
THE UNIVERSITY OF HULL

Application of Artificial Intelligence Techniques
to Probeless Fault Diagnosis of

Printed Circuit Boards

being a Thesis submitted for the Degree of
Doctor of Philosophy in

Electronic Engineering & Computer Science

in the University of Hull

By

Tughrul Sati Arslan, BEng(Hons) DipEng

January 1994

To Mum & Dad
In gratitude for their Care, Support, and Trust.

Acknowledgments

I would like to thank my supervisor, Professor Gaynor. E. Taylor, for her guidance , support,
and sharing her valuable experience in circuit design and test which has been an inspiration to
me. I would also like to express my gratitude for her guidance throughout the years of my
undergraduate and postgraduate studies in Hull. It has been an honour and a valuable experience
to work with Professor Taylor.

I am grateful for the supervision provided by Dr. L. Bottaci and his continuous guidance and
support with this work. His efficient direction to understanding the fundamentals of LISP in
the early months of this work was an important base to explore and implement a number of
methods/ideas which helped me in understanding AI and building/improving the system
developed here.
I would like also to thank Ericsson Telecommunications Ltd. (Scunthorpe) for their technical
and financial assistance. Specifically, thanks are due to Mr. D. Clayphan, Mr. D. Shaw, and all
the staff in the test engineering department.

Finally, I would like to thank all the staff and the researchers in the Department of Electronic
Engineering for providing me with memorable years.

1

Abstract

This thesis describes investigations which led to the development of a failure diagnosis expert
system for printed circuit boards which exploits functional test data. The boards considered are
highly complex mixed signal (analogue and digital) systems. The data is output from automatic
test equipment which is used to test every board subsequent to manufacture.

The use o f a conventional machine learning technique produced only limited success due to the
very large search space o f failure reports. This also ruled out the use of some conventional
knowledge-based approaches. In addition, there was a requirement to track changes m printed
circuit board design and manufacture which also ruled out some techniques.
Our investigations lead to the development of a system which tracks changes by learning in a
more restricted search space derived from the original space o f reports. The system performs a
diagnosis by matching a failure report with information about previously seen reports. Both
exact and inexact matching were investigated. The matching rules used are heuristic. The system
also uses basic circuit connectivity information in conjunction with the matching procedure to
improve diagnostic performance especially in cases where matching fails to identify a unique
component.

11

Publications

i. An AI based approach to automatic fault diagnosis for mixed digital/analogue
circuits.
T. S . Arslan, L. Bottaci, G.E.Taylor.
IEE Colloquium, Nov 1990, London.

ii. An Intelligent Fault Diagnosis System for Mixed analogue/digital PCBs.
T. S . Arslan, L. Bottaci, G.E.Taylor.
Pacific Test Workshop, May 1992, Canada.

iii. A Fault Dictionary Based Expert System for Failure Diagnosis in a Multiple PCB
Environment.
T. S . Arslan, L. Bottaci, G.E.Taylor.
Journal of Engineering Application Of Artificial Intelligence, Vol. 6, No. 5, pp.
447-456,1993.

in

List o f Terminologies

A I Artificial Intelligence
ASIC Application Specific Integrated Circuit
ATE Automatic Test Equipment
a t p g Automatic Test Pattern Generation
BUT Block Under Test
CAT Connectivity Analysis Table
CCFR Component-Component Frequency Record
CPN Component Position Number
CUT Circuit Under Test
FC Final Component CPN (chosen using connectivity)
GTR General Test Representation
HDL Hardware Description Language
1C Integrated Circuit
InC Intermediate Component CPN (selected by matching)
KB The knowledge-base
KCL Kirchhoff’s Current Law
LB Lower Bound of a score range
LIC Line Interface Card
Match-pattern The significant sequence of failed tests in a report
MBE Multiple Board Environment
PCB Printed Circuit Board
PF Periodic Frequency of a score range
RB The rule-base
RBP Range Building Period
RL Rule Location in the rule-table
RMB Range Manipulation Buffer
RRL Reverse Rule Location in the rule-table
S, P, G, F The matching scores
SB Suspect Buffer
SBFT Single Boolean Function Tree
s c Statistical Count of a SR in statistical-ranges
SF Suspect fault
SR Secondary Rule
SRRU Smallest Repair Replaceable Unit

IV

STD Standard Deviation value
T B F T

Test-pattern

TF

VB

V I

UUT

V L SI

VSA

Twin Boolean Function Tree
Any sequence of failed tests in a report

Correct Faulty component Position Number
Upper Bound of a score range

User Interface
Unit Under Test

Very Large Scale Integration
Version Space Algorithm

v

Table of Contents

CHAPTER ONE - INTRODUCTION
1.1 The Need for Test and Diagnosis ^
1.2 A Case of Test and Diagnosis ^
1.3 Preliminary Introduction to The Thesis
CHAPTER TWO- A REVIEW OF LITERATURE OF FAILURE DIAGNOSIS

TECHNIQUES FOR MIXED ANALOGUEVDIGITAL CIRCUITS
2.1 Introduction ^

2.2 Mathematical Techniques ^
2.3 Fault Dictionaries ^

2.3.1 Diagnosing Digital Circuits 10
2.3.2 Diagnosing Analogue Circuits 11

2.4 Artificial Intelligence Techniques ^

2.4.1 Theoretical Background 13
2.4.1.1 Expert Systems 13

2.4.1.1.1 Rule-Based Systems 13
2.4.1.1.2 Model-Based Systems 14

2.4.1.1.3 Hybrid Systems 15

2.4.1.2 Machine Learning 15

2.4.2 Existing Research Work in Application of AI to the Diagnosis of
Electronic circuits 22

2.4.2.1 Expert Systems in the Literature 22
2.4.2.1.1 Existing Rule-Based Systems 22
2.4.2.1.2 Existing Model-Based Systems 24
2.4.2.1.3 Existing Hybrid Systems 24

2.5 Conclusions 25

CHAPTER THREE - A DETAILED EXAMINATION OF A TEST AND DIAGNOSIS
CASE

3.1 Introduction 27

3.2 General Design O f The PCB 27
3.3 The Data 28

3.3.1 Ambiguities In The Data 31
3.4 Investigationof the Problem Domain 31

vi

CHAPTER FOUR-THE AUTOMATICALLY GENERATED DECISION TREE
METHOD

4.1 Introduction 33

4.2 Generating a Tree for Fault Finding 33

4.2.1 Organization of the Data 34
4.2.2 Generating a Decision Tree 35
4.2.3 The Fault Diagnosis Procedure 37

4.3 Performance Evaluation 37

4.3.1 Biasing the Trees 37
4.3.2 Building Trees Based on the Data 41

4.3.2.1 Compactness : An Alternative for Sparseness 42
4.3.2.2 Trees Based Upon All the Data 43

4.3.2.3 Trees Based Upon the Most Common Faults in the Data

44
4.4 Conclusions 46

CHAPTER FIVE- THE DEVELOPMENT OF A FAULT DICTIONARY BASED
SYSTEM

5.1 Introduction 49
5.2 System Implementation and Main Elements 50

5.2.1 The Knowledge-Base (KB) 51
5.2.1.1 Test-Pattern KB 51

5.2.1.2 Test-Significance KB 52
5.2.2 The Matcher (the knowledge-base search) 53
5.2.3 The Development of a Rule-Base for Evaluating Match Quality 56

5.2.3.1 Initial Investigations 56

5.2.3.2 Generating a Rule-Table 58
5.2.4 Heuristic Rules 61

5.2.4.1 Observations Based on the Data 61

5.2.4.2 Heuristics Used During Diagnosis 63
5.3 System Learning 63

5.4 A W alk Through the System 64
5.5 System Evaluation Environment 65
5.6 System Performance 68
5.7 Conclusions 69

CHAPTER SIX - ANALYSIS OF SPECIAL CASES IN THE DATA
6.1 Introduction 71
6.2 Multiple Individual Failure Cases 72

vii

6.2.1 The Last Individual 72

6.2.1.1 An Overview 72

6.2.1.2 A More Comprehensive Examination of the Cases 74

6.2.1.2.1 Separate Individuals 75
Case 1 75

Case 2 75
Case 3 75

Discussion of the Cases 76
6.2.1.2.2 Adjacent Individuals 76

Case 4 76

Case 5 76
Discussion of the Cases 77

6.2.2 The Odd Individual Cases 77
6.2.2.1 Possible explanations 78

6.2.3 The Wrong-Test Cases 78
6.2.3.1 Group 1 78
6.2.3.2 Group 2 80

6.2.4 The Wrong-Individual Cases 81
6- 3 Conclusions 82

CHAPTER SEVEN - THE USE OF CIRCUIT CONNECTIVITY
7.1 Introduction 85

7.2 A Basic Circuit Compiler 86

7.2.1 Basic Circuit Representation Units 87

7.2.2 Compilation Mechanism 87
7- 3 Filtering Matching Suspects 89

7.3.1 Faults with Identical Symptoms 89

7.3.1.1 The Use of Connectivity Analysis Tables (CAT) 89

7.3.2 Faults with Semi-Identical Symptoms 93

7.4 Multiple Module Failure 94

7.4.1 Fault Identification (Diagnosis) 95

7.4.2 Updating the System 96
7-5 Other Cases 97

7-6 Analysis o f Results 98
7.7 Conclusions 99

viii

CHAPTER EIGHT- THE DEVELOPMENT OF AUTOMATIC SELF-LEARNING
TECHNIQUES

8.1 Introduction 100

8.2 A Statistical Learning Technique 101

8.2.1 Rule-Table Features 101
8.2.2 Rule Update 102

8.2.3 Rule Execution (Diagnosis) 105
8.3 Statistical-Ranges Learning Techniques 106

8.3.1 Introduction 106
8.3.2 The Development o f the Technique 107

8.3.3 The Construction of Ranges 109
8.3.3.1 Processing Scores (Divide and Expand) 110

8.3.3.2 Buffering Noise 112
8.3.3.3 Flushing Redundancies 113
8.3.3.4 Performance Test 114

8.3.4 Implementation 117

8.3.4.1 Rule Execution (Diagnosis) 118
8.3.4.2 Rule Update 120

8.4 Results 122

8.4.1 Performance charts 122

8.4.2 Learning Curves 124
8.4.2.1 Initialised Rule-Table 125
8.4.2.2 Non-Initialised Rule-Table 126

8.4.3 Comments on the Results 127
8.5 Conclusions 127

CHAPTERNINE - LEARNING WITH VERSION SPACES
9.1 Introduction 129

9.2 The Version Space Algorithm 130

9.3 Learning Matching Rules Using VSA 130

9.3.1 Basic Procedure 130

9.3.2 Dealing with Noise 132
9.4 Implementation and System performance 133
9-5 Analysing VSA Learning 138
9.6 Conclusions 141
CHAPTER TEN - FURTHER INVESTIGATIONS OF WAYS OF IMPROVING SYS

TEM PERFORMANCE
10.1 Introduction 143

IX

14310.2 More Comprehensive Matching

10.2.1 Introduction ^

14410.2.2 Evaluating a Match
w 4 i n

10.2.3 The Matching Procedure

10.2.4 Analysis of the Results
10.2.5 Investigating Alternative Approaches 154

10.3 Utilization o f Measured Parameters

15610.3.1 Introduction
10.3.2 Modification to Knowledge-base Structure 156

15710.3.3 Investigating the Diagnosis

15810.3.4 Results

15910.4 Conclusions

CHAPTER ELEVEN - DIAGNOSIS OF MULTIPLE PCB STYLES
11.1 Introduction

11.2 Board PCB2 162
. . 16211.2.1 Characteristics

i ¿ra11.2.2 Results and Analysis

11.3 Board PCB3 166
11.3.1 Characteristics 166

11.3.2 Results and Analysis 166
16911.4 Operating in a Multiple Board Environment

11.4.1 Modifications ^
17111.4.2 Use of Circuit Connectivity

11.5 Conclusions ^
CHAPTER TWELVE - FINAL CONCLUSIONS AND SUGGESTIONS FOR THE

FUTURE
12.1 Summary and Main Conclusions o f the Thesis 17^

17812.2 A Final Comment on System Performance

12.3 Comparison of Standard and Heuristical Techniques 179

12.4 Originality of Research ^

18212.5 System Implementation

12.6 Suggestions for Future W ork ^

12.6.1 Automatic Disposal of Old Data 184
12.6.2 Automatic Selection o f a Match Parameter 185
12.6.3 Investigating the Use o f Neural Networks 185
12.6.4 Continuation of Analysis with New Data 186

x

APPENDIX A - DATA FOR BIASING THE DECISION TREES 187

APPENDIX B - THE MANUAL RULE-TABLE 189
APPENDIX C - INVESTIGATING THE USE C O ^ C T T O ^ ^ L Y S I S

TABLES WITH EXTRACTED EXAMPLES FROM THE DATA

CASE::1 194

CASE::2 194

CASE::3 194
CASE::4 195

CASE:: 5 195
CASE:: 6 195

CASE::7 195
CASE::8 196
CASE::9 196

CASE:: 10 196
CASE:: 11 197

CASE:: 12 198
CASE:: 13 198
CASE:: 14 199
CASE:: 15 199

CASE:: 16 199
CASE:: 17 200

CASE:: 18 200
CASE:: 19 200

CASE::20 200
APPENDIX D - LEARNING CURVES
D-l Using Manual Rules 2^2
D. 2 Using Rule-Learning Techniques 203
APPENDIX E - INTELLIGENT FAULT DIAGNOSIS SYSTEM (IFADS)

User Manual
E . l Introduction 2®^
E.2 A walk through menu options 206

E .2 .1 Menu selection error recovery 206
E.2.2 Operator Menu 206

E.2.2.1 Automatic Fault Diagnosis 207
E.2.2.2 Update PBA Record 209
E.2.2.3* Manual Fault Input 210
E.2.2.4 Advice Diagnosis 211

xi

E.2.2.5 System Administration 211

E.2.3 Administrator Menu 212

E.2.3.1 Update PB As to KB 212

E.2.3.2 Backup Updated PBAs 212

E.2.3.3 MS-DOS Window 213
E.2.3.4 Monitor Serial Port 213
E.2.3.5 Exit System 213
E.2.3.6 Return to Main Menu 213

E.3 The System Environment 213

E.3.1 Information files 214
E.3.1.1 Initialisation files 214

E.3.1.1.1 .backup.init 214

E.3.1.1.2 .pswd.ff 214
E.3.1.1.3 .spinit 214

E.3.1.2 Knowledge-base files 215

E.3.1.2.1 ft.ff 215
E.3.1.2.2 tdist.ff 215

E.3.1.3 PB A files 215
E.3.1.3.1 File format 216

E.3.1.4 Backup files 217

E.3.2 Source files 218
E.3.2.1 ifad 218
E.3.2.2usrid 218

E.3.2.3 msp 218

E.3.3 System Users 219
E.3.3.1 operator 219
E.3.3.2 manager 219

E.3.3.3 smanager 220
E.4 System maintenance 220

E.4.1 System Powerdown 220
E.4.2 Trouble-shooting 221

E.4.2.1 System failure 221

E.4.2.1.1 Initialisation failure 221
E.4.2.1.2 PB A failure 222
E.4.2.1.3 System recovery 222

E.4.2.2 Admin password failure 222

xii

E .4.2.3 Serial port errors

E.5 Theoretical Background of The Diagnosis Technique

E.5.1 The Knowledge-Base (KB) ^
E.5.2 Searching The Data base (Matching) ^

E.5.3 The Rule-Base 225
E.5.3 Diagnosis output 227

REFERENCES

223

xiii

TahlP of Figures

Figure 1-1: Computer integrated testing ^

Figure 1 -2: The functional test procedure
Figure 2-1: Illustration of min and max sparseness

Figure 3-1: The overall design of the PCB ^
Figure 3-2: A chart of the faults in the data ^

Figure 4-1: The two types of trees used ^
Figure 4-2: A simple example of generating trees ^
Figure 4-3: The distribution of faults on the trees ^

Figure 5-1: The structure of a fault entry ^
Figure 5-2: The main sections of the knowledge-base ^

Figure 5-3: Searching the knowledge-base ^

Figure 5-4: A matching example ^
Figure 5-5: The system in operation ^
Figure 5-6: The debugging procedure 6g
Figure 5-7: Fault identification charts for the system ^

Figure 6-1: Illustration o f a cut off case ^
Figure 6-2: Communication between two individuals

Figure 7- T. The use of the circuit compiler gg

Figure 7-2: Stages of compilation
Figure 7-3: An illustrative example ^
Figure 7-4: An illustrative example o f levels ^

Figure 7-5: The use of CAT ^
Figure 7-6: Analysis of Table 8-1
Figure 7-7: An example of a multiple module failure ^

Figure 7-8: Use of connectivity when all modules fail ^

Figure 8-1: Statistical rule update ^

Figure 8-2: Statistical rule execution ^

Figure 8-3: The expand operation 1 ^
Figure 8-4: The divide operation
Figure 8-5: An example of expand/divide
Figure 8-6: An example of range construction ̂^
Figure 8-7: A secondary rule in statistical-ranges ^
Figure 8-8: Examples of the execution procedure of ranges ^

Figure 8-9: Charts of the statistical technique

2

xiv

Figure 8-10: Charts of the statistical-ranges technique
124

125
Figure 8-11: Learning curve of the manual system 125
Figure 8-12: Learning curves of the developed techniques

126
Figure 8-13: Learning curves without initialisation 134
Figure 9-1: A monotonic increasing score 136
Figure 9-2: Identification charts G description 137
Figure 9-3: Identification charts S description 138
Figure 9-4: Learning curves of the system 148
Figure 10-1: An inexact matching example 151
Figure 10-2: Obtained learning curves 153
Figure 10-3: Identification charts with score limit = 4 154
Figure 10-4: Identification charts with score limit = 7

157
Figure 10-5: A structure for storing values 163
Figure 11-1: Results of PCB2 alone 164
Figure 11-2: Results of PCB2 and PCB1 166
Figure 11-3: Results of PCB3 171
Figure 11-4: Test representation 173
Figure 11-5: The full system in MBE

XV

Tahlo of Tables

Table 2-1: Details of an example 2q

Table 2-2: Sparseness values for the example ^
Table 2-3: Sparseness values for the example 3Q

Table 3-1: Circuit component types ^
Table 4-1: Results of tests with a symmetrical tree 4Q
Table 4-2: Results of tests with a non-symmetrical tree ^

Table 4-3: Compactness values for the example 44

Table 4-4: Comparison of tree sizes ^
Table 5-1: Illustration of the initial criterion ^
Table 5-2: A restriction in the initial criterion ^

Table 5-3: An example of a complex rule
Table 5-4: An example of a manually tuned rule table ^
Table 6-1: Examples of inter-individual components ^

Table 6-2: Details o f the report in case 1 ?5
Table 6-3: Details of the report in case 2 ?5
Table 6-4: Details of the report in case 3 ^
Table 6-5: Details of the report in case 4 76
Table 6-6: Details of the report in case 5 77
Table 6-7: Examples of the odd individual case ^

Table 6-8: The wrong-test cases g^
Table 6-9: W rong individual cases in the data ^

Table 7-1: An example suspect list 1
Table 8-1: An example of a statistical rule-table ^

Table 8-2: Scores of faults in the example ^
Table 8-3: A table for controlling the use of ranges ^

Table 9-1: A tabulation of example

20

xvi

CHAPTER ONE
INTRODUCTION

LI The Need for Test and Diagnosis

One of the complex issues involved in designing an electronic product is that o f isolating

defective products immediately after fabrication. Such products are identified by testing all
the products coming off the manufacturing line.

The testing procedure involves applying a set of input stimuli which will result in a different

reponse for the faulty and fault-free circuits. In the past, these input stimuli were generated

manually; however, as circuit complexities increased manual methods were replaced (fully
or partially) by test pattern generation programs and the testing procedures are performed by
computer-based equipment, termed automatic test equipment (ATE).

Test pattern generation programs could follow different strategies. An obvious approach is

to exercise the circuit so as to check that it performs its intended function. A program developed
in this way is known as functional test program. For example, a functional test of a two input

NOR gate could take the form of four test patterns corresponding to the four lines of the truth

table that describes its operation. The alternative to the functional test program is the structural
test program in which the attention is directed towards defects in circuits; these being actual

physical failures that result in a functional failure.

Most of the test strategies above provide a go/no-go decision, which is the first requirement

for production testing. However, there are occasions on which a go/no-go test is not sufficient;
if the unit under test (UUT) is to be repaired, diagnostic information is required in addition,

so as to locate the fault to the smallest replaceable element in the circuit. Even with an

unrepairable unit (an integrated circuit), diagnostic information is useful as an aid to moni
toring the performance of the fabrication process.

The seriousness of the problem of testing and diagnosing electronic circuits has become

apparent relatively recently, largely as a result of developments in microelectronic technology.
The two main effects of this technology are that component sizes have been dramatically
reduced while the complexity of units at all levels (chip, PCB, system) has been dramatically
increased. Both of these effects can be reflected in the increase in the number of transistors
commercially integrated on a single chip, which has risen from 2 to more than 500,000 in
just over two decades [PUC92]. The increased complexity, mentioned above, makes an
intuitive approach to testing ineffective; while the reduction of component size, reflected in

1

the amount of circuitry that can be accommodated on a single chip, means that testing based

on the use of measuring instruments to trace signal flow through the circuits is very restricted
on PCB circuitry [WIL86].

J Components | Bareboards

Figure 1-1: Computer integrated testing

Figure 1-1 is a general illustration of the test stages involved in producing a PCB product
[MAN92]. The following are brief descriptions of each stage :

C om ponent T est Random samples of each component batch are tested to
check compliance with required specifications.

2

Bare board Test

PCB Assembly

Visual Inspection

In-circuit Test

Dynamic Logic Test

Functional Test

Harness Backplanes Test

Assembly System

Environmental Stress Test

Soak Test

Acceptance Test

The Bare boards (unpopulated PCBs) are tested for

physical defects such as cracks.

Components are assembled and soldered on bare boards.

Each PCB is tested for any visually detectable faults such
as misplacement of component.

The PCB is mounted on a fixture, which is part of the

in-circuit tester. The fixture establishes contact with

specific points internal to the PCB. The in-circuit test a im s

to identify inconsistencies in the values of passive com
ponents (resistors, capacitors, and inductors) from their
nominal values, which are programmed into the tester at
an earlier stage.

This is part of the in-circuit test and involves testing
dynamic logic parts in the circuit.

Each PCB is tested by an ATE which is driven by a

functional test progrm (see above). The PCBs are tested

by applying input stimulus and monitoring their response

via the edge connector pins (input/output pins and pins
connected to specific test points on the PCB).

If the PCB is part of a given system, then the external

wires and connectors connecting the individual PCBs are
checked and tested.

A number of PCBs are interconnected to form a more

complex function.

Mainly involves testing under different temperature

conditions to check for defected components.

ensures that the product can operate correctly for a length
of time defined in the specifications.

This includes a number of tests, set by the customer,
which ensure that the products function adequately.

3

1.2 A Case of Test and Diagnosis

This thesis investigates a problem, faced by the test engineering group at Ericsson Tele

communications Ltd., related to the testing of a number of their locally manufactured PCBs.

The test strategy followed in the company conforms to that described in the previous section
(figure 1-1). Since the problem is encountered at the functional test level, the rest of this thesis
will concentrate on this level of testing at the firm.

The functional test ATEs are LIC (Line Interface Card) testers since they communicate with
the tested PCB via an interface card which is connected to the edge connecters on the PCB

(i.e. there is no direct connection to internal points). Each ATE functionally tests the attached

PCB by applying both analogue and digital stimuli to the edge connector pins. Due to the
complex functionality of most of the PCBs examined by such equipment, a number of tests

may be required each of which may involve the application of different types of stimulus and
the examination of different pins of the edge connectors.

Passed P C Bs from

the In-circuit Test

Figure 1-2: The functional test procedure.

A PCB can pass the tests of the ATE, in which case it is considered to be ready for its intended

purpose. Otherwise, a PCB fails one or more of the tests, in which case it is considered as
faulty and taken off-line. A failure report is produced, for each faulty PCB, which lists

information regarding each failed test. The report is intended to guide the diagnostic
technicians in locating the fault. The technicians rely mainly on their experience with previous
failure cases in locating the fault, i.e. they recognize patterns of failed tests which correspond
to particular faults. However, in some cases the need arises for probing the PCB circuit using
some electronic measurement equipment such as oscilloscopes, voltm eters,. . . etc. During

4

the probing procedure voltage measurements and waveforms at certain points on the faulty

PCB are compared with the corresponding points on a known good PCB. Figure 1 -2 illustrates

the basic testing procedure followed at this stage.

Since fault diagnosis of this type is a time consuming task it causes a delay in PCB production.

The test group at the company has access to relatively large amount of data in the form of
failure reports related to the functional testing procedure and it was thought that these reports
(and those obtained in the future) could be utilized in automating the diagnosis process and
avoiding delays caused by probing. As access for both test and circuit information is limited

since the PCB design and generating the test programs are tasks which are performed in

different sites in different countries, the possibility of using a system which is based on an
artificial intelligence (AI) approach was considered. The system should accept the test failure
report for a given faulty board and output the most likely faulty component(s).

Another reason for the need for such a system is to store information which otherwise is lost

with the departure of the technical staff from the company.

L3 Preliminary Introduction to the Thesis

This thesis details the research work carried out in investigating the case described in the

previous section. In addition, the thesis describes a number of novel aspects produced as a

result o f the investigations above.

Data was obtained from the company in a number of stages. Initially, the data concerned one

of their most common PCB styles. For this reason a significant proportion of this research
work was carried out with these data. The use of other boards was investigated later through

this work.

Chapter two is a literature survey into research work carried out in the diagnosis of failures

in mixed analogue\digital circuits. The chapter describes the use of techniques which are

based on the simulation of circuit behaviour through the use of mathematical circuit theory

equations. In addition, the chapter reviews the use of fault dictionaries in diagnosing both

digital and analogue circuits. Finally, the chapter considers the work done in applying artificial
intelligence (AI) techniques to fault diagnosis of such circuits. The review revealed that most
of the work use expert systems in circuit diagnosis. The chapter also considers machine
learning techniques due to their possible application for classifying the examples in the
functional test data (see section 1.2).

Chapter three describes further aspects of the diagnosis case considered in this thesis by
analysing the data and looking at the design of the PCB concerned and its complexity.

5

The review of chapter two revealed the possibility of using machine learning techniques in

classifying the data. Chapter four considers the use of one such technique. The chapter details

the necessary modifications to the data in order to apply the technique. Other details such as

the results obtained and the limitations of the technique are also described.

Due to the inflexibility of machine learning techniques (caused by their algorithmic nature),
the use of a knowledge-based technique was considered. Such techniques could incorporate

heuristics used by the diagnostic technicians in identifying failure reports. Chapter five
describes the development o f a knowledge-based system which is modelled to mimic the

behaviour of a diagnostic technician during fault diagnosis. The chapter considers each of

the elements of the system describing the aspect which it represents in modelling the expert’s

behaviour.

The system developed in chapter five could not deal with the ambiguous cases in the data.
For this reason, a thorough analysis of the data is carried out and is described in chapter six.

The analysis aims to explain the ambiguous cases in the data in terms of the behaviour o f the
circuit. Further analysis is done on cases in the data which led to the use of heuristics by the

technicians. The aim was to generalize these heuristics or find alternative general ways of

dealing with the above cases.

The work described in chapter six suggested the need for using connectivity information in
improving individual cases in the data. Hence, chapter seven describes how circuit connec
tivity information is used to enhance the performance of the system by recovering cases which

cannot be isolated using matching alone. A number of heuristic techniques, developed as part

of this work (which are based on manipulating connectivity information), are described in
this chapter.

