1,001 research outputs found

    Cost modelling and concurrent engineering for testable design

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.As integrated circuits and printed circuit boards increase in complexity, testing becomes a major cost factor of the design and production of the complex devices. Testability has to be considered during the design of complex electronic systems, and automatic test systems have to be used in order to facilitate the test. This fact is now widely accepted in industry. Both design for testability and the usage of automatic test systems aim at reducing the cost of production testing or, sometimes, making it possible at all. Many design for testability methods and test systems are available which can be configured into a production test strategy, in order to achieve high quality of the final product. The designer has to select from the various options for creating a test strategy, by maximising the quality and minimising the total cost for the electronic system. This thesis presents a methodology for test strategy generation which is based on consideration of the economics during the life cycle of the electronic system. This methodology is a concurrent engineering approach which takes into account all effects of a test strategy on the electronic system during its life cycle by evaluating its related cost. This objective methodology is used in an original test strategy planning advisory system, which allows for test strategy planning for VLSI circuits as well as for digital electronic systems. The cost models which are used for evaluating the economics of test strategies are described in detail and the test strategy planning system is presented. A methodology for making decisions which are based on estimated costing data is presented. Results of using the cost models and the test strategy planning system for evaluating the economics of test strategies for selected industrial designs are presented

    Techniques for Improving Security and Trustworthiness of Integrated Circuits

    Get PDF
    The integrated circuit (IC) development process is becoming increasingly vulnerable to malicious activities because untrusted parties could be involved in this IC development flow. There are four typical problems that impact the security and trustworthiness of ICs used in military, financial, transportation, or other critical systems: (i) Malicious inclusions and alterations, known as hardware Trojans, can be inserted into a design by modifying the design during GDSII development and fabrication. Hardware Trojans in ICs may cause malfunctions, lower the reliability of ICs, leak confidential information to adversaries or even destroy the system under specifically designed conditions. (ii) The number of circuit-related counterfeiting incidents reported by component manufacturers has increased significantly over the past few years with recycled ICs contributing the largest percentage of the total reported counterfeiting incidents. Since these recycled ICs have been used in the field before, the performance and reliability of such ICs has been degraded by aging effects and harsh recycling process. (iii) Reverse engineering (RE) is process of extracting a circuit’s gate-level netlist, and/or inferring its functionality. The RE causes threats to the design because attackers can steal and pirate a design (IP piracy), identify the device technology, or facilitate other hardware attacks. (iv) Traditional tools for uniquely identifying devices are vulnerable to non-invasive or invasive physical attacks. Securing the ID/key is of utmost importance since leakage of even a single device ID/key could be exploited by an adversary to hack other devices or produce pirated devices. In this work, we have developed a series of design and test methodologies to deal with these four challenging issues and thus enhance the security, trustworthiness and reliability of ICs. The techniques proposed in this thesis include: a path delay fingerprinting technique for detection of hardware Trojans, recycled ICs, and other types counterfeit ICs including remarked, overproduced, and cloned ICs with their unique identifiers; a Built-In Self-Authentication (BISA) technique to prevent hardware Trojan insertions by untrusted fabrication facilities; an efficient and secure split manufacturing via Obfuscated Built-In Self-Authentication (OBISA) technique to prevent reverse engineering by untrusted fabrication facilities; and a novel bit selection approach for obtaining the most reliable bits for SRAM-based physical unclonable function (PUF) across environmental conditions and silicon aging effects

    Advanced information processing system: The Army fault tolerant architecture conceptual study. Volume 1: Army fault tolerant architecture overview

    Get PDF
    Digital computing systems needed for Army programs such as the Computer-Aided Low Altitude Helicopter Flight Program and the Armored Systems Modernization (ASM) vehicles may be characterized by high computational throughput and input/output bandwidth, hard real-time response, high reliability and availability, and maintainability, testability, and producibility requirements. In addition, such a system should be affordable to produce, procure, maintain, and upgrade. To address these needs, the Army Fault Tolerant Architecture (AFTA) is being designed and constructed under a three-year program comprised of a conceptual study, detailed design and fabrication, and demonstration and validation phases. Described here are the results of the conceptual study phase of the AFTA development. Given here is an introduction to the AFTA program, its objectives, and key elements of its technical approach. A format is designed for representing mission requirements in a manner suitable for first order AFTA sizing and analysis, followed by a discussion of the current state of mission requirements acquisition for the targeted Army missions. An overview is given of AFTA's architectural theory of operation

