataset with different classifiers. As it can be seen, binder and non-binder sample count being unbalanced affects the 

specificity negatively. SVM on the first column, even being tested on the test data instead of the training and is expected to be less accurate, shows greater 

accuracy and specificity than any of the other methods. 

Method Pos # Neg # Accuracy Sensitivity Specificity Precision 

SVM (20% test set accuracy, with 
Synthetic Non-binders) 

278 112 0.962 0.975 0.929 0.971 

SVM (whole set accuracy) 1390 60 0.951 0.979 0.300 0.970 

Naïve Bayesian 1390 60 0.823 0.836 0.533 0.976 

Naïve Bayesian Multinomial 1390 60 0.888 0.902 0.567 0.980 

Decision Tree 1390 60 0.916 0.939 0.383 0.972 

 



cross-validation. This introduces a bias into the accuracy, 

because the rule mining process is not external to the test 

set. Other samples were tested by creating the vectors from 

the rules being mined from the 80% training set, classifiers 

being trained, again, on the training set and finally tested on 

the test set. This method does not carry a bias. However, the 

results did not show specifically any deviation from the 

whole-set and test-set accuracies, so only the first row is 

shown from those sets. 

Our aim was to show if the more complex methods 

would give better results.  As it can be seen in Table 2, the 

unbalanced counts of binders and non-binders negatively 

affected the classifiers as well. For all of the trials, the 

predictions were biased to the positive dataset. The 

classifiers try to minimize the error rate, and choose to err 

on the side of negatives (which are 1/23 in ratio to the 

binders in HLA-A*0201), thus giving greater accuracy but 

very low specificity. Balancing the training set by the 

addition of 100 synthetic non-binders improved the 

specificity dramatically (first row in Table 2). It can be seen 

that SVM gives 97.5% sensitivity and 92.9% specificity, 

much better than both other classifiers and the previous 

methods in Table 1. This accuracy is given by the 

training/testing separated data; even though it is expected to 

be lower than the other methods, the balanced set improves 

the prediction strength. Note that, the representative strength 

of the correctly classified synthetic non-binders is open to 

debate. 

IV. CONCLUSION 

We developed a method that uses sequential pattern 

mining schemes for finding the most probable binding 

motif, with position- independent information that can be 

applied to the peptides of arbitrary length to accommodate 

for the sequences with insertions and loops between the 

anchor positions. The frequent partial periodic rules that can 

explain most of the peptides are mined from the training set 

using different windows for position-independent episodes. 

For the same allele, the non-binding peptide information is 

also used for mining motifs for non-binding, since the 

mined episodes may contain arbitrary episodes that are not 

related to the binding affinity. Also, some additional 

peptides in the non-binding aminoacid positions may cause 

a previously binding peptide to become non-binding. Thus, 

we mined frequent rules for both binding and non-binding 

peptides, and use the exclusive set of the two for scoring the 

peptides. The peptides are scored according to the support 

and confidence of the frequent episodes they contain. From 

this study, position independent motifs mined with 

representing the aminoacid sequence as time series data 

proved to be usable for prediction of the binding peptides to 

MHC class I proteins. Although the accuracy of the 

algorithm is not state-of-the-art, it is in the same range. The 

pattern mining method can be improved upon to include 

some position dependency as anchor points or windows, and 

by the addition of rule merging/splitting for better class 

separation.  
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