The system described in chapter five operates with a set of manually developed rules. Such

rules are specific and could not cope with slight changes which could be caused by changes

in the system environment (e.g., a change in the format of the failure reports). Hence, chapter

eight describes the development of two heuristic techniques which enable the system to
develop and adjust its internal rules. In chapter nine, these techniques are compared with one
of the standard techniques used in concept learning.

The work described in chapter ten aims to investigate additional ways of improving the
performance of the system. The investigations in this chapter consider additional details in
the failure reports which were not considered earlier in the system described in chapter five.

6

The work described in chapter eleven aims to investigate the ability of the system in coping

with changes in the design of the boards and to examine its performance with changes in the
information content of failure reports, which could be caused by different ATEs. For this
reason two additional boards of varying complexity are used. The results obtained are

compared and analysed in terms of their circuit design.

Chapter twelve summarises the work performed in this thesis highlighting original aspects.
A number o f suggestions are provided to be pursued in the future.

7

CHAPTER TWO
A REVIEW OF LITERATURE OF FAILURE

DIAGNOSIS TECHNIQUES FOR MIXED ANALOGUE\DIGITAL CIRCUITS

2.1 Introduction

Fault diagnosis is required so that a defective element in a circuit can be identified with a

view to repair, or to provide feedback data for improving the yield o f the manufacturing

process. The diagnosis of a fault in an electronic product follows from testing it and hence

depends on the test strategy employed (see section 1.1). In the case of structural testing,

diagnosis aims to determine a fault1 caused by a particular defect in the circuit. For example,

determining whether a particular connection is either stuck-at-1 or stuck-at-0 [MAN92] for
a digital circuit or, more generally, whether a transistor is stuck open or there is a short. In

the case o f functional testing, diagnosis aims to identify a functional failure in a component
(or a group o f components) [WIL86]. As mentioned in the previous chapter, this thesis

considers the use of functional test data in the failure diagnosis process.

The main approaches employed in the area of fault diagnosis during the last decade are either

based on mathematical circuit theory, based on fault dictionaries, or involve the use of an

artificial intelligence technique. This chapter reviews research work in the area o f fault
diagnosis o f electronic circuits, emphasising the above techniques. Based on this review, the
chapter will suggest techniques which should be applied to failure diagnosis based on the

utilization of functional test data (such as the case mentioned in section 1.2).

2»2 Mathematical Techniques

This section describes a number of papers which perform diagnosis through the simulation

of circuit behaviour by using mathematical equations which are based on the circuits to be

diagnosed. However, the complexity of such equations grows with the increase in circuit size

and complexity. For this reason, such techniques have only been applied to circuits with a
limited number of nodes and their use has only extended up to the early part of the last decade.

Biernacki [BIE81] deals with multiple-fault detection for linear analogue circuits. The method

proposed is based on measurements of voltage using current excitations and has been
developed for the location o f a number of faults. It utilizes certain algebraic invariants of

1 Here, a fault is the electrical effect o f a defect in the circuit.

8

faulty elements. Computationally, it depends on checking the consistency or inconsistency

of suitable sets of linear equations. The equations themselves are formulated via adjoint circuit

simulation.

In [WU82] a simulation-after-test algorithm for the analogue fault diagnosis problem is

proposed in which a bound on the maximum number of simultaneous failures is used to
minimize the number of test points required. The resultant algorithm is applicable to both
linear and nonlinear systems with multiple hard or soft faults and can be used to isolate failures

up to an arbitrarily "replaceable chip or subsystem". In the algorithm, the components

(individual chips, discrete components, or subsystems) are divided into two groups at each

step o f the test algorithm. It is assumed at each step that one group is composed of good

components and the known characteristics of these components are used together with the
test data to determine whether or not the remaining components are good. The process is

repeated at the next step of the test algorithm with a different subdivision o f components.
The number o f components which may be tested at any one step is dependent on the number
of test points available. The test is formulated by assuming a component connection model
for the circuit or system under test. For the linear case the component equation is modelled

in the frequency domain. The system was implemented on the VAX 11/780. The work

described in [RAP83] develops the multifrequency fault diagnosis problem in the context of

a tableau based on the use of the component connection model, which was also used in
[WU82]. This method avoids the computation of the composite system transfer function

matrix. The resulting fault diagnosis equations have a regular structure with fixed polynomial
order (often quadratic) which is exploited in the solution process. The development includes

a test for diagnosability as well as a set of bounds on the number of test frequencies necessary

to conduct a diagnosis. An iterative scheme to solve the fault diagnosis equations is proposed

and is shown to be locally convergent. The component connection model and the test algorithm

used in [WU82] were also applied on the implementation of an analogue ATPG (Automatic

Test Program Generation) for both a linear and a nonlinear case in [WEY85] and [WEY84]

respectively.

2 3 Fault Dictionaries

A fault dictionary in its simplest form is a data-base in which a number of faults are associated
with information which assist in their diagnosis. The dictionary is used as a look-up-table
during fault diagnosis. The information stored in the dictionary varies depending on the type
of the circuit (i.e., analogue or digital), as will be revealed in the next two sections. Fault

9

dictionaries have been used widely in the diagnosis of digital circuits, however their use for

analogue and mixed circuits has been limited. The next sections are a review of work in this
area.

2,3.1 Diagnosing Digital Circuits

The fault dictionary technique is one of the early techniques used in fault diagnosis o f digital
circuits. A common method of diagnosis using a fault dictionary [BEN82, WIL86, BUC89]

consists o f two stages (pre-test and post-test).

In the pre-test (off line) stage the dictionary is built by simulating the effect o f some

pre-selected test patterns (chosen by the test engineer). For each test pattern the fault-free
response and the fault cover (faults detected by a particular pattern) are stored. In the post-test

(on line) stage the circuit is supplied with the same test patterns. A decision tree is generated
[BEN82, WIL86], on-line or a priori, which is used in locating the fault. [BUC89] gives some

technical detail about the use of such a dictionary in an industrial testing environment.

[RAT86] describes a fault dictionary which is mainly used to assist fault location with a

guided probe technique [TUR90]. The fault dictionary is created based on the results o f fault

simulation, which models the effects of various fault types on circuit outputs. A fault dic

tionary generation program uses the simulator’s predictions about the faulty circuit’s primary

output states for each test pattern applied. It uses this information to compile fault signatures
-lists of primary output/pattem combinations which uniquely describe the simulated faults.

When a real circuit fails during test, a lookup program compares the failed outputs with each
fault signature; close matches indicate the likeliest fault source. The guided probe and fault

dictionary diagnostics are integrated with the system such that the fault dictionary is referenced

by the probe algorithm each time the next probing point is selected.

[TAN88] presents a system for generating system level fault dictionaries. It utilises a hardware

structure for checking the soundness of logic circuits and finding the fault if it exists. This

structure, which has the ability to trace from different points in the circuit, is used by the fault

dictionary generating system in generating fault dictionaries. The dictionary consists o f a list
° f replaceable units for each logic module ordered according to failure probability. It also
contains the name and assembly location o f the unit.

The fault dictionaries used in all of the work above are generated prior to the test of the circuit.
The work in [KAT89] describes a fault diagnosis approach which is based on post-test fault
dictionary generation. The fault dictionary is used in conjunction with an electronic beam
tester in a two stage fault diagnosis process for VLSI circuits. It is used only to store

10

faults/symptoms which cannot be detected by thorough examination of go/nogo test symp

toms (and hence a smaller dictionary is produced). Primitive gate level circuit and stuck-at
. type fault models are required.

2.3.2 Diagnosing Analogue Circuits

Research work in the area of the diagnosis of analogue circuits has been restricted in com
parison with the work done in diagnosing digital circuits. This is due to the difficulty in

testing/diagnosing such circuits, which is caused by the various ways in which an analogue
circuit can fail [QUT88]. In addition to faults caused by short and open circuits
[QUT88,QUT289], many others could occur due to variation in the values of analogue

component parameters (e.g., values of resistors and gain of transistors) form their nominal
values chosen at the design stage [MCK89]. The main difficulty in the diagnosis is caused

by variations in component parameters.

A common approach to testing analogue circuits is to compile a fault dictionary [MAS 89]
which is generated in a manner which resembles that used in the digital approach [BEN82]
and [WIL86], however, the information stored in the dictionary are mainly based on simulated

voltage measurements (as will be revealed below). Most of the work performed in this area

follows a similar approach to the fault location procedure. This procedure was first adapted

in [HOC79] and was later modified by others.

As in the digital approach, the diagnosis consists of pre-test and post-test stages. In the former

a low-level circuit simulator (SYSCAPII [HOC79], SPICE [MAS89, LIN85]) is used to
simulate the circuit to be tested, both under fault-free DC conditions and with a number of

singly-chosen faults. The fault dictionary is simply a table of single faults, input vectors

(chosen by the test engineer so as to make faults distinguishable at the output), and their

corresponding output faults. The post-test stage involves applying input simuli to the circuit

under test (similar to that in simulation). The method utilises comparison on a least square

basis in locating the faults. Fault isolation is achieved by grouping faults, with outputs which

are not sufficiently different to permit fault isolation, into ambiguity sets and manipulating
these sets using various algorithms.

Work described in [LIN85, QUT90, VIS84] involve modifying the above approach to increase
its efficiency. [LIN85] modifies the fault detection procedure such that a simple dictionary
’lookup’ operation is enough to identify the fault. This is done by using a few heuristics for
reducing the number of the test nodes in the ambiguity sets. The paper describes other
improvements which involve both the pre-test and post test stages which aim to make the

11

technique suitable for larger circuits. Another approach for reducing the number of test nodes
is described in [QUT90]. It involves calculating a sensitivity factor, which is a measure of
how sensitive a given node is to faults, for each node in the CUT. The nodes selected are
those with highest sensitivity. If the Fault Coverage obtained is not acceptable then the nodes

with the next highest are picked.

An impractical assumption made in [HOC79] is that good components have their exact
nominal behaviour. [VIS84] presents a robust approach which allows tolerance variations in

the good components.

Although all the work described is based on the development of the same approach, [HOC79]
states "Faults selected by the engineer can encompass opens, shorts, low gain device
conditions, leakage resistances, and other dc type failure modes". But the rest indicate the
suitability of their approaches to hard faults only. [HOC79] considers some historical
information in building the dictionary by considering a number of statistical reports, obtained

from different industrial sources in the USA. However, the use of the data is system inde
pendent.

The work in [PRA90] presents a fast algorithm for generating fault dictionaries for linear

analog circuits. It is based on the adjoint network concept. However, due to the computational

complexity of the algorithm it is not suitable for VLSI and other large analogue circuits.

Most o f the work carried out in the area of fault diagnosis of analogue circuitry using fault
dictionaries concentrates on testing using DC signals. Attempts at generating AC fault dic
tionaries have been limited to small circuits [PAH82, SCH79] and diagnosis efficiency

decreases as circuits increase in size. As in the case of [PRA90], this is due to the use of

mathematical equations in generating the fault dictionaries. The use of DC diagnosis for

analogue circuits is common because of the increase in manufacturing mixed Analo-

gue/Digital circuits and the use of DC in testing digital circuits. Hence the same tester could

be used in testing both parts instead of two different ATEs (or a Multi-signal ATE, which is
more expensive).

2.4 Artificial Intelligence Techniques

The use of AI techniques in the failure diagnosis of electronic circuits is potentially advan
tageous for two main reasons. These are :

12

1. The advance in the design and production of circuits has lead to an increase in

their size and complexity. This increase has made it impractical to tackle such

circuits with exahstive algorithmic diagnosis methods. However, such circuits
could be tackled by using heuristics. The field of AI is the source of many

techniques for exploiting heuristic approaches to problem solving.

2. W ith experience, humans can diagnose complex circuits that are intractable using
simulation techniques. AI techniques attempt to capture this human diagnostic

behaviour.

The rest of this section will consider those fields of AI which could be applied to the diagnosis

problem which is the subject of this thesis (see section 1.2). The section will also consider
the existing research work in these fields.

2.4.1 Theoretical Background

2.4.1.1 Expert Systems

An area o f AI, relevant to the problem addressed in this thesis, is expert systems. Expert

systems are said to be "advanced" knowledge-based systems that can solve difficult problems

[AMB87]. Expert systems attempt to emulate the methods used by a human who is an expert

in a particular field. Up-to-date knowledge about the field is usually obtained from experts
in that field and are stored in the part of the system known as the knowledge-base.

The majority of such systems in the area of fault diagnosis fall into two main classes based
on the way knowledge is utilized. These are Rule-Based Systems and Model-Based Systems.
This section will briefly introduce the two system types and will examine knowledge

representation and manipulation.

2.4.1.1.1 Rule-Based Systems

The diagnosis approach in rule-based systems is empirical, based on the supplied relationships
between faults and symptoms. The most popular approach to representing the domain
knowledge (both facts and heuristics) for such an "expert" system is by production rules,
which have the format: " IF <premise> TH EN <conclusion> "2. Rules used to deduce faults
from sysmptoms have the fo rm :

IF symptom, AND symptom2 AND . . . THEN fault,

2 Production rules can be used to represent knowledge in a model-based system.

13

Where symptom! and symptom2 are some symptoms of a given fault, fault,. In some cases,

conclusions do not point directly to faults but to some intermediate descriptions of faults
[KRI86], e.g. a functional block within which the faulty component lies, for example :

IF symptom! AND symptom2 AND . . . THEN fault within module,

Conclusions could also point to a possible repair action [HAV89], e.g.,

IF symptom, AND symptom2 AND . . . THEN replace diode

The reasoning underlying rule-based systems is known as shallow reasoning. This is because

shallow reasoning resembles the method technicians (rather than electronic engineers) use

in relating failure symptoms to the actual cause of the fault. Technicians do not use com
prehensive electronic or circuit knowledge (such as test engineers) in their diagnosis, but
follow rules (mainly based on experience) which associate symptoms with faults.

When developing such a system as many circuit failures as possible have to be represented

beforehand. And new rules have to be added to the system as unforeseen faults occur. The
process is likened to building up a fault dictionary [EVA91].

The main source of the diagnostic rules is the diagnostic technician and the circuit designer.

For this reason, a number of technicians and designers are usually interviewed (by the system

designer) in order to construct the rules for the system [JAC90]. In some cases, a limited
amount of simulation may be required in order to identify the circuit behaviour under certain

conditions [KEN91].

2,4.1.1.2 Model-Based Systems

Diagnosis, in a model based system is theoretical and based on the structural design of the

device. The system tracks normal behaviour and infers faults from violations in this behaviour.

The reasoning mechanism that model based systems utilize is known as deep reasoning. This

is the sort o f reasoning an engineer might perform. In general, a circuit is represented using

a frame oriented representation, with individual components being instances of generic object

types [RIC91]. The connections between the objects provide the network links across which
circuit information is traced during the diagnostic process. Simplistically, a fault is identified
based on discrepancies between observed and predicted values at the input or output of a

, device component. The reasoning process is facilitated by the use of a hierarchy, first tracing
faults at the highest possible level and subsequently isolating components within the faulty
sub-structure.

14

Model based systems exist which are based on structural information of electronic devices

at logical gate level [DAVE84], basic transistor level [DEK87], and more complex functional
level [TAY90]. Section 2.4.2.1.2 will describe the main structural levels used in building

model-based systems for failure diagnosis of electronic circuits.

2.4.1.1.3 H ybrid Systems

Rule-based diagnosis will efficiently diagnose familiar symptoms, but the required knowledge

acquisition is time consuming. Model-based diagnostics simplify knowledge collection by
deriving diagnosis from the design data incorporated into the model. The model can diagnose
unfamiliar symptoms, but only considers faults it can model. By combining the two

approaches, the limitations of the two, mentioned above, can be overcome since, according
to [HAV89, PFL89], the two methods complement each other and hence a powerful system
is obtained.

2_.4.1.2 M achine Learn ing

A significant limitation of the AI techniques considered so far is the need to acquire large
amounts of detailed knowledge from experts or by simulation. Machine learning is an

alternative to the manual acquisition of this knowledge.

An important part of the work done in machine learning is the learning of general relations

from sets o f examples (induction). Learning from examples involve classifying objects
without being given explicit rules. A major part of the work in this area has been carried out
by [WIN75], [MIT77], [MIT78], [QUI86], and [KOD85],

The work in [WIN75] generalizes a number of examples of configurations o f blocks to

"concepts" of arch, tent, and house. The basic approach followed starts with a structural

description o f one known instance of the concept and call that description the concept defi
nition. By examination of descriptions of other known instances of the concept, the definition

is generalized to include them. The definition is restricted to exclude objects which are not

instances of the concept in question but are very similar. Such objects are termed n ear misses.

Both [MIT77] and [MIT78] describe another approach to concept learning called version
spaces. The goal is the same as [WIN75]: to produce a description that is consistent with all
positive examples, but no negative examples in the training set. But while [WLN75] did this
by evolving a single concept description, version spaces work by maintaining a set of possible
descriptions and evolving that set as new examples and near misses are presented.

15

As training examples are processed, the notion of where the target concept might lie is refined

to form the current hypothesis of the system, which is represented as a subset of the concept
space called the version space. The version space is the largest collection of descriptions that
is consistent with all the training examples seen so far. It consists of two subsets. One subset,

called G, contains the most general descriptions consistent with the training examples seen
so far; the other subset, called S, contains the most specific descriptions consistent with the
training examples. The version space is the set of all descriptions that lie between some

element o f G and some element of S.

The algorithm for narrowing the version space is called the candidate elimination algorithm.
In general, each time a positive training example (inside the concept space) is received, the
S set is adjusted as little as possible to be more general so that it covers the new training
example. Negative training examples (outside the concept space) serve to make the G set
more specific. With each negative example, G is adjusted to include the most general set of

descriptions in the version space that do not cover the example. If the S and G sets converge,
the range of hypotheses will narrow to a single description. The algorithm is described in
greater detail in [MIT77 and MIT78].

Another approach for learning from examples is the induction of decision trees of dis

crimination function in terms of the attributes of the objects [LUG93]. An example is the
algorithm described in [QUI86], which uses an iterative method to build up decision trees.
The program starts by choosing a random subset of the training examples. The algorithm
builds a decision tree that classifies all the objects in the subset. The tree is tested on the
training examples outside the chosen subset. If all the examples are identified correctly, the

algorithm halts. Otherwise, it adds a number of training examples to the subset and the process

repeats. Each node in the tree is constructed by choosing a single attribute (from the attributes

of the examples in the data) and measuring its information yield. This is essentially, the

usefulness o f that attribute for discriminating between members of the subset. The concept

used in measuring the information yield was developed by Shannon in [SHA48]. Shannon

defines the amount of information in a given attribute as a function of the probability of
occurrence o f each possible attribute. The chosen attribute is the one with the largest yield.

As mentioned above, the discrimination made by [QUI86] was based on choosing a single
attribute from all the attributes of the objects in the training set. For examples, choosing the
attribute colour only from the set {colour, height, width}. The approach developed in
[MIC81], is based on inducing decision rules based on variable-valued logic developed by
Michalski in [MIC75]. Variable-valued logic is used for representing decision problems

16

involving many-valued variables (variables that can take on some range of values). This

approach is used in [MIC81] for developing rules for diagnosing soyabean diseases. This
approach can provide a more accurate generalization of rules, since it can accommodate for

different attributes of objects in the training set and allow these attributes to take a range of
values. Hence, a possible boolean recognition function for the same example above would
be:

(colour = blue) or ((colour = red) and (width > 3))

Due to the flexibility with which decision rules could be represented by Michalski’s approach
relative to the rest of the approches encountered so far, the rest of this section will be dedicated

to the theoretical aspects involved in this approach.

The approach followed by [MIC81], operates on groups o f example objects by making
generalizations by similarity detection. As a result, an expression is produced for each group
which describes the examples in that group only.

Recognizing groups o f elements from a large group by considering different attributes of

these elements is performed using recognition functions, which are boolean expressions in

terms of the different attributes of the group which define an element or a group of elements

within the large group. Developing a recognition function for two different groups is based

upon an algorithm [MIC81]. The algorithm is described below. The description is followed
by a worked example. In the description a number of definitions are used.

Definitions

The following terms will be used throughout these definitions :

If we consider a group (set) of elements E = {eu e2....... ,en}, where each element can be

specified by different values of the attributes X = {XUX2, ,XZ}, where n and/are integers,
then

!) G (e je)

This represents the most general recognition function which recognizes the element ex
and rejects the element ey This function is obtained by comparing the values of the
attributes in and ej. If the variable Xt has the same value in e, and eJt then X, does not
occur in G(e,/ej).

17

This function will be in the form of disjunctions (logical sum):

Xt v X j Vv XkwhereX„Xj,Xk e X

2) G(ei/{ej})

This represents the most general recognition function which recognizes the element et
and rejects the set of elements {e,}.

For each ek in {ej}, G(ejek) is found. The conjunction of all the Gs obtained is the most
general recognition function which recognizes the element ei and rejects the set of

elements {ej}.

This function will be in the form of the conjunction o f disjunctions (product o f sums):
(X ^ X j Vv Xk) A

(X , v X * v) a

The above function can be multiplied out to form disjunctions of conjuctions (sum of
products):

(X t A X j A A X k) V

(X jA) v

Each term in this disjunction is a recognition function. The question thus arises as to
which of these is the most suitable or best function. In choosing among alternative
recognition functions, Michalski [MIC81,KOD85] employs the notion of sparseness.

Sparseness

sparseness describes the generality of a function which is describing a given set of
elements, and is defined as the difference between the total number o f different

18

elements the recognition function can potentially recognize and the different number

o f elements which have been actually observed (i.e, the elements which we actually

have in the set).

3) 0^,/left
This represents the "best" recognition function which recognizes the element e¡ and

rejects the set of elements {e, } (see 2).

According to Michalski, the best term is the one with the minimum sparseness. The

choice of the best term here resembles that made in [QUI86], where the measure o f the

information yield of each attribute is considered in the choice of the "best" attribute for
making a decision at a given node of the tree. Michalski indicates that the reason why
the term with minimum sparseness is chosen to represent Gopt(e/{ej}) is that since

sparseness estimates a degree of generalization in the recognition function, then the
less the sparseness the more specific is the information described. Whereas, using
maximum sparseness a more general is the describtion. The concept of sparseness is

illustrated in figure 2-1, where + represents the positive examples in the data space and

- represents the negative examples.

1 - - - - - - - - - — - - - - ~ - - - - - - - - - - - - - - - data apace _ data apace

! + + Ii \ 1 \ 1 _
i i \
1 I \ /
! + ! \ + '1 \ \! \ \
1 > \

“ ! + f .
¡ +
11 / /1 \ /
1 + \+J
111

- • -

(a) Maximum sparsness (b) Minimum Sparsness
Figure 2-1: Illustration o f maximum and minimum sparseness.

The following example illustrates the use of the above concepts in identifying a recognition
function which recognizes the elements of groupi rejecting the elements o f group2. Table 2-1
includes the details of the elements of each group.

19

G ro u p E x a m p le T0 T, t 2 T3

1 e i 1 - - -

<*2 - 1 - 1

e3 - - 1 -

2 e4 - - - 1

Table 2-1: Details of the elements for the example

The examples of the table have the test domain [T0.. T3], any of which could fail. Failure of

any of the tests for a particular example is indicated with a 1 in the corresponding test slot.

G(e,/e3) = T 0 + T 2

G(e,/e4) = T 0 + T 3

The recognition function which recognizes e, but rejects the whole of group2, G(e1/{e3,e4})
is obtained by logically ANDing the above two expressions to obtain the following;

G(e1/{e 3,e4}) = T 0 + TQT 3 + T0T 2 + T 2T 3

To find the sparseness of each term we use the definition mentioned previously. Considering
the first term, T0, the total number of different elements it can potentially recognize is (1.2.2.2

= 8), while the number of elements it can actually recognize in group, is 1 (e, only) and hence
the sparseness for this term is 7. The procedure is used to calculate the sparseness for each
term in table 2-2 below.

G (e,/{e3,e4}) Sparseness

T0 7

t 0t 3 3

T J 2 3

t 2t 3 3

Table 2-2: Sparseness values for each term in G(e,/{e3,e4}).

20

As mentioned above, Gopt(e1/{e3,e4}) is the term with the minimum sparseness. This means

all the terms with the sparseness of 3 are possible candidates for Gopt(e1/{e3,e4}).

Now, a recognition function, R, can be formed. At this stage R = Gopt(e!/{e3,e4}). Testing the
recognition of R for the elements of groups only ej can be recognized (This is the case with

all the candidate terms o f Gopt, see above). Since the recognition is not complete we repeat

the same procedure above for finding Gopt using e2, to be added to (logically ORed with) R.
In a manner similar to that above, it can be shown that:

G(e2/{e3,e4}) = Tt + TXT3 + T3 + T{T2 + T2T3 + T2T3 + T{T3

and that the respective sparseness values are as in table 2-3 below:

G(e,/{e3,e4}) Sparseness

T, 8

T (T 3 4

t 3 8

T {T 2 4

t 2t 3 3

t 2t 3 3

t {t 3 3

Table 2-3: Sparseness values for each term in G(e2/{e3,e4}).

As is clear from the sparseness values of table 2-3, any of the terms T2T3, r 2T3, and TXT3 are

possible candidates for Gopt(e2/{e3,e4}), and hence any of them can be added to R and hence;

R = t j 3 + t 2t 3

or R =T 0T 2 + T2T 3

21

Any of the expressions of R can recognize both elements of groupj and none of group2, and
hence constructing the recognition function, R, is complete. In cases where recognition is

required among a number of groups, such as the fault groups in the data (see later), a

recognition function such as R must constructed for each group against the rest, and hence

the procedure is repeated a number of times and more complicated expressions are produced

due to the relatively larger number of tests. The practical implementation of the method using

the actual data will be the subject of chapter four.

2.4.2 Existing Reaserch Work in Application
of AI to the Diagnosis of Electronic circuits

Much of the published work, in the field of applying AI to fault diagnosis of electronic circuits,
have concentrated to the development of expert systems. The next section will consider the
work done for each class of expert system, i.e., rule-based, model-based, and hybrid (see

section 2.4.1.1).

2.4.2.1 Expert Systems in the Literature

2.4.2.1.1 Existing Rule-Based Systems

Papers [APF85,WIL85,WAW89] describe Expert Systems used in fault diagnosis o f elec

tronic circuitry. The system described in [APF85] replaces a skilled technician in analyzing
an in-circuit test failure data; deciding if additional measurements are required; and then,
using a rule-based system, creating a simple message. A knowledge database exists for each

board which is diagnosed by the system. It is divided into more than one domain (for possible

device types and nodal failures). Associated with each of the domains is a set of diagnostic

rules which are ordered in a hierarchical order to improve performance. MIND is an expert

system for VLSI test system diagnosis [WIL85]. It utilizes a data base to store information
about different tests (such which test is fired, the outcome of the tests) and an efficient

hierarchical rule base which consists of rules with IF. .THEN. .ELSE format arranged in a tree

structure which are general at the top and specific at the bottom (symptom-action for specific

parts of the test system). The knowlege-base of the system described in [WAW89] consists
of diagnostic knowledge represented by: facts, rules, and frames. Facts and rules are repre
sented in predicate calculus [AMB87]. Frames are efficient constructs for representing
electronic devices, they can be thought of as hierarchical data templates for describing and
recognizing objects.

22

[KR089] describes an expert system (CIRCOR) for repair oriented diagnosis o f NMOS and

CMOS digital circuits. The system capacity is limited to handling relatively small circuits

described at transistor level. CIRCORs knowledge base consist of rules for recognizing faulty

circuit portions and the correct action. The rule components are described in terms of con

nectivity information and circuit components (faulty circuit description->correct circuit
description). This system is classified as a rule-based system since its rules are similar to
(symptom->fault) rule structure and are not detailed enough to be classified as a model-based

system (see next section).