    AI/ML Algorithms and Applications in VLSI Design and Technology

    Full text link
    An evident challenge ahead for the integrated circuit (IC) industry in the nanometer regime is the investigation and development of methods that can reduce the design complexity ensuing from growing process variations and curtail the turnaround time of chip manufacturing. Conventional methodologies employed for such tasks are largely manual; thus, time-consuming and resource-intensive. In contrast, the unique learning strategies of artificial intelligence (AI) provide numerous exciting automated approaches for handling complex and data-intensive tasks in very-large-scale integration (VLSI) design and testing. Employing AI and machine learning (ML) algorithms in VLSI design and manufacturing reduces the time and effort for understanding and processing the data within and across different abstraction levels via automated learning algorithms. It, in turn, improves the IC yield and reduces the manufacturing turnaround time. This paper thoroughly reviews the AI/ML automated approaches introduced in the past towards VLSI design and manufacturing. Moreover, we discuss the scope of AI/ML applications in the future at various abstraction levels to revolutionize the field of VLSI design, aiming for high-speed, highly intelligent, and efficient implementations

    Testability and redundancy techniques for improved yield and reliability of CMOS VLSI circuits

    Get PDF
    The research presented in this thesis is concerned with the design of fault-tolerant integrated circuits as a contribution to the design of fault-tolerant systems. The economical manufacture of very large area ICs will necessitate the incorporation of fault-tolerance features which are routinely employed in current high density dynamic random access memories. Furthermore, the growing use of ICs in safety-critical applications and/or hostile environments in addition to the prospect of single-chip systems will mandate the use of fault-tolerance for improved reliability. A fault-tolerant IC must be able to detect and correct all possible faults that may affect its operation. The ability of a chip to detect its own faults is not only necessary for fault-tolerance, but it is also regarded as the ultimate solution to the problem of testing. Off-line periodic testing is selected for this research because it achieves better coverage of physical faults and it requires less extra hardware than on-line error detection techniques. Tests for CMOS stuck-open faults are shown to detect all other faults. Simple test sequence generation procedures for the detection of all faults are derived. The test sequences generated by these procedures produce a trivial output, thereby, greatly simplifying the task of test response analysis. A further advantage of the proposed test generation procedures is that they do not require the enumeration of faults. The implementation of built-in self-test is considered and it is shown that the hardware overhead is comparable to that associated with pseudo-random and pseudo-exhaustive techniques while achieving a much higher fault coverage through-the use of the proposed test generation procedures. The consideration of the problem of testing the test circuitry led to the conclusion that complete test coverage may be achieved if separate chips cooperate in testing each other's untested parts. An alternative approach towards complete test coverage would be to design the test circuitry so that it is as distributed as possible and so that it is tested as it performs its function. Fault correction relies on the provision of spare units and a means of reconfiguring the circuit so that the faulty units are discarded. This raises the question of what is the optimum size of a unit? A mathematical model, linking yield and reliability is therefore developed to answer such a question and also to study the effects of such parameters as the amount of redundancy, the size of the additional circuitry required for testing and reconfiguration, and the effect of periodic testing on reliability. The stringent requirement on the size of the reconfiguration logic is illustrated by the application of the model to a typical example. Another important result concerns the effect of periodic testing on reliability. It is shown that periodic off-line testing can achieve approximately the same level of reliability as on-line testing, even when the time between tests is many hundreds of hours

    Application of artificial intelligence techniques to probeless fault diagnosis of printed circuit boards

    Get PDF
    This thesis describes investigations which led to the development of a failure diagnosis expert system for printed circuit boards which exploits functional test data. The boards considered are highly complex mixed signal (analogue and digital) systems. The data is output from automatic test equipment which is used to test every board subsequent to manufacture.The use of a conventional machine learning technique produced only limited success due to the very large search space of failure reports. This also ruled out the use of some conventional knowledge-based approaches. In addition, there was a requirement to track changes m printed circuit board design and manufacture which also ruled out some techniques.Our investigations lead to the development of a system which tracks changes by learning in a more restricted search space derived from the original space of reports. The system performs a diagnosis by matching a failure report with information about previously seen reports. Both exact and inexact matching were investigated. The matching rules used are heuristic. The system also uses basic circuit connectivity information in conjunction with the matching procedure to improve diagnostic performance especially in cases where matching fails to identify a unique component

    The Fifth NASA Symposium on VLSI Design

    Get PDF
    The fifth annual NASA Symposium on VLSI Design had 13 sessions including Radiation Effects, Architectures, Mixed Signal, Design Techniques, Fault Testing, Synthesis, Signal Processing, and other Featured Presentations. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The presentations share insights into next generation advances that will serve as a basis for future VLSI design

    Advanced information processing system for advanced launch system: Hardware technology survey and projections

    Get PDF
    The major goals of this effort are as follows: (1) to examine technology insertion options to optimize Advanced Information Processing System (AIPS) performance in the Advanced Launch System (ALS) environment; (2) to examine the AIPS concepts to ensure that valuable new technologies are not excluded from the AIPS/ALS implementations; (3) to examine advanced microprocessors applicable to AIPS/ALS, (4) to examine radiation hardening technologies applicable to AIPS/ALS; (5) to reach conclusions on AIPS hardware building blocks implementation technologies; and (6) reach conclusions on appropriate architectural improvements. The hardware building blocks are the Fault-Tolerant Processor, the Input/Output Sequencers (IOS), and the Intercomputer Interface Sequencers (ICIS)
    corecore