[ELL90] is a general expert fault finder which performs fault isolation on any system which

could be modelled on lowest replaceable units (LRUs). The system utilizes a data base which
consists basically of an array of LRU records, which contain information such as name and
other statistical information. The inference procedure uses Fuzzy Logic [LEE79] for premise
matching certainty and combining premise certainties in determining which rule to fire. The

rules and LRUs are manually added using a Knowledge Base editor and only statistical results
and certainties are modified by the system.

Matching is also used in [ODR85] which stores a pre-simulated probability distributions of

introduced artificial defects in a fault dictionary like database in an order which depends on

the sensitivity of IC parameters. Matching of probability distributions of the parameters is
used in the fault finding stage.

The main learning procedure in the AI systems above is by the modification of the rule base

by the test engineer. However, the system in [ELL90] associates four parameters with each

rule. These parameters are the expert’s confidence in the conclusion, the number of times the

rule was tried, the number o f times it was successful and the output of the fuzzy function (see
above).

Algorithms exist for learning rules, which are based on developing logical recognition

functions which increase in complexity (get more specific) as more examples are introduced

to the system. This algorithm is explained in [MIC83] (which is based on the work described

in [MIC81]) and is improved in [RIC89], where it is used in a fault diagnosis problem in a
chemical process.

Other systems exist which are used to aid circuit test in other areas [GUY87,LEA88]. These
are only mentioned for reference.

23

2.4.2.1.2 Existing Model-Based Systems

The system described in [TAY90] is aimed at troubleshooting of analogue and mixed signal

hybrids and PCBs. It guides the technician to the desired probe location on the physical layout
of the hybrid and contains the following information: test plan that defines the specification

of a correctly manufactured circuit, the schematics representing the circuit’s connectivity
information, the physical layout depicting component locations, and the knowledge of the

circuit’s normal working behaviour which is presented as functional block diagrams at several
hierarchical levels.

The system above operates on knowing the task of the specific hybrid or PCB under test using

behavioural information o f functional components of the main circuit. The approaches
described in [MCK89] and [BEN87], however, contain behavioural information o f primary
components o f the circuit. [MCK89] introduces a technique for diagnosing analogue circuits

by producing a behavioural model which accommodates the imprecise nature of analogue
circuits. A model of the circuit is formed from the constraints imposed by behaviour o f the
components and the interconnections, which are modelled as sets of rules or relationships

between the parameters at their interconnections. The values of parameters within the circuit

are deduced by propagating the effects of measurements through this model. Faults are implied

from the detection of inconsistencies, and located by suspending constraints within the model.

This approach was initiated in [DAV84, DEK87, DEK84]. [DAV84] mainly dealt with

relatively small combinational circuitry, while [DEK87] dealt with simple transistor circuitry.

In [ROGC89, ROGD89], the approach was modified to be applied to larger combinational
and sequential circuitry.

2.4.2.1.3 Existing Hybrid Systems

The rule-base in [HAV89] is arranged in a ’tree like’ structure for each unit (rule). Each unit

contains a symptom (or symptoms which differ in complexity). Associated to symptoms of

a unit are action(s) which could be repair procedures, additional tests to carry, questions to

the user, and heuristic search rules which could be modified according to the answers to the
previous questions. Different approaches of developing this model is described in the paper.

[PFL89] describes an expert system which controls the action o f an Automatic Test System
and learns from its historical actions. The rule-base contains diagnosis rules based on diag
nostic experience. Physical knowledge of the unit under test (UUT) is incorporated into a
causal UUT model.

24

In both o f the systems above, the most difficult task is to form the rule-base which contains

information based on interviewing the expert (engineer or technician). Since knowledge

acquisition based on interviewing the expert is not efficient (although sometimes is the only
way) and requires updating when the rules or the system is changed/updated.

2.5 Conclusions

Many fault diagnosis systems implemented in the previous decade and early stages of this

decade solved the diagnosis problem in electronic circuits (especially analogue) by simulating
circuit behaviour by using mathematical equations, which are based on circuit theory [BIE81,
RAP83]. The reason for this could have been the relatively smaller size of circuitry which

were manufactured then (which could be represented in equation forms). The VLSI ’revol
ution’ has increased the complexity of the design which could be manufactured on an IC.
This reversed the previous situation in that it was quite cumbersome to represent a circuit

with typically more than 100,000 components in an equation form! However, it is common
to have a data base with large amount of stored data and efficient manipulation procedures
(which has witnessed a significant reduction in expense in the last few years.

In addition to fault dictionaries and Al-based systems (discussed in this chapter), other systems

which store and manipulate test data are data management systems. These store large amounts

of data produced from multiple testers [MAN86, WIN86, BUS86] and perform different
analysis tasks on them which, according to [MAN86], decreased unnecessary repair operation
in the manufacturing cycle. The storage and management of design data is also performed

frequently as in [CHE88, ECK88]. [TUR90] and [MAN86] point to the importance of col
lecting test data and the possibility o f using them to assist in the diagnosis process, however,
they elaborate no more.

The most common approach for using a fault dictionary in testing analogue, digital, and mixed

circuits is simulation-before-test [BEN82, WIL86, HOC79, LIN85]. And in most cases the

data stored consists of simulated faults on the circuits (Stuck-at faults in digital and nodal
voltages in analogue).

As indicated by McKeon in [MCK91], fault dictionaries based on prior experience of faults
on the same board are more appropriate than those obtainable by simulation for analogue
circuits. McKeon further points that, circuit boards of the same design will be more susceptible
to some faults than to others, since they have the same design deficiencies, are stressed in a
similar way and use the same types of components. The expectation is that, after a period of
time, faults which occur are likely to have occurred before. At each failure, the fault and its

r ~ — *
25

symptoms are stored in the dictionary. However, no serious attempts have been made in

implementing the above. This could be due to the difficulty of obtaining test data from an

industrial source by the researchers.

Fault diagnosis is one area in which Al-based systems have proved successful, hence, many
systems exist which are used in diagnosis in different areas (chemical, mechanical, ...etc.).

The Al-based systems reviewed use one or both of the model-based or rule-based system

approaches. Both approaches store and manipulate circuit specific information (models and
rules). In most o f the systems, the type of information stored is related to the circuit topology.

This is true for both Al-system types. Model-Based systems store information describing the
correct behaviour of the circuit under diagnosis and rule-based systems have rules related to
the diagnosis of the circuit (e.g., if componentl is faulty check component2). Any additional

databases stored data which the rules operated on.

The updating mechanism in the systems is mainly performed by adding new rules manually
(since they depend on circuit topology, they are usually implemented by the test engineer)
to the system using an editor. Any change of circuitry or modifications/additions to the rules
are performed manually. However, some systems have the ability to record the historical

success of the rules and take it into consideration when the rule is to be fired [ELL90]. Also,

systems exist which deduce information from the already existing knowledge by either
calculation or logical deduction.

The review did not reveal any systems which mainly perform their diagnosis by exploiting
test failures produced by ATEs. Most of the systems depend on electronic knowledge about

specific circuits and/or technical diagnostic rules stored in their knowledge-base.

Investigation of AI techniques revealed that the use of a machine learning technique may be
employed for investigating the failure reports in the data. However, so far such techniques

have only been applied to small problems [KOD85]. One of the aims of this work is to

investigate extending the application of this technique to the cases in the data and finding
its limitations.

26

CHAPTER THREE
A DETAILED EXAMINATION OF A TEST AND DIAGNOSIS CASE

3,1 Introduction

This chapter considers the test and diagnosis case, mentioned in chapter one, more closely.
Specifically, the case o f one of the most common boards in the company is investigated. At
this stage, all of the data received from the company were associated with this board.

The investigation considers the PCB design with emphasis on aspects related to the infor

mation in the failure reports in the data. In addition, the data are analysed.

This chapter aims to set the scene for the next chapters since the PCB concerned will be used

in the research work associated with the majority of the following chapters.

3*2 General Design of the PCB

The board contains eight modules called individuals. Individuals are different rows on the

PCB with identical task and circuitry. The bottom row contains the digital control circuitry.

The overall design o f the PCB is shown in figure 3-1.

Figure 3-1: The overall design of the PCB.

The figure shows the different individuals (ind), with each individual containing two i/o lines
which are the means o f contact with the outside world. Most of the circuitry is analogue,
however, the control circuitry which is located at the bottom of the PCB is mainly digital
since it performs the task of synchronizing the operation of the different individuals.

27

In general, the components of the board vary from the complexity of very large scale inte
gration (VLSI) chips, with highly complicated design and multitasking functions, to

capacitors and resistors. Each component on the board is identified by a component position
number (CPN)1. Components of the different individuals are such that components in the first

individual have round numbers (i.e. are multiples of 10 such as 4 0 ,1 5 0 ,4 9 0 ,. . . etc.) while
corresponding components in the other individuals are identified by the component number
in the first individual, added to it the individual number. For example, the components

corresponding to 490 in individual numbers 1 and 4 are 491 and 494 respectively. This

characteristic of the CPN assisted in the identification of components of the same type in

different individuals.

3.3 The Data

A failure report consists o f one or more failed tests. The failure of a given test is usually

associated with a number o f parameters on the report slip. These parameters are as follows :

Test Number Tests are divided into groups according to their functionality, for

example processor tests, power tests, . . etc. This parameter indicates

the group number of the failed test.

Test Name Identifies the test within the groups described above. For example, power

tests might include diode test, rectifier test,. . etc.

Test Condition Indicates the conditions under which the test is applied, e.g. measuring
the voltage by applying a load of say 50 ohms.

Measurements Values of parameters measured during the test, such as voltage, current,

or gain.

The following is an example of a failure report which consists of two failed tests :

Test 1: Test Number: 19
Test Name:
Test Condition:
Measurements:

Analogue-Digital Signal Noise
Load = 1500 ohm
Gain = 20 db

Test 2: Test Number:
Test Name:

22
OVP Circuit - Thyristor
Line A set
Current = 20 ma

Test Condition:
Measurements:

1 Such numbers exist for all the boards manufactured in the company as will be seen later.

28

The tests and their parameters in the above example are chosen for the sake of illustration
only.

The tests in the data could belong to any one of 20 groups, each identified by a test number.

Each group could include up to 25 test names applied under different conditions (up to 15

per test name).

Each report contains a number of failed tests for some particular board. A single slip might
describe from 1 up to 50 or more failed tests. Typically, a report describes in the region of 8
failed tests. The report is intended to guide the diagnostic technicians in locating the fault in

the board to the smallest replaceable unit (SRU). Each report in the data is associated with

the CPN of the correct SRU diagnosed by the technician at the time of failure.

The number of reports received from the company for this PCB totalled 497, received in three
stages.

When the failures of the different individuals are treated separately, a relatively small number
of reports are associated with each fault, however, when the failures of similar components

in different individuals are treated together then the number of reports with each fault increases

enough to make analysis possible. The bar chart in figure 3-2 illustrates the number of reports

associated with the most common failed components in the data. The failures point to com
ponents of similar type across all individuals where CPN ends with 0. CPNs with * indicate
a faulty component which is not a member of an individual, but is a member of either the
supply or the control circuitry (see figure 3-1). Table 3-1 points to the component type

corresponding to the CPNs in figure 3-2. Slics and Slacs are complex mixed analogue/digital
ICs.

%

F a u l t g r o u p N o .

Figure 3-2: A chart o f the faults in the data.

29

It can be seen from the bar charts, that components 40 ,500 , 510, 50, and 70 are the most

commonly failing components. The common failure of 40 and 50 are due to the large number
of tasks that each of these components perform in the circuit. It can also be noted, by analysing
the data, that in many cases tests belonging to certain components fail due to the failures of

40 or 50 (examples o f these will be given in chapter six). By understanding the operation of

the circuit, it could be noted that these components control the operation of some others in

the circuit.

CPN Component Type

40 Slics

500 Ring-Relays

510 Test-Relays

50 Slacs

70 Bridge Rectifier ICs

400 Capacitors

450 Capacitors

31 Processor

430 Capacitors

490 Thyristors

250 Resistor network ICs

260 Resistor network ICs

530 coils

34 Buffer IC

450 Fuse

Table 3-1: Types o f the circuit components.

30

3.3.1 Ambiguities in the Data

By analysing the reports in the data some ambiguous cases could be noted, some of these
cases repeat for a number o f times in the data. Some of these are mentioned here briefly and

will be the subject of a more detailed analysis later.

1. Some reports are identical in the tests that they contain, however, they are

diagnosed by the fault finder to be due to completely different components.

2. In some reports, a single test (or a group of tests) fail(s) in 7 of the 8 individuals.
However, the component which is diagnosed to be the faulty one is in the 8th
individual.

3. A relatively large number of components diagnosed to be the reason for the
failure of some reports with small number of tests. This is thought to be due to
faultfinder’s error, i.e. changing many components by trial and error till replacing

the faulty one.

4. In some cases the report seemed to be incomplete. This is thought to be due to

the fault finder.

5. The failure of some tests, which are known to test a certain component, are
diagnosed to be due to a completely different component.

6. A test (or a group of tests) fail(s) in a component of a certain individual, however,

the failure is diagnosed to be due to the same component, but in a different

individual.

3.4 Investigation of the Problem Domain

The main characteristics of the diagnostic problem faced by the firm a re :

1. The manufactured PCBs have complex mixed signal (analogue and digital)
circuitry with high degree of interaction among the majority of its components,
and in particular the complex IC chips. This accounts for the complexity of the
test failure patterns which characterizes the reports in the data.

2. Un-availability of information regarding the operation of the circuit and the task
o f its components.

31

3. Un-availability of technical information regarding diagnostic repair. Hence,

diagnostic technicians rely mainly on experience in recognizing patterns of failed

tests and associating them with the corresponding faulty components.

6. A total of 500 failure reports exist, in addition to those which are continuously
generated by faulty PCBs.

Due to the complexity of the PCBs and the data (described in 1), the use of an Al-based

technique is considered.

(2) and (3) make the use o f a model-based or a rule-based system impractical, due to the lack

of circuit information and diagnostic rules (other than simple heuristics adapted by the
diagnostic technicians).

Analysis of the problem pointed to two AI techniques which could be used to investigate the

bases o f a failure diagnosis system which could utilize the reports in the data and those
produced by faulty boards in the future. The first uses a machine learning technique in ana
lysing the reports in the data, while the second uses a technique similar to that of the diagnostic

technicians. The rest of this thesis will consider each technique in a greater detail.

32

CH APTER FOUR

T H E AUTO M A TICA LLY GENERATED DECISION TR E E M ETH O D

4.1 Introduction

In chapter two (section 2.4.1.2), three learning techniques, typical of those used in machine
learning, were described. In this chapter, the use of Michalski’s technique [MIC81] is con

sidered in constructing a decision tree which is based on the functional test data (section 1.2).
The rest o f this section will argue the choice of this technique.

Decision tree construction is a popular technique for building systems that can learn to classify

example data, in our case symptoms classified according to faults. The algorithm described
in [QUI86] utilizes a typical sample size of approximately 400 examples to deal with large
numbers of examples (several thousands). In our case, the training data totalled approximately

500 example reports, hence we could afford to use a more computationally expensive tech
nique for constructing recognition functions at the nodes of a decision tree.

Learning by using version spaces ([MIT77] and [MIT78]) is not practical for the construction

of recognition functions at the nodes of a decision tree. This is because a decision at each

node will require a complete version space (i.e. both an S and G sets). For relatively complex

problems the size o f the resulting tree could be unmanageable. In addition, learning with
version spaces does not involve searching to identify the best description of a given concept.
The description o f a concept is determined by the order in which examples are presented.

In general, recognition functions are not unique. In order to deal with the failure cases in the

data, it is desirable to experiment with various functions to improve the performance o f the

system. In the case of Michalski’s technique [MIC81] many descriptions o f the required
concept are searched. These descriptions are compared with each other in terms of sparseness.

From all above, the use of Michalski’s technique was considered for classifying the failure

reports in the data. Although, as mentioned above, this technique is computationally

expensive, it offers flexibility in decision making at each tree node by using recognition
functions (section 2.4.1.2). This flexibility arises from the ability to experiment with the

generality o f the recognition functions. This chapter will consider implementation details of
extending this technique to the classification of the test data.

4.2 Generating a Tree for Fault Finding

This section describes the practical implementation of Mickalski’s technique. The outcome
of the technique is a tree-like construct which is searched during fault diagnosis.

33

As mentioned in chapter two (section 2.4.1.2), the technique operates on groups of example

objects by making generalizations by similarity detection. As a result, an expression is pro
duced for each group which describes the examples in that group only.

Due to the relatively large size of the data, a special arrangement was required for grouping

the data. From inspection of the data, it was clear that some faults were more easily identifiable
than others. These faults tended to produce one of a small number of clearly distinguishable

failure reports. A binary tree of fault groups was thus constructed as follows. The set o f all

possible faults was divided into two groups such that one contains the most reliably identifiable

faults and the other group contains all the others. Each of these groups is again split in two

according to the same criteria. The process is repeated until at the leaves of the tree, each
group consists o f a single fault. This method ensures that the faults which are most easily
identified are located at the top of the tree. The rationale for this is that errors in identification

are more serious the higher up the tree they occur and so this is where the most easily identified

groups should be placed.
As a result another tree is produced which consists of expressions describing each of the

groups. The next section will discuss the aspects related to generating the different trees in

greater detail.

4,2.1 Organization of the Data

The data are arranged such that the reports which point to the failure of the same fault are in

the same group.

--------------- 4

(a) S ym m etrica l T re e (b) Non Symmetrical Tree

Figure 4-1 :The two types o f trees used.

34

Since the basic concept o f this method is to identify different groups with respect to each
other, then these groups must be arranged in a form which enables the algorithm to operate

on them. The method used for presenting the different groups to the algorithm is to arrange
the groups into the leaves of a binary tree structure, termed here data tree.

The groups of data are arranged into the leaves of the data tree in an order which depends on
their ’reliability ’, with the most reliable fault groups being those which have the largest

number of identical reports and can be distinguished from reports of other faults, and hence
can be more confidently identified. The classification of the faults according to their reliability
is performed manually after analysis of the data.

Two different types of trees were used for experiment; the symmetrical tree, figure 4 -la , and
the non-symmetrical tree, figure 4 -lb. The tree which provides the best performance will be
chosen, as will be seen later.

4.2.2 Generating a Decision Tree

The implementation of this part of the system was based on the theoretical aspects mentioned

in section 2.4.1.2 (related to the technique used by Michalski), hence this section will make
frequent reference to that section.

Before the generation of the decision tree, the data has to be separated into different groups.
The algorithm contains some functions which are based on the definitions of section 2.4.1.2.
A recognition function is used to recognize an element in one group against an element in

another, G(e/ej). By repeating this procedure for all the elements of the latter group, a rec
ognition function is obtained which identifies the single element of the first group against the

whole of the second group, G(e/{ej}). As mentioned in section 2.4.1.2, this function is in the

form of a disjunction of conjunctions and usually contains a large number of terms, each

disjunction term containing as many terms as the total number of tests seen in all the data

(more than 240 tests) since the function will be in terms of the seen and unseen tests. The

best G (e /{ej}) is obtained by putting the function in the form of a conjunction of disjunctions

which requires multiplication of all the terms. The complete multiplication cannot be per
formed on computers due to the amount of terms involved. For this reason smaller number

of multiplications, chosen in a random order, are performed to obtain a limited number of
terms (10-100), the best of which is chosen, by simple blind searching the above terms, to be
Gopt(e/{ej}). Initially, Michalski’s concept of the best function (i.e., the function with mini
mum sparseness) was used. So, in order to find the best term, sparseness must be found for
all the terms and the term with the smallest sparseness is chosen for Gopt(e/{ej}). Blind search

35

was used since no reasonable heuristic (or concept) could be found in order to direct the

search for the best term to represent Gopt(e/{ej}).

By repeating the above process for all the elements of the first group a recognition function

is obtained which identifies one group but not the other.

So, given two groups the above algorithm can find the ’best’ recognition function which
identifies one but not the other. This algorithm is applied to each group in the data tree against
the rest o f the tree and generates a recognition function corresponding to it. This function is
placed in the position corresponding to the node separating the group from the rest in another

parallel tree structure, called the decision tree. Hence, the decision tree is an exact replica of

the data tree in shape except that the nodes of this tree contain the recognition functions which
are generated by the algorithm. Each function identifies a group in the leaf immediately below
against the group representing the next leaf (each leaf in turn could have additional binary

branches).

The data and decision trees, for the example of table 2-1, are illustrated in figure 4-2 (a) and
(b) respectively. The decision tree generated contains the recognition function, R, at the node

of intersection between the two groups. A report presented during fault diagnosis will be used

to search the tree. If the report is recognized by R then the failure is of type groups otherwise

the failure is of type group2.

R

io)t e} {e3, e} Group| Group̂

(a) D ata Trma (b) D e c is io n Tree

Figure 4-2: A simple example o f generating the trees.

The discrimination, of examples, achieved with a decision tree constructed in the manner
above is not specific in that when an example is not recognized by the recognition function

of one group, then it is assumed that the example is a member of the opposite group. However,
this is not always correct since an example could not be a member of any of the groups
involved in building the decision tree.

36

A more specific discrimination could be achieved by generating a decision tree with two

boolean functions at each of its leaves. The first function identifies the fault group at a given
leaf in the data tree against the groups in the rest of the tree, and another function which

identifies the rest of the tree but not the group at the leaf. The second boolean function can

be obtained by simply exchanging the order of the two groups presented to the function which
generates a recognition function between two groups, as mentioned above. If an example is
identified by the first function then it belongs to the group at the leaf, whereas if it is identified

by the second function then it belongs to one of the groups in the rest of the tree and hence

the search is continued down the tree. However, if the example is not recognized by any of

the functions then it is assumed to be spurious and is not identified. This avoids any unnec

essary search down the tree.

In the rest of this chapter the tree with a single boolean function will be referred to as a single
boolean function tree(SBFT), and the tree with two boolean functions will be referred to as

a twin boolean function tree(TBFT).

The procedure of generating a decision tree is relatively long and takes 15-30 minutes on a

SUN 3/260 (M68030 based machine). This procedure is usually referred to as the learning
procedure, since the system is analysing the data and trying to make rules based on them. In

the practical use o f the system, the procedure will be run each time a considerable amount of

data is collected, say each two weeks.

4.2.3 The Fault Diagnosis Procedure

This procedure is usually followed after constructing a decision tree. Given a failure report,

the tree nodes are searched for a recognition function which best recognizes the report, and

that will in turn point to the fault group which the report is most likely to belong to. Searching

the nodes of the decision tree is directed by the recognition function at each node and is

depth-first [RIC91] in nature as a consequence of the structure of the non-symmetric tree

(section 4.3.1). This procedure is fast and usually takes seconds.

4.3 Performance Evaluation

This section describes the work done in choosing the best tree characteristics, constructing
different trees using the actual d a ta , and analysing their performance.

37

4.3.1 Biasing the Trees

This section describes the procedure of choosing the different attributes for the final tree to

be used in diagnosis. By the tree attributes we mean the type of the tree (symmetrical or

non-symmetrical) and the required sparseness (minimum or maximum).

Due to the complexity of the real data, which are characterised by the relatively large number
of reports and the different types of ambiguities, some of which were mentioned in chapter
three, some dummy data were manually prepared and put in a form similar to that of the real
data. The dummy data, which were made to consist of eight fault groups {faultl, fault2, . .

. fault8}, are illustrated in greater detail in appendix A.

These data are presented to the program after being arranged in the form of both symmetrical
and non-symmetrical trees, as shown in figures 4-3 (a) and (b), and the corresponding decision

trees are obtained for each case.

Fault? Faults

(b) Non Symmetrical Tree

Figure 4-3 :The distribution of the faults on trees.

Each tree was tested by presenting it with a report of a known fault, one of the above, and

noting the result. This was repeated nine times for each report. The experiments were repeated

with both minimum and maximum sparseness. The results of these experiments are shown

in tables 4-1 and 4-2.

It is clear from the tables that the non-symmetrical tree with maximum sparseness provided
the best set of results, since most of the results obtained by each of the nine trials {T l, T2,....,
T9} are consistent with the correct fault number in TF. The tree identified five of the eight
faults with no dispute in all of the trials, while most of the other faults are identified in the

38

majority o f the trials. This performance is clearly better than all the other trees generated.

The result o f this experiment will provide us with the initial setting of the data tree which
will contain the real data, and which will be described in the next section.

The results indicate a better diagnosis performance when maximum sparseness is used in
building the decision tree. Although this is contradictory to the theoretical facts o f section
2.4.1.2, however, it is expected due to the relatively large size of the data space. This means

that the data (reports) encountered so far are relatively small compared to the number of
failures which could occur.

TF 77 T2 Ira T4 T5 T6 77 r a T9 Sparseness

8 8 8 8 8 8 8 8 8 8

Max

7 7 7 7 7 7 6 7 7 5

6 6 6 7 6 6 6 6 6 7

5 5 5 5 5 5 5 5 5 5

4 4 1 4 4 4 4 1 1 1

3 3 3 7 3 3 3 3 6 3

2 1 1 1 2 1 2 2 1 1

1 8 1 1 1 1 1 1 1 6

8 8 8 8 8 8 8 8 8 8

Min

7 7 7 7 7 7 7 7 7 7

6 7 7 7 8 6 7 8 8 6

5 5 5 5 5 5 5 5 5 5

4 4 4 4 4 4 4 4 4 4

3 7 6 7 8 7 8 8 8 8

2 2 2 2 2 2 2 2 2 2

1 7 6 7 8 7 6 8 8 8

Table 4-1: Results o f tests with the dummy data using symmetrical tree

TF represents the true fault number

39

TF | T1 T2 T3 T4 T5 T7 T8 r p Sparseness

8 8 8 8 8 8 8 8 8 8

Max

7 7 7 7 7 7 7 7 7 7

6 6 8 6 7 8 6 6 6 6

5 5 5 5 5 5 5 5 5 5

4 4 4 4 4 4 4 4 4 4

3 8 3 8 3 3 6 3 3 7

2 2 2 2 2 2 2 2 2 2

1 1 1 8 1 1 6 1 1 1

8 8 8 8 8 8 8 8 8 8

Min

7 7 7 7 7 7 7 7 7 7

6 8 8 8 8 7 8 7 8 7

5 5 5 5 5 5 5 5 5 5

4 4 4 4 4 4 4 4 4 4

3 6 8 8 3 7 8 8 6 7

2 2 2 2 2 2 2 2 2 2

1 6 8 8 8 7 8 8 6 7

Table 4-2: Results o f tests with the dummy data using non-symmetrical tree

The use of minimum sparseness chooses the most restrictive recognition function o f the

example data. This means any of the less frequent reports, which have not seen before, will
be rejected since the function is very restricted and hence does not include examples which
do not closely resemble the data used in building the decision tree. Using maximum sparseness

these less frequent cases will be recognized, since the recognition function represents the
sample in the most general way. The use of maximum and minimum sparseness was illustrated
in figure 2-1.

40

The maximum sparseness obtained with the dummy data will also apply with the real data
since the former were made to resemble the actual data especially in the proportionality of
the ra tio ----- l ™mber-.°f~ *sts. .. to that of the real data. Hence a similar data space will be

expected.

4.3.2 Building Trees Based on the Data

This section considers the different trees generated and their performance during diagnosis.

In this section the technique is applied to the real data. However, before presenting these data
to the program they were put in a form which is similar to that of the dummy data (see section

4.3.1). Different reports were divided into groups according to the faults which caused the
failure of their tests. The faults were arranged on the leaves of a non-symmetrical tree

according to their reliability (the more reliable groups are arranged in the top of the tree),
since this type of tree produced the best set of results during the biasing procedure which was
mentioned in section 4.3.1.

The test data applied to all of the trees were the same, so that the performance of all the trees

in identifying the data can be compared. The test data were chosen to be of different levels
of complexity in order to monitor the performance of different trees and compare them. Tests

were applied to each tree to find the limit at which it fails to identify faults. At the start of

the testing procedure, reports were identical to the data used in constructing the tree. This
was to test whether the tree could recognize itself (i.e. its own data). A failure in any of these
tests indicates a programming error since the tree should recognize the examples used in its
learning procedure. In the second stage of the testing procedure the reports were slightly
different from the data (i.e. one or two tests missing or added from/to the top, middle, or

bottom of the failure list). The purpose of these tests was to identify whether the tree can

identify any slight changes in the data and how much change it can identify, if any, since this

is what actually happens during the testing procedure in the company. Failed tests which

cause the failure of a component are similar but could include more or less failed tests. If the
above tests are passed, then the next step is to test the tree with data which require a very
close decision between one or more of the faults. The length of the test data applied was 1-25
failed tests/report.

One of the ambiguities contained in the data is the existence of reports which indicate the
failure of the same tests, but which are diagnosed as being due to different components. These
were mentioned in 3.3.1. The first problem encountered when constructing trees with the real
data is the failure in the building procedure when the algorithm is trying to find a recognition

41

function which recognizes one group but not the other, with both groups having identical
reports. Since the building procedure cannot proceed without discriminating between all the

groups, these ambiguities had to be dealt with.

The way in which these ambiguities are isolated is by creating a new group which contains

all the reports duplicated in more than one fault and assigning a group identity which dif
ferentiates it from the rest of the groups in the data. The procedure followed in assigning
group identities is to include all the fault position numbers in the identity in an order depending

on the frequency of the report in the different faults (e.g., 45-66-77 for a report failed most
frequently in 45). By performing this for all the duplicate reports in different fault groups,

the tree building procedure terminated successfully.

In creating test data for the trees by deleting or adding additional tests to the failure list, it is

necessary to look back at the data and check that none of the reports used in testing is a report

for another fault. For example, by deleting a single failed test in a list of failures which indicate
a fault in component 53 the new test example could be one of the examples in the data which
are grouped under faults of 47.

The initial trees generated using the real data were characterised by the large size o f the

recognition functions which in turn resulted in relatively large tree sizes. An alternative to

sparseness for dealing with this problem has been devised. This will be introduced in the next
section before considering in detail the trees built with the data.

4.3.2.1 Compactness : An Alternative for Sparseness

Due to the large amount o f data and the large amount of individual tests, the boolean functions

obtained were large. This in turn led to an increase in the size o f the decision trees obtained.

For this reason, an alternative concept is developed here for choosing the best term for

Gopt(e/{ ej}). This concept, which is termed compactness, is used instead of sparseness, which

was suggested by the original approach, and aims to reduce the size of the decision tree

generated. Such a concept has not been used in any of the work mentioned in the literature
(see chapter two).

Definition

Compactness is defined as the difference between the number o f elements (in this case
reports), which a given recognition function describes, and the number o f conjunction
(product) terms in the function.

42

The best term should identify as many reports as possible in the data and it should also have
a small number of terms (i.e. the function with small size). This means a maximum com
pactness should be used for a small and efficient tree. The performance of the trees
implemented with maximum compactness will be described later in this chapter.

To implement the concept of compactness in the algorithm, each term in Gopt(e/{ej}) had to
be used in searching all the data for the number of reports it recognizes.

Examples of table 2-2 are used to illustrate the concept of compactness. The compactness of
the first entry, T0, is calculated by finding the number of examples recognized in groupj, 1,
and the size of the term, 1. Hence the compactness value is 1-1 = 0. In the same manner the

value is calculated for all the other terms, as in table 4-3 below:

G(e,/{e3,e4}) Compactness

T0 0

t 0t 3 -1

t 0t 2 -1

T2T , -1

Table 4-3: Compactness values for each term in G(e,/{e3,e4}).

The term with maximum compactness is T0. This choice is not in agreement with the choice
made using sparseness, but, due to the simplicity of the example all of the terms recognize

the same number of examples in the data space and the result is not incorrect. The need for

the use o f compactness is clearer using the real data.

4.3.2.2 Trees Based Upon All the Data

In these sets o f tests the technique was used to construct decision trees using all the available
data. The trees generated generally differed in the concept used to produce the best recognition
functions at their nodes i.e. sparseness (both maximum and minimum) and compactness and
also in the use of SBFT and TBFT.

The reaction of the different trees to the test data was nearly the same in that all trees managed
to identify any report which was identical to the report in the data used to build the tree (this
is expected, since any wrong identification in this case points to an error in implementing the
algorithm). However, when the test data presented were slightly different from the original

43

data then in most cases the identification was incorrect. In general, the main difference among

the trees was in their size. Table 4-4 shows the different options used in building the trees

and the sizes obtained. The time taken to build a tree was about 4 hours on a SUN 3/260.

SBST/TBST Sparseness Compactness Size(KByte)

SBST Min — 530

SBST Max — 400

TBST Min — 930

SBST — Max 380

TBST — Max 600

Table 4-4: Comparison o f sizes o f different trees

The smallest tree was obtained when maximum compactness was used with SBST in building
the tree. Since the performance of all the trees is similar (as mentioned above), the TBST tree

is ignored since it does not improve the performance and it nearly doubles the size of the tree

from the case where SBST is used.

43.2.3 Trees Based Upon the Most Common Faults in the Data

As mentioned before, the trees generated in section 4.3.2.2 were based on analysing all the

data. Most of the reports identified using these trees were either exactly similar to the reports

in the data or very slightly different from them (which occurred very rarely). For this reason

the amount of the data presented to the tree building algorithm was gradually reduced and
the performance of the trees to the same tests was monitored. The performance of the tree

was tested by picking a number of the most common faults and implementing the tree with

them. If the performance showed an improvement, it was possible to find the limit at which
the performance deteriorated.

This poor performance in identifying slight changes in known reports could be due to the
large size of the data and to the large number of faults existing for which only one or two
examples (reports) exist. The reports of uncommon faults are included in the boolean
expression generated in the recognition function equally with the reports of the common

44

faults, with no indication of the frequency of their occurrence. For this reason the next stage

was to choose some of the faults which most commonly appear as the cause o f the failure

reports in the data.

When referring to the performance of the trees below, no comments will be made about testing
reports which exactly match the reports in the body of the tree, since these were identified.
The important improvement in the performance is required in identifying reports which differ

from the exact reports but contain the key tests (main tests which when failed indicate a failure

of a specific device).

The eight most commonly occurring faults were chosen, which are the faults in components
3 1 ,4 0 ,4 1 ,4 2 ,4 5 ,4 7 ,5 1 4 and 517. The decision tree with these data was built in about three
hours, occupying about 33Kbytes. The tree could identify slight variations in the data for

relatively long tests (10-20 failed tests), but, when slight changes were made to the data with
relatively short tests (less than 10 failed test), the tree could not recognize the fault. The use
of this tree is not practical since most of the reports used in the data belong to the failure of
the same component but in different individuals, components 40-47 are ICs of the same type
(Slic) and the rest are test-relays. Although the above components are the eight most common

ones in the circuit, the devices represent only two types of components in the circuit and

hence do not cover enough failures of the board.

A better modification to the data was to combine the same faults occurring in different

individuals, treat them as one fault, e.g. slic faults, slac faults,...etc., and let the program form
a tree on this basis. This is reasonable since similar components in different individuals
perform the same task and are subject to similar conditions of operation, as the circuit o f each

individual performs the same task in its operating environment (telephone exchange). In fact,

similar components in different individuals could provide additional examples of the possible

failed tests which could lead to a failure in a given component. The ten most common

components in the circuit, ignoring their individuality, are: I

I 500 | 510 | 70 | 490 | 40 | 50 | 400 | 450 | 31 | 530 |
m o s t le a s t

The above procedure was performed in two steps:

45

In the first stage, the faults were grouped as mentioned above and the ten most common faults

were chosen, but, the individual numbers in the data were not removed. This produced a tree
of 210Kbytes in about four hours. When slight changes were made to relatively long reports
(more than 10 tests long) the fault could be recognized. However, if the number of failed tests

which led to the fault were less than 10 then the tree looked for the fault which contained

most of the failed tests and chose it as the fault.

Next the individuals were removed from the data itself and the learning program was run on

the same data as before. The size of the tree was reduced to about 73Kbytes and the time

taken for the program to build the tree was about 30 minutes. The tree could now recognize
most of the reports which contained slight variations to the reports in the body of the tree. In
cases where the test data were similar to the actual data in more than one fault, the tree could
give very accurate answers. There were some cases from the above examples in which wrong

identifications were made.

The above procedure was repeated by taking the most common 14 faults and the most common

five faults in the data. In the former case the tree was efficient and could make accurate

decisions. The same could be said about the latter case, however five faults are not enough

to represent most of the faults which could occur in the whole circuit.

It is clear that the most common faults chosen above are not consistent with the analysis of
chapter three which was carried out on the data. This is because only a portion of the data

was provided at this stage and the analysis above was carried out on the total amount of data

provided for this board.

4.4 Conclusion

In this chapter the test and diagnosis case, mentioned in chapter three, is investigated by

employing one of the standard machine learning approaches used for concept acquisition. In

order to use this approach, the existing data must be grouped in such a way that a decision

tree can be produced. The leaves of the tree represent individual faults, the higher nodes

represent groups of faults with the root node representing all possible faults. The learning
algorithm associates each node of the tree with a discrimination function which is used to

determine which subnode group of faults is indicated by a given failure report.

A binary tree of fault groups is constructed as follows. The set of all possible faults is divided
into two groups such that one contains the most reliably identifiable faults and the other group
contains all the other faults. Each of these groups is again split in two according to the same
criteria. The process is repeated until at the leaves of the tree, each group consists of a single

46

fault. The method ensures that the faults which are most easily identified are located at the

top of the tree. The rationale for this is that errors in identification are more serious the higher

up the tree they occur and so this is where the most easily identified groups should be placed.
Discrimination or recognition functions are added to each node of the tree as follows: Given

two groups of faults, an algorithm [KOD85] is used to generate a function which recognizes
examples of one group, but not of the other. The function, which is in the form of a logical
expression of passed and failed tests is not unique, in fact there is a combinatorially large
number of them. In particular, some functions will be more general with respect to the training

data than others. As a result of some experiments on a small sample of data, it was found that

the more general functions, that is those which have smaller numbers of terms and recognize
a relatively large number of examples, performed best. The algorithm was therefore set up
to perform a moderate amount of searching for the best function of this sort.

The decision trees are relatively straightforward to build and provide very fast identification

of new reports. However, they have the following disadvantages ;

1. difficulty in handling ambiguous data, such as identical failure reports for dif

ferent faults,

2. the identification was found to be unreliable. Only a small number of reports

were correctly identified and almost all of these were exact matches of examples
in the training data.

3. the tree will become out of date and will require re-building periodically. This
occurs when the training data is no longer representative of the real data.

When a given report is being identified it is compared to all boolean functions in the decision

tree and the fault group associated with the function which recognizes the tests of the report

is chosen. The results of applying the tree approach to the data indicated that it is capable of

identifying reports which closely resemble those used in building the tree (training data space),

however it does not offer any flexibility in handling reports which do not closely resemble

the reports from the training data space. This flexibility is necessary in fault identification
since, in many cases, reports indicating the failure of a given component are significantly
dissimilar, although they include the failure of some tests which give the characteristics of
the failure o f that component. Furthermore, the data included some ambiguities which are
characteristic of the failure of some devices. These are usually recovered by diagnostic
technicians in the company by using some heuristic techniques based on experience. It would
appear that the training set (some 500 reports) is a relatively small sample from a very large

47

space of possible reports. All of the above suggested the need for a more heuristic approach
to be included in the diagnostic process. This might resemble the process followed by the

human experts (diagnostic technicians).

In addition to the above, the learning process is required to be progressive, such that the

information in the system is kept up to date as much as possible.

The identification of reports which are different from the training data was not successful

when all the data were used, due to the large number of reports and faults occupying a large
search space. However, when the most common data were chosen, the performance was

improved, especially after ignoring individuality. As the number of data decreased the per
formance increased, which is as expected.

In order for the method to proceed, the duplicate reports in different fault groups were manually

manipulated. This is an additional disadvantage in the method since it requires further manual
intervention in the procedure.

A human expert uses heuristics and some knowledge about the data which could be achieved

by observation. It is better to use a flexible method which uses such heuristics in finding the

fault.

48

CHAPTER FIVE
THE DEVELOPMENT OF A FAULT DICTIONARY BASED SYSTEM

5.1 Introduction

As it is clear from the investigations carried out in the previous chapter, the automatic tree
generation method is capable of identifying reports which closely resemble the ones used in
building the tree (data space), however, it does not offer any flexibility in handling reports
which are slightly different from the ones in the data space. As initial analysis of the data

revealed, this flexibility is necessary in fault identification since in most cases reports indi
cating the failure o f a given component are not exactly similar, but contain some common

test failures which indicate a malfunction in some of the functions the device performs (and

the test program tests for). Furthermore, the data included some ambiguities which are

characteristics of the failure of some devices. All of the above required some heuristic
approach to be included in the diagnosis process. Such an approach is usually followed by
the diagnostic technicians who develop some knowledge, some of which may be in the form

of heuristics, o f the diagnosis process.

With experience, diagnostic technicians learn to associate certain failure reports with specific

faults by being able to recognize tests in the report which are related to the failure of certain
components. This is usually possible because of previous experiences involving similar
reports. For this reason, recognition becomes clearer in the case of components which fail

frequently with similar sysmptoms, i.e. similar failed tests in the failure report.

When a new failure report is encountered, a technician will compare the failed tests in the

report with test sequences previously encountered in failure reports associated with different

faults, as he/she remembers. It could be said that the technician is matching the tests in the

report with failure reports in his/her memory, which could be said to resemble a database (or

knowledge-base) of reports. If the tests in the new report closely match those in one of the
previously seen reports then the fault associated with this report will be considered by the
technician to be a suspect fault for the new report. This process will become more complex

when the new report matches reports of more than one of the faults encountered before. In
this case technicians may use other information about the reports which is available (i.e.
information tracked and remembered) by him/her.

49

The diagnosis approach followed by the diagnostic technicians is efficient since it enables

them to recognize a large proportion of the faults especially those which occur frequently. In
addition, the approach is flexible since it is non-algorithmic and hence heuristics could be

used, where available and used by the technicians themselves, in improving the recognition

process.

This chapter describes the development of a system which is modelled on the conduct of a

diagnostic technician during the failure diagnosis process. The system performs a diagnosis

by matching a failure report with dynamically stored information about previously seen

reports.

5,2 System Implementation and Main Elements

Investigations carried out as part of this work revealed that one way of implementing a system
which mimics the behaviour of a diagnostic technician, as described above in section 5.1, is
by making it consist of a number of basic blocks representing the different aspects involved
in the diagnosis process performed by the technician which include dynamic storage of

information in his/her memory, matching, and using heuristics.

As described in section 5.1, the main requirement of such a system is a store of information,

extracted from encountered failure reports, which can be updated dynamically. This section

of the system, which corresponds to the memory of the technician where experience is
accumulated, is termed the knowledge-base.

In order to compare new reports with ones already in the knowledge-base, a matching strategy

is required which can perform the comparison efficiently. The matching strategy is embedded

in the section of the system termed the matcher.

For manipulating and buffering the outcome of the knowledge-base search performed by the

matcher, a number o f rules are required. These are stored in another section of the system

which is termed the rule-base.

In addition to the above, a number of heuristics are required for enhancing the diagnosis
process. These were obtained from the diagnostic technicians, who develop these with
experience. These heuristics usually assist in recognizing certain cases of failure reports.

In summary, the main elements of the system are the following :

i. The knowledge-base.

ii. The matcher, (knowledge-base search)

50

iii. The rule-base.

iv. Heuristic rules.

The rest of this section will consider each element in a greater detail.

£2.1 The Knowledge-Base (KB)

As mentioned in the previous section, the knowledge-base is the main store of data about the
faults encountered by the system. Investigations carried out as part of this work revealed the
need for storing two aspects of the information in failure reports. For this reason, the

knowledge-base is implemented in two separate parts (Test-Pattern KB and

Test-Significance KB). The next two sections are dedicated to describing each of these parts.

£2.1.1 Test-Pattern KB

The conclusion made as a result of both analysis of the data and interviewing the diagnostic

technicians is that the main factor in identifying frequently occurring faults is the recognition
of a test or a sequence of tests which usually fail when the fault occurs. In most cases more

than one such test or sequence of tests exist for a given fault. A sequence of test failures
occuring in a single failure report is termed here a test-pattern.

Due to the significance of recognizing test-patterns in the diagnosis process, this section of
the knowledge-base is dedicated for the storage of the different test-patterns encountered for
each fault met by the system, and hence is termed the test-pattern knowledge-base.

The test-pattern knowledge-base contains a list of Fault Entries. A fault entry exists for each

fault presented to the system up to the present time, it contains the information required by

the system about each fault. Each fault entry contains two parts : a Fault Number, which

indicates a fault in a specific component (and represents the CPN of the failed component),

and a Test Patterns part, which contains a list of test-patterns previously encountered for this
fault.

Each single Test Pattern in turn consists of the following parts:

i. Frequency Count: is the number of times that a specific test-pattern causes the

failure o f a given component.This field is added (and later modified) by the

system to avoid storing duplicate copies of the same test-pattern.

ii. Tests: contains all the tests which form the test-pattern.

51

This representation of Test Pattern enables the system to copy the diagnostic technician when

faced with a test-pattern which is encountered in more than one fault. When faced with such

a case, the technician compares the cumulative frequency count of the different test-patterns
in determining the most suspected fault.

Finally, each single Test has a Test Number and a Test Name. The Test Name consists of
the name of the test and the condition(s) under which the test was applied. The information
corresponding to these fields is extracted directly from the failure report since each test in

the report has identical fields associated with it. For information on the format of the tests in

a failure report refer to section 3.3 of chapter three.

As mentioned above, each fault has a specific fault entry which contains all the test-patterns

which caused the failure of that fault. Figure 5-1 exhibits the structure of a fault entry in a
tree form.

Fault Entry

I_______
Test Patterns Fault No/Name

Test Fattemi test Pattern N

Tests
~l
Freq Count

Testl Test2 TestN

I-------------------------- — = : h ..
Test No Test Name

I--------------------- ----:-----------------------1
Name Condltion(s)

Figure 5-1: The structure of a fault entry

¿±2,1.2 Test-Significance KB

In addition to associating the different test-patterns with the appropriate faults, a diagnostic

technician will also develop, with experience, the knowledge o f the significant tests with
respect to certain devices in the PCB circuitry. This is developed by noting the failure of
certain tests during the failure of certain devices each time one of these devices fail. Such
information about the individual tests in the report will provide an additional measure when
comparing a new report with ones stored in the knowledge-base.

52

The test-significance knowledge-base is developed in order to enable the system to perform

the above. This section of the knowledge-base is a table like construct which stores the fre
quency of each test, encountered so far, in the failure reports associated with each faulty

component encountered. Each table entry is allocated for a specific test and stores the

frequency information as a histogram of the failure frequency for the corresponding test in

each fault.

Test-Pattern KB

FAULT ENTRY-F1

FAULT ENTRY-F2

FAULT ENTRY-F3

FAULT ENTRY-F6

FAULT ENTRY-F5

FAULT ENTRY-F4

Test-Significance KB

Test 1

F1 F2 F3 F4 F5 F6

Test 2

f I n ft f f‘ ft

1 l l
Test 3

r t f t f i f t f t f t

Figure 5-2: The main sections of the knowledge-base.

Both sections of the knowledge-base are illustrated in figure 5-2. The knowledge-base in the

figure is constructed in terms of a number of example faults, F I . . ,F6, and a number of tests,

test 1 .. .test 3.

¿,2.2 The M atcher (the knowledge-base search)

When the system is presented with a failure report, a number of heuristics are used to detect
cases of multiple module failure. These scan the reports and involve examining the failed
tests and the modules of failure to look for a pattern of failure which resembles one of the

standard patterns, these are the patterns noted in groups of identical failuie leports obtained

53

by analysing the data and are made into heuristics. Section 5.2.4 will discuss these heuristics

in a greater detail. When the pattern in the report is identified, then the corresponding heuristic
action is applied. This basically points to a suspect module and selects the tests corresponding
to its failure in an optimal form (mainly by removing duplicates). The group of extracted tests

is termed a match-pattern. 1

Fault Dictionary

Figure 5-3: Searching the KB for matching patterns.

Next, the match-pattern is presented to the matcher which compares the sequence of tests to

each test pattern in a fault entry. The procedure is repeated for each fault entry in the test-pattern

knowledge-base, as illustrated in figure 5-3. When the report is compared to each test pattern,
the following are m arked :

1. The number of common tests, S. (Non negative integer)

2. The number o f common tests relative to the total number of tests, P. (Integer in
the range 0 -9 ,9 indicates that all tests are common)

3. The Significance of the common tests relative to the significance of all the tests,
G. (Integer in the range 0-9)

54

The Significance is obtained from the information in the test-significance

knowledge-base. Since the latter contains information about the number of times

a particular test failed for a given fault. The significance of a given Test in a

particular Fault, Significance(7esr, Fault), represents the number o f times in
which the failure o f test Test was caused by the failure o f component Fault
relative to the number o f times it was caused bv the failure o f all components.
For example, if a test tl fails once in component cl and twice in component c2
and not otherwise, then :

significance(tl, cl) = 113

The overall significance (G), mentioned above, of a test-pattern in a given Fault
is defined as the significance o f the tests which are common between the tests o f
the report and that o f the fault entry relative to the significance o f all the tests
in the pattern and the report.

Note that, 2 and 3 are chosen to be numbers between 0 and 9 only to ease the
process of comparing the corresponding scores of different patterns.

4. The frequency count of a pattern, F. (Positive integer)

Testl Testl

Test2 Test2

Test3 Testò

Testò Test7

Test9

Figure 5-4: Matching example.

in order to illustrate the procedure of evaluating matching scores for a match-pattern and a
given test-pattern within a fault entry, consider the example in figure 5-4. The scores for the
example are as follows :

1. The number o f common tests is 2, {Testl and Test2).

55

Hence 5 = 2

2. The number of common tests (2) relative to the total number of different tests
(7) is 2/7. In order for this value to be an integer score in the range 0-9, then the

ratio is multiplied by 9 and the nearest integer is used as P.

Hence
p = - x 9 « 3

7

3. Given that the significances of tests 1-3 is 2 and that for each of the others is 4

then

G = — x 9 * 2
22

Note that the multiplication by 9 is for the same reason as that mentioned in 2.

4. The frequency count is that of the test pattern, say 3.

The matching scores (S, P, G, F) are taken into account when choosing the best matches

from all the suspect faults produced as a result of searching the knowledge-base.

5.2.3 The D evelopm ent o f a Rule-Base for Evaluating M atch Q uality

Searching the knowledge-base, see section 5.2.2, results in a number of possible suspects

faults each associated with its matching scores. In order to find the most suspected component

a method is required of evaluating these scores and comparing them with each other.

This section describes the attempts which lead to the development of a rule-base for comparing

the scores o f the different suspects and choosing the most suspected fault.

£2 .3 .1 In itial Investigations

Ordering the matches is possible by presenting all the matches to a sorter which will re-order
the matches in descending order o f the quality of the match described by a given criterion.
The criterion, presented to the sorter, should cover all possible combinations of two matches
which could be presented and an indication of the best match by either confirming or rejecting
the order in which the suspects are positioned in the suspect list presented to the sorter prior
to the sorting procedure.

Initially, a simple criterion is used and is as follows :

56

Given two patterns (pattern A patternB); then patternA (the best match) is the one
which is exactly matched or the pattern with the largest scores, otherwise the
two patterns must be reversed in order.

If neither of the two patterns are exact, then they are sorted according to their score total.

Tables 5 -1 (a) and (b) are examples to illustrate the use of the above criterion in discriminating

a best match. PattemA, in table 5 - la , is an exact match (P = 9) hence the order of the two

patterns is not altered in this case.

S P G F

PattemA 2 9 5 6

PattemB 2 6 7 8

(a)

S P G F

PatternA 4 7 5 8

PatternB 4 6 9 6

(b)

Table 5-1: Illustration of initial criterion.

While in the example of table 5 -lb , neither of the two patterns is an exact match, and hence
their score totals are compared which leads to reversing the order of the two patterns since
the scores of pattemB total higher than those of pattemA (25 > 24).

The above criterion is crude and it does not offer sufficient control over the choice of the
match, since it was noted by basic inspection of some matching results. In addition, there are

cases where comparing the total does not produce a correct match. As an example, consider

the two test patterns in Table 5-2 and their corresponding matching scores:

S P G F

PattemA 1 1 1 6

PattemB 2 1 1 1

Table 5-2: A restriction in initial criterion.

The total for pattemA is 9 while the total for pattemB is 5. According to the previously described
criterion; pattemA is a better choice. However, as it was noted with different matching results,
the difference in S is more significant than a difference in F since the match is not an exact

57

one any way. More tests in the intersection is a better indication to the match as long as the

increase in the other scores is not ’very’ large. The previous example is one of many cases

where the initial criterion failed in making a correct decision.

Furthermore, there were cases where the amount of difference between corresponding scores
in different patterns was significant, e.g. provided the first three scores in the first pattern are
larger than the corresponding ones in the other pattern, then the second pattern will only be

chosen if its fourth score, F , was larger by about 25. This example is another case where the
initial criterion failed to make a correct decision, this lead to the development of an alternative

criterion which offers more control over the choice of the best match. The next section

describes this criterion in detail.

5.2.3.2 Generating a Rule-Table

The comparison between the scores of the two matches (pattemA pattemB) could be performed
using the predicates >, <, and =. Hence an alternative matching criterion could be developed,
to that of the previous section, which involve the use of these predicates in expressions (or

rules) which describe the required relationships between the matches. Examples of such rules

are the following:

IF [SA>SB & PA>PB & Ga>G„ & Fa > F J THEN O K

and IF [SA<SB & PA<PB & GA< G B & FA<F,J THEN ~O K

OK and ~OK are sorting predicates which either indicate that the current order is OK, hence

no change is required, or that the order is not OK, hence the matches will acquire a new order
with respect to each other which is the reverse of their previous order.

By developing a matching criterion which is made up of rules, such as those above, more

flexibility is introduced into the decision making process. This is because separate rules could

be used for individual cases. This procedure could recover clearly distinguishable cases as

well as those which require more careful examination, such as the case in table 5-2 mentioned
earlier. For this reason such a criterion offers more control over the matching outcome than
the one provided by the initial criteria of section 5.2.3.1, which treated all cases at a similar
level of ambiguity.

58

S P G F

PatternA 1 3 5 5

PatternB 1 3 3 15

S P G F

PatternA 1 3 5 5

PattemB 1 3 3 7

(a) (b)

Table 5-3: An example of a complex rule.

The rules provided at the start of this section are examples of those aimed for obvious cases,
however, in order to understand the construction of those developed for more difficult cases
consider the matching pairs of the example in tables 5-3 (a and b).

Both examples represent the same relationship among the corresponding scores of the patterns
A and B except in the amount that FB exceeds FA. The amount FB-FA is larger in the case of

example (b). By considering the different examples of the above cases in the data it was clear
that in the cases where FB-FA is relatively small (< approx.5), as in (a), then pattemA is a better

match, whereas if the difference is larger, as in (b), then pattemB is a better match. An example

of a rule to recover examples of this case is as shown below :

IF [Sa=Sb & P a=Pb & G a>G b & F a<F,J t h e n

IF [(Fb-Fa) < 5] TH E N O K

The above rule is in the form

IF [C O N D I T I O N THEN

IF [CONDITION¡¿mu} T H E N [ACTION]

Secondary ru le

M ain rule

The above form could be considered as a main rule with a secondary rule within it and is a

general form for all the matching rules. The rules mentioned earlier in this section are special
case of the main rule form where CONDITION^eli does not exist.

If we consider the total number of possible relationships among scores of two suspect patterns,
then only a finite number exists. Since 4 such scores exist and 3 possibilities exist for com
paring corresponding scores (=, <, >), therefore 34 possibilities exist for CONDITTONleveu-
This provided the possibility of storing all the main rules in a look-up-table, which offers the

59

advantage of fast access. A single main rule is represented as one entry in the look-up-table,

with its CONDITIONieveli being the table indices and the secondary rules being the actual
content o f the entry. Such a table with its rule contents is termed as the Rule-Table.

Choosing the appropriate secondary rules for each rule-table entry is performed manually by

considering the examples of each main rule in the data and their corresponding matching
scores when processed by the system, and then developing the appropriate secondary rule
which will lead to the recovery of the majority of the examples. This process is referred to

as manual tuning of the rule-table. A relatively small number of secondary rules resulted

from the tuning process since a number of different main rules shared the same secondary
rule.

Table 5-4 illustrates a rule-table for a matching system which generates two scores Sl and S2.
It describes all the possible relationships which could exist between the two scores of any

two successive faults and an indication to the system of what should be done (to the order

of the two successive faults), i.e, the secondary rule. The table is usually constructed by the

system designer in terms of a limited number of secondary rules (OK, OKif,...etc.) selected

and implemented by the designer himself. The names are chosen for simplicity and illustration

purposes.

fs2

> < —

> OK OKif OK

fsi < ~OKif ~OK ~OK

= OK ~OK Both

Given Faults F, and Fm in the order {FtF M") in the Suspect List (i.e, Ft preceding F^j, then:

fsi Represents the result of comparing S, in F, with S, in Fm.

I s i Represents the result of comparing Sj in F, with S2 in FM.

Table 5-4: A possible configuration for a manually tuned rule-table.

For example, if a system using the above rule-table encounters two adjacent faults F t and F2
where SiF1 > S 1F2 and > S2F2 (the first table entry) then when the corresponding table
location is referenced the system will realize that no change is required in the order o f the

two faults and hence the secondary rule OK indicates no change to the order of the two faults.

60

~0K indicates that the order of the two faults described by the relationship of their scores is

not OK and hence change in their order must be performed. OKif indicates no change provided

an additional condition is satisfied (see CONDITIONt FVFt ? mentioned earlier) e.g, S2F1-S2F2

> 5. ~OKif is the opposite of OKif.

In the actual rule-table constructed for the system, see appendix B, four scores are used and
hence a multidimensional look-up-table is used with secondary rules which operate on the
scores in a manner similar to the above. As can be deduced from the table, more rules exist

and these are more complex in the number of different scores examined by CONDITION, FVFT,

in their secondary rules.

¿,2.4 Heuristic Rules

¿.2.4.1 Observations Based on the Data

This section briefly considers some of the heuristics and observations, made by the diagnostic
technicians in the company from their experience with the board failures, in aiding them to
locate faults. These are in the form of notes obtained by interviewing a number of technicians
and studying their notebooks.

Some o f these heuristics are as follows:

1. According to the technicians, the likelihood of various failures occurring is as
follows (most likely first):
500s, 40s, 31, Leg not through for a particular component....etc.

2. If a single test (or any number of tests) fails for all of the individuals with the

exception o f one then the faulty component is most likely to be in the only

non-failed individual. The faulty component is usually isolated by using

technicians experience with associating the previous failures of the test (tests)
with a component (group of components).

3. When a failure slip shows different failed tests in different individuals, then the
tests failed in the last individual in the slip are used in identifying the component
type (usually as in 2.) within this individual.

4. Failures of tests from group (Test 0) usually indicates the failure of the Processor
(31) and in some cases the failure of Fuse 540.

61

5. Failures o f tests from group (Test 6) usually indicates the failure o f one of the

following, listed in the order of decending likelihood: Bridge rectifiers (70s),

Thyristors (490s), Resistor networks (250s and 260s), Relays (500s and 510s),

and Slics (40s).

6. Distinct patterns (a pattern is a sequence of failed tests) fail regularly due to a

fault in specific components. Some of the examples of these in the data are:

i. A pattern of 8 tests in 400s.

ii. A pattern of 14 tests in 70s.

iii. A pattern of 20 tests in 40s.

Due to the common failures of the component groups 40 and 50, the following two points

are specific to these;

7. The following tests usually indicate the failure of 40s:

Longitude noise D->A
IMP. UNB.(Longit) D->A
False Loopimpdata
No Loopimpdata
Curr. Feed active Stic
No offhook
Noonhook

The above tests usually fail alone, repeated a few times (2-3) under different conditions.

8. The following tests usually indicate the failure of 50s:

False Bdata
False Rdata

Overall Loss A->D
ToT.Dist.(Noise) A->D
Linearity (Noise) A->D

62

The above tests are an indication o f the failure o f the corresponding component whether the

report indicates a multiple individual failure or a single one.

¿.2.4.2 Heuristics Used During Diagnosis

Some of the heuristics used by the diagnostic technicians involve identifying a single test or
group of tests which indicate the failure of a certain device or group of devices. Examples of
this type of heuristic are 4,5,6,7, and 8 in section 5.2.4.1.

The identification o f faults based on the comparison of tests in new reports and previously

encountered ones is the basic principal behind matching. For this reason, this type of heuristics

are incorporated in the matching procedure. In practice, the system can identify such cases
after being presented with 1-2 example reports of the case.

The heuristics o f 2 and 3 deal with cases of multiple individual failure and are incorporated

to the system (in Lisp code) since they cannot be recovered by matching alone. These heuristics

are useful in recognizing multiple individual cases and choosing the tests of the appropriate
individual as a match-pattern to be utilized in matching, see section 5.2.2

The heuristic in 1 need not be incorporated into the system since itrepresents the most common

faults according to the diagnostic technicians over a certain period of time. Such information

can become out o f date with changes in the manufacturing procedure. The system has access
to such information since it stores statistical information about the individual tests and

test-patterns for each fault and updates any changes dynamically.

53 System Learning

When the correct fault is entered by the diagnostic technician, the knowledge-base is searched

for that fault. If it was not found then a new fault entry will be generated with the corresponding

fault number and the tests in the report as the test pattern which will be given a frequency

count of 1 since it is the first pattern seen for the given fault. However, if the fault was found

then the test patterns of the fault are scanned. If the pattern in the report was found then only

the frequency count is increased however, if the pattern is not found, then it is added to the
list of test patterns belonging to the fault with a frequency count of 1.

Each test in the report with the correct fault are used to update the table in the test significance

knowledge-base in a manner similar to above.

63

5.4 A Walk Through the System

Report

Ordered Suspects

Figure 5-5: The system in operation.

To perform a diagnosis, the system must be presented with a failure report. The first operation

to be performed on the report is to recognize whether the failure is in a single individual or

in more than one. This is performed using some of the heuristics incorporated into the system,

see section 5.2.4.2. In either of the two cases an optimal number of tests and a suspect module

is indicated. The tests are the match-pattern, which is in turn presented to the matcher. By

searching both parts o f the knowledge-base, a number of suspects are produced. These sus

pects are later sorted according to their matching scores, see sections 5.2.2 and 5.2.3, and are
the final outcome of the system. This procedure is illustrated in figure 5-5.

For the system to be kept up to date and in order to improve its performance, it must be
updated by the correct cause of failure, TF, at a later stage. This procedure, which is described
in section 5.3, involves modifying both fault entry and test pattern knowledge-bases with TF
associated with the failed tests in the report.

64

During conditioning the system in the company some more modifications were incorporated

to ease the task o f updating for the technicians by storing diagnosed reports in a queue like

structure. In practice, more than one report is diagnosed successively and update is only

possible after a period of time which could involve tracing the fault in the circuit, if system

diagnosis was not correct.

5.5 System Evaluation Environment

A considerable amount of time and effort was put into examining the performance of the
system by adjusting the different attributes of the main system elements, such as choosing

an efficient method of information storage in the KB, tuning the rule-base, manipulating the

heuristics. All of this required an environment in which the system can be tested efficiently
which requires feeding the system with reports which are as random as the ones met in its

actual diagnosis environment (given the quality and the quantity we currently have access
to). In addition, the environment should provide relatively easy access to the different

parameters of the system during testing and allow controlling the testing procedure with a

number of options. An evaluation environment implemented around the system is illustrated

in figure 5-6 and will be the subject of the rest of this section.

Data

Figure 5-6: The debugging procedure.

65

All the reports we had access to are stored in a data-base which could easily be accessed by

the system. The reports are stored such that each failure report is accompanied by a note of

the actual faulty component (True Fault, TF) which caused the failure, this is in order to
enable comparison with the system’s own prediction. Each time the system is tested the user

has the option of shuffling the reports so that they could be presented to the system in a
different random order in different test occasions. The shuffled reports are placed in a buffer

ready for use.

The user interface of the system (UT) enables the user to specify a number of options which

include the following

1. The number of reports used to build the knowledge-base prior to

diagnosis and the number of reports to be assessed.

2. The length of the interval (in reports) at which a total assessment
of the diagnosed reports should be made.

3. Display a number of system parameters at regular intervals during

the diagnosis procedure such as related portions of the

knowledge-base, match-pattern, un-processed rep o rt,-----

When the system evaluation commences, the first report of the randomly shuffled reports are
presented to the system. The system produces a number of suspects ordered in a decreasing

order o f likelihood o f being the faulty component. Each suspect fault is accompanied with

its matching scores.

Next, the suspects are presented to the assessment routine which tries to locate the true faulty

component in the list of suspects. If it is located then the routine will record the position in

the suspect list at which it was identified, otherwise the report will be counted as an incorrectly

matched unless the suspect list is empty in which case this will be indicated.

The user is provided with two types of information, the first is instantaneous and is performed

after each assessment of a report and the second is performed at regular intervals specified
by the user. The instantaneous information include the suspects and their corresponding

scores, TF, and any other optional information set by the user using UI. The periodic

assessment displays statistical information such as the number o f reports identified as the
first best match (1st position in suspect list), second best match (2nd position....),...etc. Also,
some information about the frequency of different tests failing due to a fault in different
components in a bar chart form.

66

During system assessment process, the updating procedures for the different parts of the

system are performed automatically, since this is an important part of maintaining such a

system.

The evaluation environment described in this section played a major role in assisting to
improve the system’s performance such as recognizing the significance of the different
matching scores and hence the development and tuning of the rule-table. In addition, it
provides an efficient way of monitoring the system by locating specific cases where the system
fails in its diagnosis and hence provides a way of debugging.

Due to the efficiency of this environment in indicating the system performance, it will continue

to be used in most of the investigations mentioned in the rest of this thesis.

67

5.6 System Performance

P»uit toM ttaa Po*. h o lt)*e«a«a f«*.

•) T in t 100 (b) Second 100

%

1 2 3 4 6 0 N V

%
70 V “

1 2 3 4 6 0 N W
M K Pm .

(d) Fourth 100

Mean E53sTD

Figure 5-7: Mean fault identification charts for the system.

The performance of the system, using matching alone in its diagnosis, was assessed by using
the most common PCB style manufactured in the company and are illustrated using Per
formance Charts of figure 5-7. The charts are developed by presenting different random

68

sequences o f 497 reports to the system and assessing the performance after each 100 reports.

The performance is assessed by examining the order at which the fault is identified. The

orders in the charts are:

x F aults identified a s the xth m ost likely fault.

Where x is one o f{l, 2 ,3 ,4 ,5}

O F aults identified beyond 5th position.

N F ault n o t identified.

W F aults identified incorrectly.

As the charts indicate, 65% of the reports presented to the system are correctly identified as

the best match. If the best three matches are considered, then about 75-80% of the reports are
identified correctly.

The above group of reports represent the majority of the failure cases in the data. When

analysed, it was clear that the pattern of failed tests in the reports are exact symptoms of the
corresponding faulty components (i.e, their exact signature).

The remaining 25-30% of the reports fall into one of the groups described below :

1. Faults identified at positions other than the first best fault. These
were found to be mainly due to test patterns common to more than

one fault.

2. Unidentified faults; these are usually ones with new test patterns

and occur usually at early stages of building the knowledge-base.

3. Incorrectly identified faults; these include errors in the data and odd

failures of a certain component.

Initial examination o f some of the examples of the above cases, revealed that some clas
sification may be possible according to the pattern of the failure in the report. However, this
work will not be considered in this section and will be the subject of the next chapter.

Conclusions

In this chapter a system was developed modelled on the conduct of a diagnostic technician
during the failure diagnosis process. The system performs a diagnosis by matching a failure
report with dynamically stored information about previously seen reports in its knowledge
base.

69

The results obtained by the system are satisfactory since about 65% of the reports presented

to the system are correctly identified as the best match. One of the reasons for this performance

is that the approach used mimics that of the technicians in analysing a failure report, by using

a combination o f some heuristic rules with matching and continuously improving with
experience. This approach improves on the automatically generated tree approach which is

less flexible.

However, some more investigations were necessary in order to identify the cases where

improvement is possible and investigate how so. Also, the system includes some heuristic

rules which are not confirmed completely and are only based on observations o f the

technicians. It will be desirable to develop these into a more general ones which could be

applied to a greater variety of board styles. Furthermore, itis advantageous to make the system
more self-dependent by enabling it to tune its matching rules. All of these are possible options

for investigations in the next chapters of the thesis.

In addition, keeping the system up to date involves more complications than the mere addition
of new cases and keeping records of test and pattern frequencies. Faults vary with changes

in processes such as manufacturing or assembly leading to the disappearance of some faults

and possibly the appearance of others. The faults which disappeared might or might not appear

again. However, since the information related to such faults remains in the knowledge-base
unchanged, they could keep appearing as possible suspects for other faults. For a more
complete update procedure such changes must be reflected into the knowledge-base. This
point will be carried futher in a later chapter.

70

CHAPTER SIX
ANALYSIS OF SPECIAL CASES IN THE DATA

_6.1 Introduction

The results obtained using the system, described in chapter five, are encouraging since the

faults associated with the majority of the reports are identified correctly. As illustrated in

section 5.6, about 65-70% of the faults associated with the reports are identified correctly as
being the first most likely fault while if the three most likely suspect positions are considered

(1st, 2nd, 3rd), then about 75-80% are identified correctly.

However, about 20-25% of the faults are not recognized at all (incorrectly matched or no
matches are found) with about 5% identified as least likely suspects (such as 4th position,
5 th . .etc). This chapter is an attempt to investigate these cases.

The investigation is based on analysing the different ambiguous cases which exist in the data.
When analysed, these cases can be classified into groups of report ambiguities. The examples

of each group share a common feature in the failure of their tests distinguishing them from

other groups and from the majority of the reports in the data. These ambiguities are briefly

mentioned when the general problem and the data were first introduced in chapter three, see
section 3.3.1, and are also encountered as heuristics followed blindly, without knowing the
reason, by the technicians in the identification process as in section 5.2.4.

The ambiguities are examined by locating examples of each case in the data. By studying

these examples an attempt is made to find ways of recovering some of these cases later in

this thesis and finding the reason where recovery is not possible.

Most of the cases mentioned here are ones which involve the failure of more than one indi

vidual (module) in the circuit since these constituted the majority of the ambiguous cases,

hence most o f the ambiguous cases discussed in this section are referred to by the pattern of

individual failure which characterises them.

The investigation for each case is described in a separate section, where the different examples

in each group are noted for the frequency at which they occur, the individuals failed...etc.,
and a possible explanation in terms of the circuitry where possible.

This chapter concludes by suggesting some additional work which might lead to improve
ments in some of the cases and in the systems performance in general.

71

6.2 M ultiple Individual F ailu re Cases

6.2.1 T he L ast Individual

Examples of this case include reports in which tests fail in more than one individual, the

majority o f the examples in the data indicate that the tests of the last individual should be

considered in matching with the corresponding individual number to identify the correct
faulty component (this could be due to the fact that each test is applied in an ascending order,

starting with the lowest numbered individual which is individual 0). This procedure is

employed as one o f the heuristics of section 5.2.4.

6,2.1.1 An O verview

Examples o f this case could fall into one o f the following groups :

1. The Non-Individual com ponents

These are components that do not repeat in each individual such as the digital
control circuitry elements, the fuses,...etc. Since some of these components are

connected into all of the individuals and some are connected to many compo

nents, their failure leads into the failure of different tests in different individuals

(sometimes in all the individuals).

2. The Individual com ponents

These are the different components which constitute the circuit of each indi
vidual. Table 6-1 summarizes the different examples of this case.

Each entry in the table represents a single failure report by pointing out to the following

information in the report in their respective order

The reported faulty individuals.

The actual faulty individual.

The faulty component within the individual.

The number of times a similar report has been encountered in the data.

72

R e p o r te d I N D s F a d e d I N D C o m p o n e n t R e p e t i t io n

0 , 1 1 slic 2

0 , 1 1 test relay 1

6,7 7 slic 1

1 {2 }3 3 slac 1

0{2},5{4} 0 slac 1

1 1 2 } , 2 1 thyristor 1

4,0 4 C400 1

Table 6 -1 : Examples o f Inter-Individual components

The numbers between {} indicate the number of times the corresponding individual failed.

By consideration of table 6-1, the following are no ted :

1. The failure of a component in individual 1 causes the failure of some tests in
both the faulty individual and the previous individual. The failed tests are not

identical, however, inm ost cases both groups of tests point to a similar component

in both individuals. A possible explanation for this case could be that the failure

of the component in individual 1 causes the CUT OFF of the components of
individual 0 from the common line which connects all individuals. This case is

illustrated in figure 6-1

Figure 6-1: Illustration of a cut off case.

73

2. In many cases the failure of one component causes the failure of another in a
different individual without causing the failure of others. Since each individual
functions independently from the others, and the only connection between dif
ferent individuals is the common lines which connect some of their components.

This case cannot be explained as a cut off as in 1, however, a possible explanation
could be that the tester tries to establish a communication between two individuals
in the circuit since in normal operation of telephone circuitry it is possible to
have a telephone link between any two individuals. The same tests could be

applied while testing the communication of two individuals, the only difference

is that the caller circuit is closer which could effect a parameter such as load.
The next section will consider these cases more closely. Figure 6-2 illustrates a
case in which communication is established by the ATE between individuals 0

and 3.

Figure 6-2: Communication o f individuals established by the ATE.

42 .1 .2 A M ore Com prehensive Exam ination of the Cases

This section considers some of the cases of table 6-1 individually. By analysing the different
cases in the table, it can be seen that the different reports indicate a failure in two individuals
which are adjacent or apart. The next sections consider the cases of each of these.

Each section considers a number of cases (report). Each tabulated case points to the following
information in the re p o rt:

The test name and (its group number).

The actual failed individual.

74

The reported failed individuals.

The faulty component within individual.

6.2 .1 .2 .1 Separate Individuals

The cases considered are the ones which are caused by the failure of two random individuals
which could not be explained by CUT OFF.

Case 1

Tests (T e s t N o) Failed IND Reported IND Component

Ring relay (1) 0

No offhook (/) 0

Overall loss a-d (1 1) 0 5 Slac

Overall poirev a-d (1 1) 5

Overall polrev d-a (1 1) 5

Overall loss d-a (1 1) 5

Table 6 -2 : Details o f the report in case 1

Case 2

Table 6-3 : Details o f the report in case 2

Case 3

Tests (T e s t N o) Failed IND Reported IND Component

overall loss a-d (1 1)

4

4

Cs|ic-i/ptot dist noise a-d (1 5) 0

Table 6 -4 : Details o f the report in case 3

75

The reports had the following characteristics:

1. The failures in the faulty individual are due to tests which indicate a failure in

one of the functions of the Slac.

2. The failed component in the first two cases is the Slac, however, the third case

failed due to a capacito r between two She inputs (the purpose of this capacitor

could be related to one of the tasks which the Slac carries out via the Slic and

hence the failure of the tests).

3. In the first two cases the tests failed in the first individual indicated a fault in a
Ring-Relay (or a Slac). However, the failed tests in the last individual (which is

the faulty individual in this case) indicate a fault in a Slac.
In the third case, however, all the failed tests indicate the failure of the Slac.

4. In the third case the higher numbered individual fails before the lower numbered
one. This is possible since each test is applied in a top-down manner (i.e, in the

order 0-7).

iL2.1.2.2 Adjacent Individuals

£ase 4

Discussion of the Cases

Tests (T e s t N o) Failed IND Reported IND Component

OVP b-wire thyristor (6)

7

6

SlicOVP a-wire thyristor (<5) 7

Table 6-5 : Details o f the report in case 4

£as£_5

Tests (T e s t N o) Failed IND Reported IND [Component

OVP b-wire thyristor (6) 1

OVP a-wire thyristor (6) 1 1 Thyristor

OVP b-wire diodeBridge (6) 2

Table 6-6 : Details o f the report in case 5

76

Discussion of the Cases

By examining the cases, it is clear that the tests failed in both cases indicate a failure in the
OVP circuitry with the tests in both faulty and non faulty individuals being of the same type.

Examining the values at which these tests failed in each of the two reports indicate that the
value in the faulty individual is out of its limits by a large margin, however, in the non faulty

individual the value is only slightly out of the range of its limits.

6.2.2 The Odd Individual Cases

Most o f the diagnostic technicians in the company who were interviewed indicated that in
some cases a report contains a certain test(s) which fail in all of the eight individuals except
one. Usually the cause of such failures were found to be the component in the individual
which passed the test. Suspecting the individual which is not reported in the failure report is

justified since the failure of a single module is more likely than the failure of all of the modules

in the PCB circuitiy.

Examples o f this case, which were encountered in the data, are tabulated in table 6-7. The

information in the table is similar to that of table 6-1. 1

R eported IN D s F a d e d IN D C om ponent Repetition

0 - 6 7 Test Relay 1

1-7 0 slic 2

0,13,4,5,6,7 2 slic 1

0,1,2,4,5,6,7 3 slic 1

0,1,2,33,6,7 4 slic 1

0,1,2,3,43,7 6 slic 1

Table 6-7: Examples of the odd individual case.

Notes

1. It can be seen that examples of this case occur in only two types of components

(Test Relays and Slics). Both types of components have a common line which
connects all the components of their type in all the individuals.

2. The failed tests in the slics are all of the same type in all of the cases.

77

3. In some cases in the slics, a single test failure is reported in the failed individual.

The test has the same general task as the test(s) failed in the reported individuals,

but is different in the condition under which it is applied.

42.2.1 Possible explanations

A possible explanation to the failure of the Test Relay in individual 7 could be due to a weak
(or an open) connection in the common test inputs line at the point of contact with individual
7. If this situation occurred then the input could reach only individual 7 and not the others.

A possible explanation for the other cases, which mainly involve the Slic, could be due to

sharing a common line among all individuals. Information is sent to one individual at a time,
at this time the rest o f the individuals must block their input to the common line so that
information is only moved to the required individual. The blocking mechanism could be one

of the functions of the Slic since it is at the receiving end of the common line. Hence, when

the faulty individual is tested no error is reported since all the other individuals can operate
their blocking mechanism, however, an error is reported when each of the other individuals

are tested since in each case the single faulty individual fails from blocking itself.

42.3 The Wrong-Test Cases

A relatively large number of reports in the data contained failed tests (in one individual) which
have the task of testing a certain component in the individual, however, the cause of the failure

is diagnosed to be due to a different component in the same individual. These cases were not
suspected to be a fault finder error (although some of them could be) because of the repetition

of some of them in the separate groups of data received. The examples of this case could be

further divided into two separate groups. These will be discussed in the following two sections

42.3.1 Group I

The reports in these examples contain a single test or a group of tests which test a single

component and no other tests exist. Table 6-8 illustrates the examples found in the data. For
each report the following information are indicated in the table in their respective order:

The test name(s) (its/their group number)

The actual failed component.

The faulty component/circuitiy to which the test(s) failure point to.

Number of times a similar report is encountered in the data.

78

The table contains the analysis of the most common components in the data (She, Slac, Test
Relays, Ring Relays). Further analysis will be carried out with the less common components
in the future if a significant number of such cases exist. The Test field in the table summarizes
the test(s) and does not contain any details (such as conditions) this is to reduce the size of

the table and make it readable.

N o T e s t (T e s t N o) F a i le d C o m p R e le v a n t C o m p R e p e tit io n

1 OVP-Tests (6) Ring relay OVP circuitry 11

2 OVP-Tests (6) Test relay OVP circuitry 4

3 Ring relay (1) Test relay Ring relay 4

4 Linearity (13) Slic Slac 1

5 Longitud noise (14) Slic Slac 33

6 Tot distortion noise (15) Slic Slac 4

7 Linearity (13),
Idle ch noise (14),

Tot distortion noise (15)
Slic Slac 1

8 Idle ch noise (14),

Tot distortion noise (15)

Slic Slac 1

9 OVP-Tests (6) Slic OVP circuitry 3

10 Unbalance (17) Slac Slic 1

11 Current feed (1) Slac Slic 1

12 Current feed (1),
Test relay (1)

Slac Slic and/or

Test relay
2

13 OVP-Tests (6) Slac OVP circuitry 2

Table 6 -8 : The wrong test cases

Possible explanations

[1-3]:

OVP tests are applied through the common test inputs which feeds into the Test relay
o f each individual. W ithin a single individual a test signal passes through a path which
leads into the she passing through connections to Ring relays, OVP circuitry.
Since both Ring relay and Test relay are in the OVP test signal path, then a fault in any
of them will cause the failure of the OVP test. The nature of the output response to the
test input will depend on the type of the failure in any of the components.

79

[4-8]:
The tests involved in these reports are related to A-D and D-A conversions which are

mainly carried out by the Slac.
A speech signal, which is output from the individual, is processed by the Slac and then
passed to the Slic which provides the necessary conditions for the signal to be sent to

the other end of the communication line. Therefore, any fault in the Slic could cause

the failure of the tests which are testing the functions of the Slac.

[9]
One of the tasks of the Slic is controlling the operation of the Ring Relay which in turn

lies in the path of the OVP test signal, hence, a fault in the slic (in the part of the slic
which controls the relay) will cause the failure of the OVP test. The cause of the failure
could be The Slic itself since it is connected directly to the OVP test signal path (see
the explanation of [1-3]).

[10-12]
An incoming speech signal passes through the Slic and then to the Slac. Therefore, a

failure in the Slac could cause a failure in the tests which test the ability of the Slic in
handling the in coming speech (the nature of the failed indicate problems in handling

the signal).

[13]

A faulty Slac will effect the signals entering the Slic which will in turn cause the failure

of the OVP test (see the explanation of [9]).

Note

The tests corresponding to the failed component do not appear in the above cases. This

could be due to tests being functional. Since functional tests cannot test all the states

and conditions o f the components, but select only a few of them.

iL2.3.2 Group 2

The reports in this group contain more than one type of test; tests which are not relevant to
the faulty component and others which are relevant to the faulty component. In most cases,
the faulty component appeared to be the reason for the failure of the other tests for connectivity
reasons. These reports were not analysed as in the previous case because of the relatively
large number o f tests involved in each report which will produce tables which are difficult
to read.

80

6.2.4 The Wrong-Individual Cases

Some of the reports in the data contain test(s) which indicate the failure of the faulty component
however the test failure(s) occurred in a wrong individual. It must be noted that in these cases
no other individual failure is reported. The relevant reports are tabulated in table 6-9 which
contains similar information about each report as table 6-1.

R e p o r te d I N D F a i le d I N D C o m p o n e n t R e p e tit io n

5 0 slic 1

6(20} 0 slic 1

2{4} 1 slic 1

3(23} 5 slic 1

0 6 slic 1

5 6 slic 1

4 5 slac 1

7 0 rectifier 1

1 3 rectifier 1

7 0 Test Relay 2

6 7 Resistor

network

1

5 6 Thyristor 1

Table 6-9 : Wrong individual cases in the data

It is difficult to explain this case since any two individuals function independently from each
other. However, failures could occur with components which are on a common line across

all individuals. But such failures cause the failure of more than one individual since all the

individuals are on the same line and a fault in one individual will effect the rest.

An explanation could be given to the above cases. The explanation uses some assumptions
which are possible considering the large number of failure types that could occur in analogue
circuits. The explanation assumes that the failure in the faulty component is such that the
functional test did not manifest the state in which the failure occurred, hence, the component
passes the te s t For the component in the second individual, a fault could exist which is not
significant in the normal operation of the circuit such as a resistor being slightly higher or

81

lower than its nominal value (or any other component). Due to the fault in the component in

the previous individual this slight deviation in value could become significant and could cause

the failure of the test for the individual. This is possible since the individuals are connected

by a common line.

This explanation could seem a very unlikely case, however, considering the very low number

of faulty boards and the low number of such cases within these faulty boards then this case

is possible.

This case could be explained by the argument in section 6.2.1 which points out to the tester

establishing communication between different individuals of one PCB .

6,3 Conclusion

This chapter detailed the investigations which were carried out on groups of failure reports

in the data. The reports of each group share certain aspects which characterize their failure.

A number of these groups were noted by the diagnostic technicians and were made into
heuristics in order to recognize similar examples and later treat them. Examples of such cases

mainly involve reports which indicate the failure of multiple individuals such as the odd

individual cases, described in section 6.2.2, and some of the cases of section 6.2.1.

Other cases investigated include groups of reports which do not belong to the ones mentioned
above and show inconsistency with the majority of the reports in the data.

Each of the cases above are investigated by analysing their constituent reports. The analysis

aimed to explain the reason for the occurrence of such cases in terms of the electronic

behaviour of the circuit. Furthermore, the analysis aims to find ways of generalizing the

heuristics used by the technicians.

The system developed in chapter five treated most cases of multiple individual failure (all

with the exception of the odd individual cases) identically by assuming that the failed indi

vidual is the last individual in the report. Although, this treatment of multiple individual

failure cases was followed by the technicians in the company and it could be applied
successfully to relatively large number o f such cases (approx. 40-45%). However, the
investigations in this chapter revealed that a number of other cases exist which include reports
involving multiple individual failure but requiring to be treated differently. These cases are
as follow:

82

1. Reports in which all the individuals fail. In order to treat this case some knowledge
of the circuit must be utilized in order to trace the device (or devices) which are

causing the failure of all the individuals. Such action is justified since the failure

o f one or two components is more likely than the failure of all of the individuals.

2. Reports involving the failure of two arbitrary individuals. Investigations of this
chapter revealed that the most likely cause of such failures could be related to
the test strategy incorporated in the test program which in turn selects two random
individuals for test. Since no detailed information is available about the test

strategy, such information could not be incorporated into the system. However,

the investigations revealed that the choice of the highest individual (rather than
the last individual) in the report is a better choice since it recovers some additional

failure cases in this group of reports.

From all the above, this investigation indicates the need for using circuit information in order

to recover failure cases which involve multiple individual failure. The use of circuit infor
mation could also aid in generalizing some of the heuristics such as the odd individual heuristic

such that it could be applied to any circuit. This will assist in developing the system to deal

with multiple PCB styles. Furthermore, the use of circuit information could be exploited in

investigating the cases where the use of matching alone (as in the system described in chapter
five) could not distinguish. This point will be carried on further in the next chapter.

It must be noted that the number of ambiguities which exist in the data are very small, relative
to the size of the data and the majority cases identified by the system, and they occur less

frequently than the frequent majority cases. The figures associated above with faults wrongly

identified or indicated as least likely include cases which could not be recovered at all for

reasons ambiguous to us (mistake by technician,.. .etc). Furthermore, it is noted that within

this relatively small figure a large number of ambiguous groups exist, all of which have small
number of examples.

The investigations of this chapter might not represent some of the cases accurately due to
lack of sufficient examples for some of the cases mentioned. The number of examples for
all o f the cases described in this chapter represent a small proportion of the total data and the
frequency of occurrence for such cases in the company is much less than the majority of the
data.

83

Although some of these cases contain a minimum of 1-2 examples, interviews with different

technicians and test engineers confirmed that these are regular cases which occurred before
and during commencing with data collection, however, with a much lower frequency and

hence are included in this analysis.

84

CHAPTER SEVEN
THE USE OF CIRCUIT CONNECTIVITY INFORMATION

7.1 Introduction

Chapter six illustrated the need for the use of circuit knowledge to improve the performance
of the system with regard to certain aspects, see section 6.3. Such a need arose especially in
considering cases of failure reports in which the failure of a number of modules are reported.

In addition, the same section suggested the need for utilizing circuit knowledge for cases

which cannot be distinguished by matching alone. Such cases include failure reports which

are common to more than one fault. This chapter investigates the use of circuit knowledge
in an attempt to isolate the failure cases mentioned above.

Due to the limited information available to us about the circuit and the tests applied to it by

the ATEs (e.g., the exact purpose of each test, the way in which its applied,....etc), only partial
use of the circuit information is possible. The only information provided about the PCB is
its circuit diagram and a brief description of some of its components.

The most appropriate knowledge about the circuit which could be used in the system is

connectivity without regard to the direction of the signal in the connections, since these are

not known due to the restrictions imposed on us by the lack of some circuit and test information.

For connectivity information to be used successfully by the system in the diagnosis procedure,
additional software modules are required to be added to the system. The main requirement
for such modules is to perform the following :

1. Incorporating connectivity information to the system, i.e. introducing and putting

this information into a form which could be utilized by the system.

2. Manipulating this information in order to improve system diagnosis.

This chapter describes the work involved in incorporating the above into the original system
and investigating system performance in response to these modifications. Hence, the chapter
starts by describing the role o f a circuit compiler in introducing connectivity information to
the various parts of the system (see chapter five). Next, the chapter describes the use of such
information by a heuristic technique developed to deal with cases which matching fails to
recover (section7.3). Later, the chapter details another technique, which also uses connectivity
information, developed to deal with cases of multiple module failure (section 7.4).

85

7.2 A Basic Circuit Compiler

The need for a circuit compiler arises for the purpose of presenting circuit information to the

system so that it can be utilized by the relevant elements of the system.

In order to make the system usable for other than system designers, the input circuit description

to the system must be in a form which could be reasonably understood/developed by the user.
Such a form might not be adequate for the use of the system directly and may require additional
processing. For this reason a compiler is required in order to transform the circuit description
entered by the user to a form which can be easily manipulated by the system.

A circuit compiler is a necessary tool for a system such as the one which is the subject of this

research since it increases the independence of the system in that it assists in the presentation
and change of information about different types of circuitry to the system. All this will be

possible without the need for altering the actual code as is the case in the heuristics used

currently in the system, described in chapter five.

Since the restricted information provided about the circuit allows us only to use connectivity

with no significance for inputs and outputs, this is one reason for developing an independent

compiler since most o f the facilities available in most traditional circuit compilers cannot be

used in this system and are hence unnecessary.

Figure 7-1, illustrates the general use of the compiler in association with the other parts of
the system in order to improve diagnosis. More elaboration will be made of some of the

features in this figure later in this section.

Circuit
D e scription

Figure 7-1: The use o f the compiler within the system.

86

Due to the significant role of the compiler in allowing connectivity to be incorporated into

the system, this section briefly describes the developed compiler and its compilation mech

anism which eases the task of manipulating connectivity.

7.2.1 Basic Circuit Representation Units

The compiler recognizes the following elements, in a circuit description provided by the user:

1. Component

This is the most basic unit in the circuit for which no sub-unit exists.

2. Module

A module represents a group of components which repeat frequently in the main
circuit and hence are incorporated into a module structure for the users con

venience.

A module could either be incremental, where the component position numbers

(see chapter two) of the module are related numerically (as in the circuitry of an

individual) or independent where no such relation exits.

3. Main PCB circuit

This contains the different components and the module instances which construct
the full circuitry of the PCB, described in a global form.

In addition, the compiler recognizes the external connections and the rail connections of the
PCB.

7.2.2 Compilation Mechanism

Searching for the connectivity information of a given component/module, made by tracing

the connections/connected-components, is a time consuming task since it involves recursive

search of the components connected to each other and tracing common connections. This

could cause relatively long delay which in turn increases the time required for a diagnosis
(which linearly increases with circuit size). This reduces the efficiency of the diagnosis system.

For efficient use o f connectivity information, the maximum possible part of this task should
be carried out prior to diagnosis in a non time critical stage such as compilation. For the above
reason, compilation is carried out in two phases, as described below:

87

Phase #1

In this phase, the symbolic format of the circuit description, which is provided

for the users’ convenience, is put in a form which could be manipulated by the

appropriate blocks in the system.

This form represents a more realistic representation of the PCB circuit since all

the modules in the previous description are expanded into a single circuit

representing the PCB. The information presented here is included in a structure

called the PCB Record.

A PCB record also includes a table like construct which stores the frequency
with which certain components cause the failure of others connected to them. A
number of such records are created for each component which is not part of the
individual circuitry. These are termed Component-Component Frequency
Records (CCFR)s. The CCFRs are dynamically updated with other sections of

the knowledge-base. This updating procedure will be the subject of a later section.

Phase #2

This phase analyses each block in the full PCB circuit, produced in phase #1,

for connectivity related characteristics (such as connected components, modules,

n e ts ,...). This information is added to the PCB record to be used, when needed,

during diagnosis.

co
M
P
/
L
E
R

1
P C B R eoord »

C o n n e c tiv ity Inform ation

Figure 7-2: The stages o f compilation

C ircu it Description
(U s e r) I

PHASE #1
(M odulo E xp a nsio n)

P C B R eeord

PHASE # 2
(C o n n e c tiv ity A n a lyo ls)

88

The actual mechanism of the two phases described above involve more complications,

however, these are not mentioned here since the compiler is a utility for introducing circuit

information to the system and is not a subject of research for this thesis. The stages of the

compilation process are also illustrated in figure 7-2 which summarizes the above description.

7.3 Filtering Matching Suspects

7.3.1 Faults with Identical Symptoms

Earlier investigation of the failure reports, revealed a number where the malfunction of dif

ferent components caused the failure of identical test sequences. These were briefly mentioned

in chapter three, section 3.3.1. During the random presentation of the data to the automatic
fault dictionary based system, described in chapter five, such reports identified themselves
by having exactly identical scores.

Since the rules in the rule-base of the system sort suspect faults according to the quality of
their matching scores, these rules have no way of distinguishing such reports.

This section investigates the use of connectivity information in differentiating these reports

which otherwise are inseparable to the system.

7.3.1.1 The Use of Connectivity Analysis Tables (CAT)

This section describes the development of a technique for recovering the cases of suspects
with exact matching scores, described above. The technique is inferred by continuous

experimentation and analysis o f the different cases which exist in the data. It assumes that

matching produces a suspect list which consists of components related to each other in the

function they perform such as being part of the same circuitry designed to perform the specific

function. This assumption is logical, however, it is not always correct if matching alone is

used without considering any electronic information. In general, matching suspects are mostly
related, but other non-related components could also exist.

The technique utilizes table like constructs, called Connectivity Analysis Tables (CAT). These

record the degree of interconnection between each component pair of the indistinguishable
suspects and are used to isolate these where matching stops. Each entry in a CAT could

contain a number o f symbolic representations which indicate the nature of the connection(s)

between the two components specifying the entry. Connections between a pair of components
are indicated as direct (d) or separated by (n) components, where n is an integer. In cases
where two components are connected by more than one connection of different type, a number
of these w ill exist corresponding to each connection. The information required for the con-

89

struction of this table is obtained by extracting the relevant information from the corresponding

component record in the compiled pcb record. CATs are generated and used at a stage
following sorting the matching suspects according to the matching rules in the rule-table (see

section 52.3.2).

Figure 7-3 shows an illustrative example for using CAT. The suspect components being A,
B, and C with the illustrated interconnection in the circuit. CAT indicates that component B

has two direct connections to the other two, while each of B and C have a single direct

connection.

(a) circuit

A d 1

B d

C

Figure 7-3: An illustrative example

(b) CAT

Finding the appropriate connections for each CAT entry involves searching the paths asso

ciated with each connection of a given component up to a certain Level, Search Level, which

indicates the depth of the search. A given Level is specified by the number of components

which the search path passes through during the search. For example, Levelo considers all

the components connected directly to each connection of the specified component, while

Level! considers the previous components in addition to components in the search path

separated from the specified component by one component. Similarly Level2, Level3 . . etc.
can be defined.

Specifying a search level is necessary, since searching the path through each connection of

a group o f components is a time consuming task and could cause a long delay especially if
a large number of components are involved most of which are of high complexity (i.e. large
number of i/o), all o f these could lead to an increase in the search space and hence a delay in
the diagnosis.

90

However, experimentation revealed that even when the search space is restricted to that

specified by levels most of the examples in the data could be recovered. Figure 7-4 illustrates
the concept of levels with the three chips A, B, and C, being a part of a circuit. If level0 is

considered, with respect to A, then only the direct connections are searched and hence only

B will be picked out by the search, whereas if level! is considered then both B and C are
picked out since the components indirectly connected (separated by 1 block) are considered
as well.

Figure 7-4: An illustrative example o f levels.

After constructing CATs for a group o f faults some basic concept is required to analyse the
tables and distinguish the most likely suspects using the information about the interconnection
of each component. This concept will be explained below, but once defined it can be used as
the criteria for ordering the suspects with exact scores, within the suspect list, in a descending
order (the most likely suspects are towards the start of the list).

The concept developed is simple since it is based on common sense in conjunction with

continuous examination of the different primary results using connectivity. Basically, the

concept could be viewed as a set of rules which favour the component most heavily inter

connected with the rest, these are components with the lowest level connections compared to

the rest, e.g. components with most direct connections are preferred. By applying the above
concept to the example of figure 7-3, it can be deduced that B is a more likely suspect than

the other two which share equal likelihoods. This is because B is connected directly to both
of the others which have a single direct connection each. In view of the above, the components
could be ordered in the suspect list as (B A C) or (B C A).

The following summarize the basic steps of the approach:

91

Given a final suspect list, which contains all the suspect faults associated with their respective

scores after being processed by the matching rules. The approach searches the list, starting

from its tail, looking for groups of faults which have identical scores, these are usually formed

into groups of adjacent faults at different locations in the suspect list. When a group of exact

matches are located then the following is done:

1. The suspects with exact scores are used to form a CAT. If the faults are dis

tinguished clearly then no further action is necessary and the suspects are ordered

accordingly, otherwise Step 2 is implemented.

2. The next group o f suspects with the next highest scores is used with the group

of exacts in 1 to establish a larger CAT. These newly incorporated faults are
termed the assistants, since they are only used to isolate the group of exacts and
the procedure will not affect them since they have already been ordered using
the matching rules (or CAT since they are more towards the tail).

The rationale behind the above is to achieve dis
crimination (i.e. isolating the most suspected
faults from others) by analysing a larger sample
of the faults in the suspect list since careful and
restricted selection o f the suspects, in 1, did not
achieve the required discrimination. However, by
using a larger sample of suspects there is the risk
o f including the undesirable poor matches and
hence only suspects with high scores are selected.
This function is performed for each group of exact
matches encountered in the suspect list until the
start o f the list is reached. The procedure is illus
trated in figure 7-5.
Choice o f the assistants should be made carefully
so that poor matches are not included. The
approach followed in choosing the assistants
selects the next adjacent match to the group (to
wards the tail). In the case where a group of exact
matches are next to the suspects under
consideration then the whole group is used as
assistants. Figure 7-5: The use o f CAT.

This approach is cautious and uses as few elements as possible as assistants, however, it is
found to be the one which produces the best results since it avoids poor matches as much as
possible. The example in figure 7-6 is obtained by constructing a number of CATs for the

92

faults in table 7-1. The table represents each fault with its corresponding matching scores,

described in section 5.2.2. The example is extracted from the actual data and shows the level
of complexity which the analysis could take. In the first CAT, the three exact matches alone
could not provide enough information for discrimination, hence the next component in the

suspect list with weaker matching scores is used, as an assistant, to help in the discrimination.

S u s p e c t S P G F

536 1 9 9 1

406 1 9 9 1

446 1 9 9 1

46 1 4 2 1

Table 7-1: An example suspect list with corresponding scores.

536 1 2 536 1 2 d 536 13 22 dl

406 2 406 2 d 406 24 d2 => 5M 1322dl

446 446 1 446 11 => 406 1324d2

46 46

Figure 7-6: Analysis of table 7-1.

Usually, CAT only considers the shortest path between any two components, however, if this

does not discriminate between the components then other paths between the components may

be considered as well, as indicated in the final CAT of figure 7-6. For example, d l indicates

the existence o f one direct connection and a connection through one component between

components 536 and 46. The final CAT points to 536 as the most suspected component since

it has the shortest interconnections with the rest of the components.

Appendix C shows a number of different matching examples encountered in the data.

7,3.2 Faults with Semi-Identical Symptoms

Section 7.3.1 deals with the cases o f exactly identical reports indicating the failure of different
faults. This section attempts to investigate cases where reports are similar (have a relatively
large number of tests in common), but are not exact. Such reports are reflected in the system
by having close matching scores. Although the matching rules can separate these cases, the
decision made by the system is not always correct with such close scores.

93

The same procedure as that used for recovering exact matches is applied to these cases. The

results obtained were less encouraging, in that some cases are recovered, however, others

were not.

When these cases were investigated it was very difficult to distinguish the two groups since

they are all similar in being close matches and no other distinguishing characteristics exist
between the two.

The above suggests that connectivity information should not be used to reverse decisions
already made by the matching rules which give better results for the majority of the cases of

close matches than the connectivity heuristics.

7.4 Multiple Module Failure

As concluded from the analysis of the results obtained in chapter five, a significant proportion

of the reports which appeared ambiguous to the system were those which indicated the failure
of more than one individual. The response of the system to such reports is general in that the
fault is associated with one of the components of the last individual.

However, according to the analysis of chapter six, the above seemed to be the case where the

number of individuals failed is relatively small (Approx. 2). In the cases where all or most

of the individuals fail it is more logical to follow a more intelligent procedure in order to

locate the faulty component rather than associating the failure with the last individual blindly
or holding the components o f all the failed individuals accountable.

Such a procedure would be to identify the device(s) to which all the failed individuals are

connected and associate the failure with one of these devices. This is logical since the failure

of one component at a time is more likely than the failure of most individuals in the circuit.

This procedure could be applied as a check even during the failure of a relatively small number

of individuals (or components) since it is logical to check the common components to a

number o f devices failing a test no matter what the number of failing devices are. Although
the circuit associated with the data has identical individuals connected to similar components

in the rest o f the circuitry, it is still possible to include such a procedure into the system since
this could be applied to other circuits due to its generality and will ease the adaptation of the

system to deal with multiple board styles.

94

7.4.1 Fault Identification (Diagnosis)

In order to identify the component(s) which cause the failure of similar tests during testing
a number of similar components (or modules), it is necessary first to identify the component(s)

associated with the failure of the test(s), since this could ease locating the main cause of the

failure.

The initial performance of the system, see section 5.6, indicated that an average of more than

65% of the reports in the data are identified correctly by using matching. This proves that

matching is an efficient method of identifying components which are distinguished by the

failure of a test or group of tests which test the component or the part of the circuitry associated

with it. For this reason matching is only employed, by the method developed, for identifying
the component(s) which the failed tests are associated with. This group of components is

termed the Intermediate Components. Matching rules are used to choose the most suspected
of these, which is termed the Intermediate Component (InC). It is used by the rest of the
procedure to identify the main suspect. Results of different experiments indicated that the

matching rules usually point to the correct InC since in most of the multiple module failures

the failed tests clearly indicate the corresponding InC.

Later, the connectivity routines are used to trace the different signal paths from the connections

of the InC in order to locate a component or a group of components which are connected to
all InCs in all the failed individuals. This group of final suspects is termed the Final com
ponents.

Usually a number of final components are produced by the above procedure. These com

ponents are obtained by tracing circuit connections only and hence have no additional

attributes for distinguishing them. Since we desire to isolate a single component which is

more suspect than the rest, an appropriate procedure is developed in order to find the most

probable, the Final Component (F Q .

The CCFRs included in the PCB record are developed for this reason. Each such record

records the frequency of different FCs causing the failure of InCs connected to them. Hence,
the frequencies are used in sorting the FCs according to their likelihood in causing the chosen
InC to fail.

This procedure is illustrated in the example of figure 7-7, where component B is selected by
the matching procedure as the InC. The use of connectivity points to either of Components,,,^
or Componentcircle as possible suspects for being the FC. Later the statistical information in
the PCB record reveals the most likely suspect (Components,,^,,).

95

Module 1
□

□ □ n o □
□

Module 2

Module N

□ B

□ □ C
□

□
U |_ J

□

□ B _ □
1___ 1 1___ 1 1___1

□ □

Figure 7-7: An example of a multiple module failure and its recovery

Usually the frequency information is enough to distinguish the correct FC. However, at early

stages o f the system life only small number of examples are seen hence confident decisions
cannot be made using the frequency information. For this reason, in such cases one of the
following is used to isolate the components :

1. A CAT could be implemented using all the FCs.

2. Components could be sorted according to their complexity (number of i/o pins)

and the most complex is the FC.

Although, the above are simple tasks they were found to be useful in practice and aided in

identifying a number of cases.

*■ 2.4.2 Updating the System

The updating procedure for the system should be such that, if the system diagnosis is correct,
then when a similar report is encountered later then the likelihood o f the InC being isolated

by matching should be higher and the likelihood of the true fault, FC, causing the failure of

the tests o f InC should also increase. For this reason the update follows the steps below:

96

i

Figure 7-8: Illustration o f the use of connectivity

when all individuals fail

When the identity o f the correct faulty component is introduced to the system, it checks to

see whether this is one the FCs. If the result of the check is positive, then the corresponding

InC and the match-pattern will be used to update the KB, since a match-pattern identifies

InCs (see section 7.4.1). Furthermore, both the FC and corresponding InC will be used in

updating the corresponding CCFR in the PCB record. Each CCFR records the number of

times the failure of a given FC lead to the failure of tests which identify an InC.

Figure 7-8, above, illustrates both update and diagnosis procedures described above.

7,5 Other Cases

As described in chapter six, the cases of multiple individual failure include cases such as the
Odd Individual cases, section 6.2.2, and the Last Individual cases, section 6.2.1. These could

not be recovered with the modifications of section 7.4, since they result from different failure

situations and hence require a more specific consideration.

The above cases could be recovered by the corresponding heuristic (obtained from the
technicians) used when they are encountered. However, the heuristics incorporated into the

system are specific in that they are developed to recognize a given feature in the failure report

97

(the pattern of individual failure) and respond without using any information specific to the

circuit o f the PCB under diagnosis. Hence if the circuit is altered slightly the diagnosis result

will miss the correct fault completely.

Incorporating circuit connectivity information added the possibility of expanding the heu
ristics employed into a more general form which could cope with changes in the circuit design
and hence adds additional flexibility to the system. The use of the system in a multiple board

environment will be mentioned in more detail in chapter twelve.

7.6 Analysis of Results

The ambiguities, described in chapter five, occur in small groups which constitute the 25-30%
of the data. A number of these groups are such that only few examples are provided and hence
a clear view o f the case cannot be obtained. For this reason, the improvement achieved by
using connectivity information in diagnosis is relatively small (3-4%) compared with the
actual size of the data. However, when the improvement achieved is compared with the total
number of cases in the data which the connectivity modifications aimed to improve, then a

significant improvement is achieved, as will be revealed below.

As mentioned earlier, and as discussions with diagnostic technicians revealed, cases which

connectivity aimed to improve occur less frequently than the common cases in the data,

however, they do occur regularly.

Analysis of the system performance, after incorporating the connectivity routines, revealed
the following:

1. Filtering the matching output using CAT improved 80-85% of the total cases

which showed the need for such an algorithm. While

2. 70-75% of the actual cases which required multiple individual analysis during

diagnosis are improved.

The results in (1) do not include cases in which the matching results reveal a number of
suspects with exact scores and presented in the correct order (or at least the correct faulty

component is located at the start of the suspect list). The ordering, in such cases, is arbitrary
and is not performed by the matching rules since all of the suspects have identical scores and
hence cannot be distinguished by these rules. The order of suspects with identical scores,
with respect to each other, remain unchanged by matching to that when these were presented
to the system.

98

Introducing examples of the above case to CAT algorithm confirmed the order for the majority

of the above cases. Examples of such cases in the data are listed in appendix C. These are

distinguished from other cases by the letter C which indicates that CAT confirms the order

of the suspect list.

Although the results o f applying CAT to identical suspects are treated separately and are not

included in (1), the confirmations achieved must be considered as improvements since, as

mentioned earlier, the order achieved by matching is arbitrary.

7.7 Conclusions

This chapter investigated the use of connectivity information in improving the performance
of the diagnosis performance developed in chapter five.

A circuit compiler was developed for incorporating connectivity information into the system

in a form which could be used efficiently by the appropriate blocks of the system. Diagnosis
time was reduced by performing part of the connectivity analysis process during the

compilation stage.

Connectivity information was used to recover the cases in which multiple individual failure

was reported and also to improve the matching outcome in cases where matching rules fail
to discriminate.

In order to recover examples o f the first case connectivity information was used in association

with some dynamically stored frequency information to isolate the faulty component(s). In

the latter case a special technique is developed which extracts connectivity information by

tracing the interconnections through a number of components with the aid of table like

constructs called connectivity analysis tables (or CATs). The search can be specified by a

level which indicates the depth of the search. Investigations showed that with a moderate

search level reasonable identification can be obtained.

The technique described above chooses only suspects from the suspect list which have

identical scores and hence cannot be isolated by the matching rules. For this reason the
technique cannot have any negative effect to the suspect list.

The application of this technique in order to discriminate cases with close matching scores
led to a deterioration in the diagnosis results and hence the attempt was abandoned.

99

C H A PTER EIG H T

T H E D EV ELO PM EN T O F AUTOM ATIC SELF-LEARNING TECHN IQU ES

8.1 Introduction

This chapter describes investigations aimed towards increasing the independence of the

system such that only a minimum amount of help is required from a human expert in assisting

it to perform its task. The rule-base is the main part of the system where additional automation

is advantageous.

As described in section 5.2.3 of chapter five, the rule-base is a store of rules which represent
the relative importance o f the individual matching scores, (described in section 5.2.2), and
are used to compare one set o f scores with another. Each rule, which can discriminate between

two suspect faults, is applied in two levels for speed and clarity. The first level (conditionZeve//)

is a simple set of tests using only the predicates >, =, and <. This level is implemented as a

look-up table for speed. In the second level (condition/evW2), more subtle comparisons are

made.

The rules were obtained by analyzing the system response to different faults and then manually

developing secondary conditions within the rule which choose a fault based on its scores. A

rule-base such as that described above assumes that the behaviour of the above scores is
constant and cannot be altered if any change occurs.

It is thought that when operating in a multiple board environment, a system with an automated

rule-base will be more flexible. Such a system can adapt its rules with the changes in the

failure report format, which will be different for different ATEs. The effect of these changes

could be reflected in a shift in the significance of the scores generated by the matching

procedure and/or presenting the scores of different matching algorithms (which could have

different number of scores and assess other aspects of the match). In this case the system can

adjust its rule-base appropriately for each board to keep up with changes and to make more

confident decisions under different situations as more experience is gained with additional

examples.

Two techniques o f different complexity are developed and are described in detail in this
chapter. The first is designed such that a limited amount of information is learnt by the system,
which has a rule-base with a similar structure to that of the manual system, described in
section 5.2.3.2. The amount of information learnt increases in the second technique and the

structure o f the rule-base increases in its complexity.

100

Both techniques concentrate on learning the secondary rules, (see section 5.2.3), since they

include the most specific descriptions regarding the corresponding main rules and hence are

a cause of difficulty for the manual analysis since they require determining relatively accurate

score descriptions, between any two matches of the examples of the main rule. Usually these

examples are relatively large and in some cases are slightly different.

This chapter builds on the work o f section 5.2.3 in chapter five.

8.2 A Statistical Learning Technique

8.2.1 Rule-Table Features

Section 5.2.3.2 of chapter five described the development of the manually constructed
rule-table. The rule-table is constructed with a finite number of secondary rules obtained by
manually analysing matching results.

The technique described in this section restricts its learning to the finite set of secondary rules

incorporated in the manual rule-table only. This is performed by identifying the most

appropriate of all the possible secondary rules for the corresponding main rule, specified by

the appropriate rule-table entry. It operates by tracking the frequency of each secondary rule

performing a correct identification when an example, (a pair of matching score sets that satisfy

the main rule condition i.e. conditionlevell), is presented to it.

In order to perform the above, all of the different secondary rules are assembled in a Secondary
Rule vector, Sk = {SRIt SR2,SR3, .., SRN}, where N is the number of all the different secondary

rules present in the manually constructed rule-table.

The rule-table is organized such that each entry points to a Count vector of the form, C =

{Cj, C2, C3, . . . CN}. Each C4 is a statistical count of the frequency of success of the

corresponding 57?, in Sk.

In order to illustrate the general form of such a rule-table we refer to the example o f table
5-4. In this case Sk = {OK, ~OK, OKif, ~OKif} which includes all the different secondary
rules in the table. A possible rule table could be as illustrated in table 8-1, which is for a two

score matching system (S j and S2). The statistical count for the secondary rules is represented
in the form of a bar chart for each entry. The table represents an intermediate stage in the life
of the rule-table where a number o f examples has been seen and a clear secondary rule can
be distinguished (indicated by the highest bar).

The rule-table formed for the actual system has a similar form, however, the secondary rule

vector is larger and all the 81 locations have such statistical information.

101

Table 8-1: A graphical illustration of a rule-table generated using the
statistical technique

112,2 Rule U pdate

The suspect list produced by the system for a given failure report is stored in order to be used

later during update, at which stage the system is informed by the user of the identity of the
true faulty component number fx. During update the stored suspect list is scanned in order to
assess the diagnosis made by the system. If fx is included in the suspect list, then the rule-base

is modified otherwise no modification is performed. However, if fx is not in the suspect list

102

then the rule-base is not modified. This is because, in this case, fx was not identified by the

system during the matching procedure and hence will not be accompanied by a set of matching

scores which is required during the update procedure (as will be described below).

If the true fault is located in the Nth position of F . e.g, in the 4th position F={f1, f2>f3>fT’f 5

. . .} , Then the procedure Adjust(fT /) , for adjusting the rule-base, is applied to each element

of F, starting from the end of the list.

This procedure performs the following:

(i) Comparing/)- with / produces a sequence of relationship predicates

(>, <, =) which exist between the corresponding scores of the two
faults with respect to the order in which they are presented to the
procedure, i.e, with fx proceeding f,. This represents C o n d itio n ^ ,t

of the main rule, which specifies the corresponding rule-table entry,

termed here Rule Location (RL).

Reversing the relationships in the above sequence of predicates (i.e.,

> becomes < and vice versa), refers to the rule-table entry repre

senting the rule with reverse C ond ition^ , j. This entry is termed the

Reverse Rule Location (RRL).

(ii) The rule-table entries above are treated as follows :

RL

for each SR,, in Sk, which describes the order of (fTf) correctly,

i .e . / r proceeding; the corresponding Q , in <?, is adjusted such the

likelihood of the corresponding SR; being used in the future is higher

relative to the rest.

RRL

for each SRi5 in Sk, which describes the reverse order of (fTf)
correctly, i .e ./, proceeding; the corresponding Q , in C, is adjusted
such the likelihood of the corresponding SR, being used is higher.

In order to illustrate the above procedure consider the Suspect list S = {FI, F2, F3}, which

is generated by a matching system with two scores; S 1 and S2. The faults in S are ordered at
an earlier stage during diagnosis. Table 8-2 outlines the scores corresponding to each fault.

103

Fault Si s 2

Ft 3 4

f 2 2 3

F3 10 8

Table 8-2: A tabulation o f the scores corresponding to the faults in the example.

Now, supposing that the user feedback to the system indicated that the true fault, fT, is F3.

The update starts with the last fault in S, and compares each fault with F3.

Figure 8-1: Statistical rule update

As described in section 8.2.2, comparing (F3 F2) refer to the table location (») since both

scores o f F3 (which precedes F2) are greater than the corresponding scores of F2. Since, it is

known that the order o f faults is correct (OK), therefore, the secondary rules (OK and OKif)

will be increased in frequency (since they allow F3 to precede F2). The opposite location in

the rule-table («) , is the location which will be referred to if F2 precedes F3, which is not
the correct order (it is not OK), hence the secondary rules which indicate a change should be

incremented (~OK and ~OKif). In a similar manner the rule regarding the order (F3 F,) is
updated. This explanation is summarised in figure 8-1 above.

104

It is important to note that every time the OKif is incremented, then OK should be updated

since OK is a more relaxed form of OKif, (which has more conditions). For this reason the

increase during the update differs according to the complexity of all the actions which could

lead to the correct action in a given case.

As described above, updating a single fault involves updating all the suspect faults in the
suspect list associated with the fault. In addition, updating each suspect in turn involves

updating both RL and RRL. This indicates that updating a single fault involves a multiple
number of update procedures of the rule-base and hence subjects the rule-base to a number

of training examples (depending on the size of the suspect list). For this reason, the rate at
which a rule-base is constructed, and hence the rate at which the system learns, will be

relatively fast.

8.2.3 Rule Execution (Diagnosis)

When the matching algorithm provides the system rule-base (RB) with the list of suspect
faults (S), these are sorted according to the rule-table which specifies the order of each pair

of suspects with respect to each other.

Sorting of the suspects is illustrated in figure 8-2 with the same example used as for the update

procedure, (table 8-2). Assume that the faults produced by the matching process produced
the list {Fl5 F2, Fj } 0not ordered according to their likelihood of causing the failure). In order

to sort the list above, the scores of each pair of faults are examined and the appropriate change

is made to their order with respect to each other according to the secondary rule with the

highest frequency in the appropriate rule-table entry. For example, comparing F t and F2

indicates that both scores of F t are larger than their corresponding scores in F2, which points

to the table entry a t» . Assuming that C (which the entry points to) has the status indicated,

in a bar chart form, in the figure, then the secondary rule with highest frequency is chosen.

This turns out to be OK. A similar procedure is performed when comparing F! with F3 and

F2 with F3 as illustrated in the example in figure 8-2. The resulting final order of the faults is

{F3, F lf F2} i.e., F3 is the most likely fault and F2 is the least likely.

105

S R

Correct Order is { F3 F1 F 2)

Figure 8-2: Statistical rule execution.

8.3 Statistical-Ranges Learning Techniques

8.3.1 Introduction

The statistical technique, described in the previous section, attempts to learn a restricted
amount o f information, such as identifying the appropriate secondary rule from a number of
manually developed ones. Some of these secondary rules are not general (since they examine

specific scores rather than all scores) because they were developed originally to treat specific

cases during the development of the manual rule-table. Such secondary rules decrease the

generality of the rule-base and this can be observed particularly when some of the attributes

in the testing procedure are altered (e.g. the test data format which could be affected by a

change in the ATE program). This could impose a different behaviour on the matching scores

and hence could alter the specific bounds examined within the secondary rules.

In spite of the limitations in the statistical technique, an encouraging performance is obtained
as it will be seen later. This led the way to expanding the learning procedure so that more
information can be monitored and learnt.

106

In the light of the above, a technique was developed which attempts to learn the information

incorporated within secondary rules in addition to statistical information similar to that of

the previous technique. The rest of this section will be dedicated to describing and testing
this technique

8.3.2 T he D evelopm ent o f the Technique

As mentioned in section 5.2.3.2, a secondary rule has the following form:

IF [C O N D I T I O N THEN [ACTION]

Action describes the state of the current order between the two suspect faults, under con

sideration by the rule, given that C O N D I T I O N (in addition to CONDITIONLEVELl which

must be already satisfied) is satisfied by them. As mentioned in the same section, an action
is usually a predicate such as OK, indicating that the current order in the suspect list need not

be changed, whereas ~OK indicates the reverse. CONDITION¡¿veli usually examines the
amount in which one or more of corresponding scores vary in their values. For example, a
possible secondary rule for the two score matching system of table 8-2 would be:

IF [S f S ^ S] TH EN [OK]

Where S, and represent the value of the score S 1 in the two suspect faults presented to the

rule. A secondary rule could use more than one score, as in the following example:

IF [S ^ i >5 & S2-tf2 > 4] TH EN [OK]

Hence, for a system with N number of scores, {S S2, . . . , SN}, a general secondary rule form

would be:

IF [Sr $j # K j & S2-$2 UK2& . . . & S ^ n # Kn] THEN [ACTION]

w here

S| ith score o f the first suspect

§ x ith score o f the second suspect

K, C onstan t integers

is one o f the predicates (>, <, =)

i 1 . . . N

107

In the above form CONDITIONl£VEL2 examines only one of the bounds for any of the score
differences, Sr £|. A more specific representation for the checks aimed by each o f the dif

ferences would be if both bounds are examined (upper and lower). Hence a more appropriate

representation would be:

IF [k, <.Kj & k2 ^S2-É2 <LK2 & . . . & kN >SN-£N £ K ff THEN [ACTION]

Where k(and K, are constant integers representing the lower and upper bounds respectively.

In the previous learning technique, the statistical technique, a number of manually designed

secondary rules are presented to the system, which is allowed to learn which of these rules

are appropriate for each rule-table entry through building statistical information regarding

the secondary rules.

The technique described in this section attempts to develop the full secondary rule for each

rule-table entry from the example scores presented to that entry. This is achieved by recog
nizing the upper bound (UB) and the lower bound (LB) of each score difference (see above),

which are represented by Ki and ki respectively in the above general secondary rule

representation.

The most general form of a secondary rule is when no condition is attached to it, i.e. when
the secondary rule is represented by the action only. The action could either provide a positive
response to the order o f the suspects (OK) or a negative response (~OK). Therefore, the
technique is initialised by appointing two secondary rules for each rule-table location. Both

of these rules consist of a single action only since no UB/LB has been developed yet. However,

one of the rules has an action which responds positively to the orders of suspects (OK) while

the other responds negatively (~OK). This is because initially the likelihood of any of the

actions being applied, when no examples are seen yet, is the same.

As more examples of each main rule are presented, the technique monitors the following for

each secondary rule in the corresponding rule-table entry :

1. The statistical frequency of producing the correct outcome when the secondary

rule is used relative to the total number of examples presented to the main rule.

2. The UB and LB for each score difference, by analysing the presented score
values.

By performing 1 and 2 for a number of examples, it is hoped that a dominant secondary rule
will appear and will have the correct set of attributes, UBs and LBs, for its condition. Hence

a complete rule in the form presented above is formed.

108

(1) is performed in a manner similar to that of the statistical technique, however, in order to

develop UB and LB a special heuristical algorithm is developed which tracks the ranges of

each score difference in a secondary rule. The algorithm tries to deal with changing ranges,

i.e. when new examples indicate a different range, to which the rule-base may be subjected

especially when dealing with multiple PCB styles. This algorithm will be the subject of the
next section.

8.3.3 T he C onstruction o f R anges

Given a set of example numbers, this algorithm attempts to identify a range which these

numbers lie within. A range is identified by an upper bound (UB) and a lower bound (LB).

The rest of this section is devoted to explaining this algorithm.

Earlier analysis o f the data revealed the existence of some reports derived from a given fault,

which are however, diagnosed to be due to different faults. These reports present noise to the

system and hence also introduce noise to the matching rules. For this reason this algorithm
should be able to deal with a limited number of noisy score examples. In addition the algorithm

should be able to deal with forming a new range if new examples show that the current range

is out of date. Dealing with the above situations increases the complexity of the algorithm as
will be described later.

As examples are presented to each rule-table entry, after satisfying ConditionIeveI1, a number
of possible ranges are constructed based on all the score differences encountered, as will be
explained later. A large number of these ranges are only temporarily explored until a clear

range is identified which is based on the majority of the examples. Ranges are constructed

and manipulated in a buffer, termed the Ranges Manipulation Buffer (RMB)

As mentioned above, the algorithm generates a large number of trial ranges in its search for

the optimal range. For this reason the size of the RMB multiplies with each incoming score

difference. However, with experimentation it was found that after being presented with a

limited number o f score differences a range can be deduced relatively accurately. Hence it
is unnecessary to allow the RMB to grow large (greater than 100) and this would slow the

procedure due to the large amount of memory used. For this reason there is a limit beyond

which the RMB cannot grow. This limit is specified as a period in terms of the number of
ranges in the RMB and is termed the Range Building Period (RBP).

Each range in the RMB is presented in a standard form which includes the following infor

mation about the ra n g e :

[UB LB PF]

109

Where

LB Lower bound of the range.

UB Upper bound of the range.

PF Periodic Frequency o f the range. This represents the number of scores seen
within this range within a given RBP

The rest of this section describes the major steps involved in building and manipulating ranges
in order to find an optimal range for a given score difference.

8.3.3.1 Processing Scores (Divide and Expand)

This section describes the way in which each incoming score difference is processed in order
to produce a range or a number of ranges.

The new score difference, s, is compared to each range in RMB. Comparing s with a given

range [LB; UB, FJ involves performing one of the following operations depending on sat
isfying their corresponding conditions. Each operation involves the addition of extra ranges

into the current RMB.

1. Expand

i. s > UB, => [LB i s F,+l]

ii. s < LBi => [s UB, F,+l]

2. Divide

LBi £ s < U B i =>[LBi s l] & [s UB, i /Æ [LB, UB, Fj+1]

The expand operation includes a score difference which is not included in the current range
hence a new range is formed which includes s and the elements included in the original range.
The new range is added to all of the already existing ranges in the RMB. Also since the new
range already includes all the examples of the original range so its PF will be one more than

110

that of the original range. This operation increases the size of the currentranges and no division
is performed here since this is done when score differences triggering the divide operation

are encountered. The expand operation is illustrated in figure 8-3.

(a)

Pang*2
P an g * 1

*

R a n g a 2

•* - «
Rangal

_
(b)

Figure 8-3: The Expand operation.

The divide operation, however, is performed in order to explore new ranges which could be

embedded within large ones created during the expand operation. Since both new ranges
added into RMB are new ones which do not necessarily cover any of the examples of the

original list, both have a PF of 1. However, the original range is increased in its PF since the
new score adds to its examples. The divide operation is illustrated in figure 8-4.

Rangel

Range2 Rm ge3

*

i>

Figure 8-4: The Divide operation.

After each expand/divide operation, the RMB is re-organized such that the ranges with the
highest PF are towards the beginning o f the RMB. This process assists in choosing the

appropriate range during diagnosis when suspects are isolated as will be explained later.

Figure 8-5 illustrates the construction of ranges using divide and expand operations with a
number o f numerical examples as scores. After introducing each score difference, s, the final
state of the RMB is displayed.

I l l

I

2 [-1 2 1]

3 [2 3 2]

3 [2 3 3]

2 [2 3 4]

6 [2 6 5] [2 3 4]

3 [2 6 6] [2 3 5] [3 6 1]

RMB -------

Figure 8-5: An illustrative example of Expand/Divide.

When the first s, 2, is introduced to the system the range [-12 1] is formed. The range has

no LB, hence -1, and UB=2 and PF=1 since this is the first example seen.

Since the second example, 3, is greater than UB and since no LB exists therefore the range

is reconstructed with the only two examples and PF is increased to 2 since this is the second

example for the range. Since the range [2 3 2] cannot be divided any more and since the next
two examples are already included in the current range, only PF is increased.

The next example, 6, is greater than the UB of the current range, 3, hence expand is performed

and [2 6 5] is added to the RMB. Since all the examples covered by [2 3 4] are already included

in [2 6 5] , PF=4+1 to include the new example. Later, the range with the highest PF is moved

to the start of the RMB.

When comparing the final example, 3, with the range [2 6 5], a divide operation is performed

since 3 lies between the two bounds of the range. Hence [2 3 1] and [3 6 1] are added to the

RMB. In addition, PF is increased for the original range. However, for the range [2 3 4] only

PF is increased since the new example is already included in it.

£.3.3.2 Buffering Noise

As mentioned in section 8.3.3, the effect of noisy data is reflected by producing some noisy
scores which could mislead the process of building ranges if measures are not taken to reduce
their effect. As experimental results indicate these are reflected by introducing false (incorrect)

ranges which are especially effective when the actual range is a fraction of the false range

and is included in it, in which case the true range can never be recovered.

112

Investigations revealed that in order to reduce the effect of noise, the incoming score dif

ferences should be examined carefully during and after processing them into RMB. This led

to the development o f a number of steps which are incorporated into the algorithm such that

each new score difference is treated as a suspect unless proved otherwise, within a given

RBP. This is performed by checking for the consistency of the score among the other scores
presented to the algorithm within the RBP. This is performed by placing each new score
difference into a buffer structure, termed the Suspect Buffer (SB), at the same time it is
processed to RMB. W ith each incoming next score difference, the following cases are

monitored in the SB:

1. Score differences occurring more than once.

2. A number of score differences forming a chain, i.e. a continuous sequence of

numbers (e.g., 4 ,5 , and 6).

In the case when any of the above are located during the regular monitoring of the SB, the
corresponding score differences are removed from the SB and they are not treated as suspects

for the current RBP.

At the end of a RB P, all the ranges which include score differences still in the SB are removed

from the RMB. The score differences are also removed from the SB, however, some score
differences from some of the ranges with high PF are added into the SB so that they can be

monitored during the next RBP. This will explained in greater detail in the next section.

The procedure is deduced by analysing the effect of noise introduced to the algorithm and is

found to produce a significant improvement.

£.3.3.3 Flushing Redundancies

The idea behind using expand/divide, described in the section 8.3.3.1, is to explore as many

ranges as possible which could be suggested by the presented score differences before

identifying the most likely one. For this reason after applying expand/divide on all the ranges

in the RMB, a large number of ranges are produced. Most of these are redundant since only
one of them is the best range. The rest could be ranges which are in the proximity o f the best
or are either larger than it or a portion of it. Most o f these redundancies are characterised by

having a relatively low value of PF compared with ranges which are likely candidates for

being the best range.

113

For the above reason it is necessary to have a mechanism of flushing most of the above

redundancies so that only the best range remains. In general, this procedure could be divided
into two. A minor one which is carried out regularly after processing each single score dif

ference, and another which is carried out periodically

Regular flushing include tasks such as removing the duplicate ranges created after each

divide/expand procedure. Processing a single score difference could produce a number of

duplicate ranges and removing them is necessary since they carry no additional information.

Noise buffering mentioned in the previous section could also be considered as regular flushing

since it gets rid of a large number of redundant ranges when a noisy score difference is

detected.

Periodic flushing is performed at regular intervals specified by the RBP. The size of the RBP

is determined by experimentation with a number of values. Sufficiently accurate ranges are

detected when the RBP is in the range 20-30.

Periodic flushing gets rid of all the ranges except the best, which remains in the RMB, however,

its PF will be reduced by being normalised (divided by RBP). In addition both UB and LB

of the range are placed in SB so that they can be traced in case the range is not valid any more

(i.e., range shift).

S.3.3.4 Performance Test

The main procedure for assessing the performance of the algorithm is carried out by comparing

the overall performance of the system with the statistical-ranges technique to that using the

statistical technique, and manual tuning. This comparison will be discussed later.

However an initial assessment for the performance of the algorithm was performed by sub

jecting it to different sequences of uniformly distributed random numbers between specified

limits, and comparing these limits with the range deduced by the algorithm. The sequences

are made to vary in range at given intervals in order to examine the ability of the algorithm

to cope with changing ranges.

The numbers are generated by specifying the range of the numbers to be generated, using

mean and standard deviation (std), to an external random number generator for generating

uniformly distributed sequences. The generator also incorporated a limited amount o f noise
with the numbers to test the ability of the algorithm in dealing with noise, since noise is
actually experienced in the data which are in turn reflected in the matching score values.

114

Figure 8-6 illustrates one o f a number of random sequences used in testing the algorithm.
The numbers presented to the system are monitored at regular intervals by displaying the

following information respectively:

1. The frequency distribution of the numbers presented in a bar chart form

2. The mean/std values used in generating the numbers

3. The range predicted by the algorithm

The results obtained with the sequence of figure 8-6 is typical of that obtained with most

sequences presented to the algorithm. Examination of the figure reveals that the range pre
dicted by the system at each interval represents within a relative accuracy a range which is
based on the frequency of occurrence of the different numbers within the interval and the
proximity o f the numbers to each other. A range which is based on the previous elements is

termed here the actual range and represents the range relatively accurately since it is based
on monitoring the presented numbers.

Basics of statistics theory indicate that approximately 97% of a uniformly distributed random

data is included within three standard deviations around the mean value. This concept could

be used to calculate bounds of an approximate range for the data. A range which is deduced

in this manner is termed here the theoretical range.

The ranges deduced by the algorithm do not match closely the theoretical range values
calculated for most of the intervals in the figure, although the actual range is usually included
in the theoretical range. The reason for this difference is in that the theoretical concept, used

in approximating a theoretical range, merely indicates where the region (in the distribution

curve) where the majority of the data lie without being specific about the values of the bounds

(LB and UB). In addition, the inclusion of some noise in the random sequence may effect the

calculation of the theoretical range.

The good performance of this algorithm is maintained when used in the diagnosis system to

process matching score differences o f the test data, although the analysis performed on score
differences o f a number o f rule locations (in the rule-table), indicated a non-uniform dis
tribution behaviour. The reason o f this performance is due to the fact that the algorithm is

designed to find ranges in sequences o f presented numbers based on the frequency of
occurrence o f the numbers and their distance from each other, which is the case in deducing
an approximate range for any sequence o f numbers with disregard to their distribution type
(provided a range exists).

115

8/2

5-13

8/2

4-12

10/3

4-13

15/4

10-17

15/4

10-17

Figure 8-6 : An example of a numeric sequence for testing Range Construction.

1 1 6

8.3.4 Implementation

As mentioned in section 8.3.2, the statistical-ranges technique monitors both the statistical
frequency o f the secondary rules, SC, and the limits for their ranges. Both types of information

are incorporated into a record, as shown in figure 8-7, for each secondary rule. The statistical

information, displayed as a chart, resembles that of the statistical technique and represents
an up to date record of the frequency of success for the corresponding secondary rule.

Information about the ranges, for the same rule, points to the current range of each score
difference specified by UB and LB. The bounds of each score difference are continuously

adjusted by the ranges algorithm such that the information in the record always point to the
most recent range of the particular score difference.

As explained in section 8.3.2, two secondary rule records form the basis of a complete rule

representation (record) in this technique. The firstrecords characteristics of positive secondary

rules (+), e.g. OK, and the second records those of negative secondary rules (-), e.g. ~OK.
The information about each secondary rule type is obtained from the examples pointing to

the use of each type and, as experienced in practice, a single rule could meet examples

favouring both possibilities although in varying proportions.

Keeping both secondary rules up to date allows either of them to be used when required. This
is advantageous in an environment where the likelihood of the two secondary rules is subject
to variation.

R e c o r d

Figure 8-7: The representation of information for a secondary rule

The next two sections briefly describe the way in which diagnosis and update are performed
in view o f all o f the previously described concepts.

117

8.3.4.1 Rule Execution (Diagnosis)

Some of the features of the mechanism of executing rules resemble that of the statistical

technique, see section 8.2.3, in that the rule-base manipulates the suspect list, S, produced by

matching. The suspect list is ordered by comparing the scores of each two suspects in the list.

The mechanism of comparing two suspect faults (Fj F2) involves comparing their corre
sponding scores. Now suppose the scores of the two faults are as follows:

Fi (Xl x2 x3 x4)

f 2 (yi y2 y3 y J

Comparing the scores o f the two faults, as described in section 8.2.2 will point to the

corresponding RL in the rule-table. If the values of SC for the two secondary rules in RL vary

significantly, then the action part of the secondary rule with the highest SC is applied with
no further examination.

However if the values for SC for both secondary rules are close then ranges are used to assist

in discriminating the appropriate secondary rule. Before describing the procedure involved

in using ranges, we define the following :

i. d = {dj, d2, d3, d4}

where

dj = x r y,

d2 = x2-y2

d3 = x3-y3

d4 = x4-y4

ii. d, satisfies range R if

LBr ^ d, ^ UBr

iii. d satisfies a given secondary rule S, d—>S,if each di (i is in the range 1-4) satisfies

its corresponding range in the rule.

118

In general using ranges follows the entries in table 8-3 which states each possible combination

of d satisfying any of the secondary rules in RL. Maj represents the secondary rule with the

slight majority while Min is the one with the minority. Recall that we are dealing with cases
where the SCs of the two secondary rules are close since these pose the main difficulty in

decision making. Y and N respectively indicate whether d satisfies the secondary rule or not.

d-»M aj d-»M in S

Y Y Maj

Y N Maj

N Y Min

N N Maj

Table 8-3: A table for controlling the use of ranges.

As the table illustrates, ranges are used cautiously and the method always favours the sec

ondary rule with the majority to the other, This is because the information obtained using

statistical information only is reliable since its based on the historical frequency i.e,

experience. This technique tries to maintain the cases which gave good discrimination using

statistical information, however, it aims to improve cases where discrimination cannot be

achieved using statistical information alone.

F1 (3 7 G) F 2 (2 4 4)

C/i - 7
d 2 = 3

-O K ___O K ___ ^3

[3 G U I 3 1 1 2 3] [1 4] [2 G][1 8 1

'O K O K

f l 4] f 2 6] f1 3] [2 4] [2 G][1 8 1
(b) (a)

*
__ 'O K __ ___O K ___

f1 4] [2 G lf l 8 1 [4 G if 2 3113 G l
<c>

Figure 8-8: Examples o f the execution procedure.

119

The example in figure 8-8 illustrates the case of the two faults FI and F2, which are compared

using three matching scores. The d;S for each of the scores are as calculated in the figure, a,

b, and c illustrate three situations which could arise during rule execution.

In (a), the frequency o f OK is significantly larger than that of ~OK. Hence the order of the
faults is considered to be OK without considering the effect of the ranges.

In (b), the frequencies of OK and ~OK vary slightly (the frequency of OK being slightly

more, i.e. OK=Maj and ~OK=Min). For this reason the ranges are considered. d l5 d2, and d3
satisfy the ranges of the corresponding scores for OK, however, d x and d3 do not satisfy the

ranges of the corresponding scores for ~OK. For this reason the order is considered to be OK

again. This situation is an example o f the second entry of the table 8-3.

In (c), the frequencies of OK and ~OK are again very close (the frequency of ~OK being
slightly more, i.e. OK=Min and ~OK=Maj). In this case d,, d2, and d3 satisfy the ranges of
the corresponding scores for ~OK, however, dj and d3 do not satisfy their corresponding range
in OK. For this reason, the order of the faults is considered to be ~OK. This situation is an

example of the third entry of the table 8-3.

8.3.4.2 Rule Update

The main steps of updating the rules resemble that of the statistical technique, as described
in section 8.2.2, except that the updating procedure Adjust(fx fj) performs the following :

(i) The rule-table entries RL and RRL are obtained in a similar manner to that in
8.2.2.

(ii) RL and RRL are treated as follows :

RL

The positive secondary rule, +, is updated such that its statistical count is

incremented. In addition, each dj in d (see section 8.3.4.1) is calculated and is
used to update the ranges corresponding to the score used to calculate it. Updating
each dj follows the procedure described in 8.3.3.

RRL

The negative secondary rule, -, is updated such that its statistical count is
incremented. In addition, reverse values of each d ,,^ , is calculated as follows :

120

¿ i = y r* i

d 2 = y2-x2

Each d i is used to update the ranges of the corresponding score for the negative

secondary rule by following the procedure described in 8.3.3.

The reason for using d{ instead of d, is that the order in which the faults fT and

fi should be presented to RRL in order to use the negative secondary rule is the
reverse of that for RL, i.e. the order is (fj fT).

121

8.4 Results

The performance of the system is assessed by means of performance charts and learning

curves, both of which will be described in the rest of this section.

8.4.1 Performance charts

The performance of the system is revealed separately with each of the two learning techniques

using performance charts similar to those used to illustrate the performance of the manually
tuned system (see section 5.6).

Figures 8-9 and 8-10 illustrate the charts developed for the system using the two techniques.
These should be compared with the charts obtained for the manual system which are illustrated

in figure 5-6.

It can be seen from the charts that the mean fault identifications differ only slightly and show
generally similar performance especially in the No. 1 position (identified as 1st best suspect),
however, the actual trial results show a wider variation (when comparing same trials when

different techniques are used) which is reflected by the different values of STD (see charts

above). This similarity in performance can be explained as being due to the following :

1. The rule-table in each o f the techniques is initialized to exactly the same state
as the manually tuned table. This avoids incorrect diagnosis in the early stages
of the fault finding.

2. The secondary rules placed manually in the table are not chosen randomly, but

are based on careful examination of the scores and the outcome of the system in

response to examples in the data. Where no examples exist a logical choice is

made in terms of the available secondary rules. Hence the secondary rules in the

rule-table will not be changed if no examples contradict their use.

3. Examination o f the rule-tables produced using the two techniques indicate that
only a few rules are used very commonly. These require the same secondary
rules to be applied. For this reason these secondary rules accumulate high fre

quencies in the corresponding rule positions in the rule-table. When the con
structed rule-tables are compared with manually constructed ones, the resulting

rules look similar (especially in the case of those used commonly). Hence no
significant change is noticed with the automation of the two techniques.

122

The overall resemblance in the Mean performance of the approaches is an indication that the

rule-table is nearly fully tuned and very little improvement is possible. This was deduced
during the final stages of manual tuning since no more improvements are possible and the
faults which are confused are those which have very close or identical failure patterns.

(a) T in t 100 (b) Second 100

(c) Third 100 (d) Fourth 100

Mean S i STD

Figure 8-9: Mean fault identification charts using the statistical technique

123

(i) F irst 100 (b) Second 100

(c) Third 100 (d) Fourth 100

STD

Figure 8-10: Mean fault identification charts using statistical-ranges technique

8.4.2 Learning Curves

Another way o f assessing learning is monitoring the rate at which the system is learning as
reports are presented to it. This is performed by constructing plots, termed learning curves,
which plot the number of faults identified at No. 1 position against the number of reports
used in building the system.

Mean s

124

8.4.2.1 Initialised Rule-Table

The learning curves are illustrated in figures 8-11, which represents the results obtained with

the manual system, and 8-12, which represents the results obtained with the two learning
techniques. The performance is monitored at regular intervals specified by a step size. For
each step size a specific number of reports are introduced to the system and their performance
is assessed, with each report being used to update the knowledge-base. Hence the system’s
knowledge is improved when monitoring the next group of reports. Steps of 10, 30, and 50

are used respectively. The figures in this section include learning curves obtained using steps

of 50 reports. Appendix D includes the complete set of learning curves obtained (for the

manual system and using the above learning techniques) with all the step sizes experimented.

7 0

60

SO

4 0

ao

20

10

0-
0 1 0 0 2 0 0 3 0 0 4 0 0 6 0 0Hm. «f R«fcK«

Figure 8-11: The learning curve o f the system with a manually tuned rule-table.

(a) Statistical (b) Statistical-Ranges

Figure 8-12: Learning curves for the different techniques (initialised table)

125

Using steps o f 10 reports, the shapes of the curves are not clear, however, as the step size

increases to 50 the asymptotic nature of the curves emerges. The curves indicate that learning
increases steadily at the start. However it reaches a steady state where learning decreases
significantly (or stops). The steady increase at the start is due lack of information in the

knowledge-base and hence most reports introduced to the system carry new information
which the system leams. However, as the amount of information increases in the

knowledge-base the information carried in most of the new reports carry no (or little) new

information and hence the learning decreases.

The shape o f the learning curve for both manual and statistical systems is similar. However,

improved learning could be noted in the system using the statistical-ranges technique, since
the rate of learning is higher at the start than the other two and gradually more steady learning
is achieved.

8.4.2.2 Non-Initialised Rule-Table

The previously described learning curves are produced by initiating the learning process with

the system rule-base initialized to the same state of the manual system. An interesting

assessment for the system performance would be by initiating the learning process with an

empty rule-base.

The results obtained for the system in this case are represented in figure 8-13. The results
indicate a deterioration at the start compared to figure 8-12, however, this improves as the
number o f reports introduced to the system increases at which stage the performance matches

that obtained for the initialised system.

(a) Statistical (b) Statistical-Ranges

Figure 8-13: Learning curves for the different approaches (non-initialised table)

126

8.4.3 Comments on the Results

A major success for the two techniques is the fact that they maintain their initial setup after
the rule-table has been updated with a large number of examples to which the system is

subjected to during fault finding. This is supported by checking different rules after fault
finding and comparing them with the corresponding manually tuned table. The table in the
statistical technique usually indicates one such secondary rule or group of them which have
the same consequence (i.e. the action part) dominating by accumulating high success fre
quency relative to the rest. While in the statistical-ranges, either the positive or the negative

secondary rule can dominate. This shows that most of the secondary rules in the manually

tuned system are the ones with high frequency rate in the tables generated using the two
techniques. This also indicates that most of the common features for the data are already
incorporated into the knowledge-base during the manual tuning.

The statistical-ranges technique traces both upper and lower bounds for a given score. Since
all the matching scores (generated by the system here) are linear (i.e. the higher the score,

the better the match), only the lower bound of each score difference need to be monitored.

Tracing both bounds did not show any significant deterioration in the system performance.

This could be due to the fact that the majority of the examples in the data are consistent and
hence a range is established after the first few examples of a given rule. This was confirmed

during the development of this technique when examples presented to a number of rules were
analysed. In addition, the technique uses the ranges carefully and only in certain situations
(see section 8.3.4.1).

Tracing both bounds is implemented in order to make the system more general by being able

to cope with non-linear scores.

Contusions
The work described here was initiated with the aim of achieving rule learning in the diagnosis
system and was not carried out for improving the system performance, although this is

obviously an advantage.

Two techniques have been developed which vary in the amount of information learnt by the
system. The learning concentrates on the secondary rules, since these contain detailed
descriptions of the scores regarding certain cases and hence their construction requires
accurate analysis o f the matching results.

127

Both techniques achieved a fault finding performance which matched that of the manual

system at the start and showed some improvements at later stages. This was referred to in the

results section.

Achieving rule learning which matches that of the manual method is an advantage in the
system for its use with the current board or in its future use in a multiple board environment

since it can gradually adjust its rules to meet the requirement of limited change to the board
or the ATE as long as the matching technique can be used in fault finding (i.e., there is not

a complete change in the fault finding strategy).

It is thought that one of the main reasons for the success of the two techniques is in the manner
they operate and achieve learning. Both techniques are based on monitoring the frequency
of various situations. These being scores or secondary rules which is usually the case with

human experts (and was actually performed by us during the manual tuning) working with
a similar example. A secondary rule is chosen in a given case if the frequency of its success

in the case is larger than others and the higher the frequency compared to the others the more

confidence exists in applying the secondary rule. The same applies in identifying the bounds

of any numerical element from its examples only (provided a bound does exist). Computers

remember and count better than us, and hence it is thought that this approach is better than
others for this particular task.

The operation mechanism, mentioned above, also enables the two techniques of coping with
noise efficiently. Noise is usually represented in corrupt examples in the data resulting from

errors in the diagnosis procedure by the technicians or some ambiguities which result in

associating reports with the incorrect faulty components. The effect of noisy examples is

isolated by detecting their low frequency since it was noted in practice that noisy examples

occur much less frequently than those which are noise-free.

Another possible approach could be the use of a pure logical approach similar to that in

Automatic Decision Tree Generation. One such approach is experimented within the next

chapter and is thought to be less adequate for the type of learning required here since it lacks
any robustness and flexibility. Details of this approach will be the subject of the coming
chapter which also includes a more comprehensive comparison with the techniques developed
here.

128

CH A PTER NINE

LEARNING W ITH VERSION SPACES

9.1 Introduction

The techniques developed for learning matching rules in chapter eight are based on heuristics
and were developed to mimic procedures used by human experts in identifying/developing

rules in order to sort matching scores produced by the matching algorithm. The techniques
are strongly based on the procedures followed by the author in developing the manual rule-

table. The results obtained using both techniques are encouraging as the performance matches
(and even slightly improves on) that of the manual system with more rapid and steadier
learning, as could be seen in section 8.4.

In spite of the good performance obtained with the above techniques it is important to compare
the performance with one of the standard methods used in concept learning since this will

enable us to evaluate the real performance of the two techniques.

We thus require to compare the results o f the previous chapter with a learning technique

which is suitable for learning the concept:

x is a better set of scores than y

Where x and y are each a set of matching scores (of the form (xj x2 x3 x4) and (yt y2 y3 y4)

respectively) for two different suspect faults. The matching procedure and the meaning of

each score is described in section 5.2.2.

This problem is difficult because we do not know the relative significance of each score of

the four scores and although we assume each individual score correlates positively with match

quality (i.e., the probability that a matched fault is the true fault), we cannot assume that the

relationship is linear.

If we make no assumptions whatsoever concerning the correlation of the individual scores

with the quality o f the match then we can use a learning technique such as decision tree

construction. W ith such a technique we treat each score as a value from a set rather than an
ordered domain. However, this approach seems unnecessarily strict and the assumption of
positive correlation is a plausible one in at least as much as it models human behaviour as
displayed by the diagnostic technicians when comparing failure report.

129

The adoption of the positive correlation assumption allows us to construct a more economical

representation of the concept space by defining a subsumption relation. For example, if (2 4

7 8) is a better set of scores than (3 3 6 9) then we would expect (2 5 8 8) to also be a better
set o f scores than (3 3 6 9) since each score in the set (2 5 8 8) is greater than or equal to the

corresponding score in (2 4 7 8).

This subsumption relation can be exploited in a candidate elimination algorithm (see section
2.4.1.2) whereas it is not clear how this relation can be exploited in a decision tree construction

technique.

The use of the version space algorithm (VSA) [MIT77 and MIT78] is investigated in

developing rules to recognize matching scores. This method is algorithmic in that a number
of specific steps are required for its implementation and it is a general method which could
be applied to different learning problems. The techniques above were especially developed
for learning matching rules for this particular system.

This chapter involves using this algorithm in learning matching rules, investigating its per

formance, and pointing out to the limitations involved with attempts of dealing with them.

1,2 L earn ing M atching Rules Using VSA

1,2,1 Basic P rocedure

As in the statistical-ranges approach, the aim was to learn the cases in which the true fault
(TF) precedes a suspect fault (SF), through the presentation of the different examples of such
cases to the algorithm in the form of a pair (TF SF).

The positive examples are the cases in which TF precedes SF, (TF SF), and the negative

examples are the reverse cases, (SF TF). As was described in sections 8.2.2 and 8.3.4.2 of

the previous chapter, after identifying TF the system performs its learning by using (TF SF)

to update the rule position in the rule-table and using (SF TF) to update the reverse location

in the table. The same procedure is used here to classify the positive examples (former case)

and negative examples (latter case).

The positive and negative examples used for updating the version space are obtained in a
similar manner to above and are updated in S and G simultaneously. Efficient representation
of the version space required storing the representation of the complement of G (G) instead
of G. After each update of S and G the two sets will be exact opposites of each other.

130

Each example is represented in the form (x y), where x is the vector of scores for the first

fault (x! x2 x3 x4) and y is the vector of scores for the second fault (y! y2 y3 y4). Given that
(xt y t) represents the scores of the faults in the training example and (xs y s) represents one

of the example descriptions in S. Then for the training example to be covered by the one in
S, the following must be satisfied:

>= x*} and {yit <= yis} for a lii (i)

Also given that (xg y g) is a negative example in G , then for the same training example to be

covered by the one in G , the following must be satisfied:

{xit< = x ig} and {yit >= y ig} for a lii (ii)

(i) and (ii) are termed here the inclusion equations

The algorithm starts (as described in section 2.4.1.2) by initialising S to the first positive

example and initialising G to the first negative example. Any subsequent positive example
presented to S is covered by it if it satisfies (i) with any of the example descriptions in S (i.e.,
is better than or identical to any of the example descriptions in S), otherwise the example is

added to the list o f example descriptions in S. However, for a negative example to be covered
by G (and hence not covered by G), then (ii) must be satisfied with any example description

in G (i.e., it must be worse than or identical to any of the examples in G) in which case it is

not added to G .

The procedure for building S and G and later using for sorting the suspect faults is illustrated

by the example below.

Example

Table 9-1 contains three examples to be used in constructing S and G using the procedure

described above.

131

Example {xe y j

ei {(4 5 4 3) (2 3 22)}

e2 { (3443) (3 33 3) }

e3 {(45 4 3) (1 111)}

Table 9-1: An example for building G and S.

The examples in the table are the positive examples only, the negative examples are obtained

by reversing the positive ones shown. In this example we refer to a negative example of a

positive example ^ by et.

As described above, initially G includes every possible example and S does not include any

example. After processing e l5 S is initialised to ex and G is initialised to e x ((2 3 2 2) (4 5 4

3)).

S = {(4 5 4 3) (2 3 2 2)}

G = {(2 3 2 2) (4 5 4 3)}

The above means that S includes every possible example which is better than or identical to

ej and G includes examples worse than or identical to ~ex. For example, a training example
such as {(4 5 5 5) (1 2 1 2)} is in S since 4>=4, 5>=5, 5>=4, 5>=3 and 1<=2, 2<=3,1<=2,
2<=2 according to (i), however, an example such as {(4 2 4 1) (3 2 3 3)} is not in S since in

the first match 2 and 1 are not >= than 5 and 3 respectively.

Processing e2 results in adding it to S since it is worse than the example description already

in it (i.e., does not satisfy (i)). e2 is added to G since it is better than the example in G (i.e.

since it is not covered by G). G and S are now the following

S = { (4 5 4 3) (2 3 2 2) } + { (3 4 4 3) (3 3 3 3)}

G = {(2 3 2 2) (4 5 4 3)} + {(3 3 3 3) (3 4 4 3)}

The final example is covered by S (since e3 satisfies (i) for any example in S) and e 3is not

covered by G (since it does not satisfy (ii) for every example in G) and hence both remain
unchanged.

9,2.2 Dealing with Noise

It was clear from the analysis performed on different rule-tables generated using the
statistical-ranges technique, that in some cases up to 20% of the examples for a given situation
(a rule position) point to choosing the opposite fault to that indicated by the majority of the

132

examples. These minority cases are noise. The statistical-ranges technique remembers the

number of examples in favour of each case (experience) and, as a majority emerges, the

correct choice is identified by the technique.

However, the version space algorithm does not have any record of the previous cases, other

than updating G and S, which does not take frequency into account. For this reason a number
of measures were taken to isolate some cases of noise/inconsistencies. These cases were

excluded from building the version space and are as follows:

i. Positive examples already excluded from G.

ii. Negative example already in S.

Since in (i) only negative examples are removed from G and in (ii) S is only constructed using
positive examples. Hence the cases point to a contradiction to what is learnt.

The strategy, in doing the above, is to ignore contradictory examples. However, this blames
contradiction on new examples only, which is not necessarily true since the contradiction

could be in an earlier example already used in building the version space. Hence, the algorithm

assumes that most examples are ok and so it comes down in favour of examples seen so far.

In view o f the above, if a noisy example (due to an error by diagnostic technicians say) is
encountered by the system at an early stage during the construction of the version space, then
it is very likely to contradict noise-free examples. This will result in the corruption of the
version space. Hence, it can be deduced that VS A is dependant on the order at which examples
are presented to it.

9.3 Implementation and System performance

This section describes the stages involved in monitoring the performance of the fault diagnosis

system, using VSA for developing its matching rules, and the results obtained.

The system performance was monitored in the following two stages :

Stage 1:

Here, the algorithm operates by constructing a version space as described in section 9.2.1.
This involves considering each example in the data and using it to update S and G. The
algorithm uses the inclusion relations of (i) and (ii) in testing whether positive and negative
examples are covered by S and G respectively. The system performance is monitored with
each example. At this stage, the system relies mainly on the data in constructing its rules.

133

The system above showed a poor performance in diagnosing examples from the data. It was

clear that it could not generalize (learn) fully the most common of the matching rules such

as the case when all scores of a match is greater than the corresponding scores in another

match, (i.e. s, > (^ i = \..number o f scores, for two sets of matching scores s and d). In order

to learn this rule the system must encounter examples of all the relevant cases e.g. ((2 2 2 2)
(1 1 1 1)), (3 3 3 3) (2 2 2 2)), ((4 4 4 4) (3 3 3 3)) . . . etc.

It can be deduced from the above that in order to generalize a certain situation using the above
procedure, a comprehensive set of examples are needed (i.e., examples should cover every

case o f each situation). These are not characteristics of the data used here and hence the poor
performance of the system.

Stage 2:

The system in stage 1 uses the inclusion relations (mentioned above) in order to generalise
from specific examples. Each inclusion relation is valid only if each score, examined by the
relation, is related to match quality in a monotonic increasing relationship (see figure 9-1).

Since each of the matching scores used by the system is monotonic increasing then the version

space must recognize examples where S; >= d, (i = 1 ..number o f scores, for two sets of matches

introduced to the system (J d)) as positive examples. This means that the system must say
yes to the order of the matches. Conversely, the system must say no to examples where s, <
dj. An example o f the former case is ((3 3 3 3) (2 2 2 2)) whereas ((2 2 2 2) (3 3 3 3)) is an

example o f the latter.

Figure 9-1: An example of a monotonic increasing score.

From all the above, the system here is adjusted to exclude the above cases from building the
version space and respond to examples of each case appropriately (when encountered). For
this reason learning is restricted only to examples in which respective scores of the two
matches have different relations to each other. Examples of such cases a re : ((5 3 4 4) (6 8 4

134

7))and ((7 7 3 2) (3 2 7 7)). Such cases are more difficult to discriminate (human experts
require some experience in order to be able to handle such cases) and are cases where

additional information (such as the significance of the different scores) might be needed.

Bar charts, similar to those produced for previous techniques, are produced for the results

obtained with the above system. Figures 9-2 and 9-3 illustrate the results obtained using the
G set description and the S set description respectively. Both results indicate a performance

which is better than that of the manual approach. The performance obtained here matches

that obtained for the Statistical-Ranges approach, however, this is because the system is

manually adjusted to deal with the majority cases while in the statistical-ranges approach
these cases are learned by the system.

135

eo y

h i l t i M i t l a Pm , h iK Pm

(•) P in t 100 (b) Second 100

<c) Third 100 (d) Fourth 100

Mean

Figure 9-2: Mean fault identification charts using G set descriptions

136

(■) T in t 100 (b) Second 100

1 2 3 4 & 0 N W

h o l t iM t t t e Pea. PMIt le ea ttn Pee.

(c) Third 100 (d) Fourth 100

Mean STD

Figure 9-3: Mean fault identification charts using S set descriptions

The learning rates of the system using both S and G descriptions are shown in figure 9-4 (a

and b respectively). The performance of the system is assessed when none of the version
space descriptions are used, i.e. the system only recognizes majority cases (with the manual
modification of the system itself, i.e, with no rule learning taking place). This case is associated
with M (manual) in the figures.

137

S M S-M G “ ®— M G-M

(a) (b)

Figure 9-4: Learning curves of the system

A more uniform learning is noted using the S descriptions although slight improvement to

M can be seen in both cases (with a better performance in S). The learning improvement in

S is approximately 3-4%.

9.4 A nalysing VSA L earning

This section will comment on the learning procedure using VSA and will compare it with

the statistical-ranges approach.

Basically, the major drawbacks of learning by VSA are:

1. The difficulty of detecting/isolating inconsistencies (noise).

2. Slow convergence to the learning concept if the concept space is very large.

3. The order in which the reports are presented to the learning algorithm affects

the building of the version space.

The rest of this section will consider each of the above in a greater detail.

In an environment where scores are generated by an anonymous system and no knowledge

exists about the meaning of these, it is usually desirable to have a learning system which is
supplied with all the scores and later identify, as more examples are seen, a concept (or

concepts) which can classify these examples. It will be necessary for such a system to have

138

a way of identifying noise in examples and isolating such cases in order to avoid corrupting
the concept. This aspect is especially necessary for this system since it is targeted for use in

a multiple board environment. In this case the significance of the scores could change

depending on the test report format which could vary due to different procedures of testing.
Hence it will be recommended that a system re-tune its rules in order to keep up with the
above changes. The techniques developed in chapter eight used experience by monitoring

the success rate of its secondary rules. The success rates proved very useful in efficient

identification of effects of noise on these rules and later their isolation. The modifications
performed to the VS A to deal with noise (section 9.2.2) only avoid some of the cases and in

some cases could have the reverse effect (e.g., if a noisy example is included in either G or
S set at an early stage in the learning process, then a subsequent proper example may be
rejected from the set during sorting the suspects and subsequent update of the S could be

incorrect).

The effect of (2) was apparent in that some common cases could not be learned fully unless
examples which cover the extreme limits o f the case have been encountered at an earlier

stage. For example, consider the state of the version space where S is the following :

S=((5 5 4 2) (3 3 3 3))

When a new example e, where e = ((4 4 4 2) (3 3 3 3)), is presented to S to be identified then
e will be rejected since it is not covered by S (since (i) is not satisfied - see section 9.2.1).
However, comparing e with the example in S reveals that both cases involve two matches in
which each score in the first match bare the same relationship with the corresponding score

in the second match (i.e. 5> 3 ,5> 3 ,4> 3 , 2<3 for the example in S and 4>3,4> 3 ,4> 3 , 2<3

for e). The only difference in the two examples is the values of the individual scores. Hence

a number of examples of the above situation is required (where the values of the scores are

different) for this particular situation to be generalised! Another example of such a case was

illustrated in section 9.3 (stage 1).

If the two examples above are interchanged, i.e. S=((4 4 4 2) (3 3 3 3)) and e=((5 5 4 2) (3 3
3 3)). Then e will not be rejected by S since it is a better matching case than the one in S (and
hence e is covered by S).

The above example illustrates the case in which diagnosis is effected by the order in which
the examples are presented to the version space. Such cases are handled more effeciently in
the rule learning techniques described in the previous chapter since matches with scores which
bare the same relationship to each other are treated similarly (since they are directed to the

139

same rule and examined by the same secondary rule). In addition, these techniques are able

to identify cases before meeting any examples since they can be initialised manually. The

impact of order on VS A is especially effective when considering the effect of noise to system
learning. As mentioned in section 9.2.2, meeting noisey examples at early stages of building

the version space might result in a corrupt version space caused by the possible rejection of
noise-free examples.

VS A is more suitable for situations in which G and S are constructed prior to testing since

learning is slow, especially if the concept space is very large as is the case here. Since, in

such cases, a large number of examples must be seen (during which similar examples are
rejected and hence diagnosis fails) in order to cover the whole of a certain situation.

The performance of the system was improved significantly by excluding a large portion of

the data from being used in the construction of the version space (see stage 1 in section 9.3).

This is because these cases constitute the majority of the examples in the data (if the system
is modified to deal with these cases only approximately 50% of the reports will be identified

correctly). The VS A learning provides an additional improvement of approximately 5% (this
improvement is achieved by learning the difficult cases which the learning was restricted to,

see stage 2 in section 9 .3). The performance of the system could be enhanced by using a
heuristic approach in searching the membership of a given example in one of the version

space sets. This could be performed by implementing a more heuristic comparison in
identifying whether a new example is covered by either S or G. For example, in order to be

able to identify e in the example provided previously in this section, (i) in section 9.2.1 must
be modified to take the following form :

xis-xit >=K and y^-y,, <=k

Where K and k are constant values. In order to cope with the previous example (for e to be

covered by the example in S) both K and k could be chosen to be (>1).

In order to see whether the above approach is plausible, more investigations are necessaiy
with the matching scores to find appropriate values for K and k (if it is possible to find such
values!).

However, performing the above might result in a non-discrete identification in which rela
tively large numbers of examples may be wrongly considered to covered by S or G.

140

The exclusion o f the common examples and inconsistencies from learning using the VS A is

in agreement with [TAN90] who says : "In order to have an effect a new example must be
salient; it should either be a near miss or an ’unexpected hit". This indicates that learning

only improves if the new examples point to different aspects in the concept space. So examples
must not be an inconsistency or a duplicate1 of a case seen before, since in the former the
version space is distorted and in the latter no new information is learnt (experience is not

significant in the VS A).

Theoretically, learning using the VS A should be able to identify the complete concept space

associated with the matching scores (given that the examples are introduced in the correct
order), however, for this to happen the training examples must cover every possibility in the
space. In order to learn the whole concept space including the majority cases, a large number
of salient examples will be required. This seems impractical due to the numeric nature of the

scores (continous space) and the restriction imposed to the examples introduced to the
diagnosis system by the board failure cases met with the faults found on the PCBs, which do

not necessarily produce scores covering the whole space. This will also mean that a longer

learning time will be required until learning reaches its steady state. During this time a large

number o f correct examples will be rejected since examples covering them were not met

earlier.

Although the diagnosis results obtained here are acceptable and may be further improved by

using some heuristics (as mentioned above), learning is only restricted to a small number of
cases, since a large number of examples are required to learn the majority of cases which are

associated with a large domain in the concept space. In addition, VSA cannot distinguish

noisy examples efficiently.

3,5 Conclusion

In this chapter, the use of one o f the standard methods in concept learning was investigated
for learning rules discriminating faults based on their matching scores.

Due to the large concept space which includes all the possible combinations of the matching

scores, this learning method showed a slow convergence in its search for an optimal rule. For
this reason attempts were made to restrict learning to certain cases only. 1

1 Duplicates include examples which cover portions of the concept space already covered
by a previously seen example.

141

By restricting learning to minority cases only improved performance is obtained. However,
this did not match that obtained using the techniques of chapter eight. Furthermore, the

learning in this case required external assistance in isolating noise and buffering common
examples and hence led to a less independent system than the one which could be developed

with the earlier techniques.

142

CHAPTER TEN
FURTHER INVESTIGATIONS

OF WAYS OF IMPROVING SYSTEM PERFORMANCE

10.1 Introduction

This chapter describes two additional investigations carried out in order to improve the

performance of the system. Both attempt to investigate the effect of a more comprehensive
matching on system performance by using additional parameters regarding each test failure

in a failure report.

The first investigation involves careful analysis of the failure report during matching by
detecting similarities within parameters of test failure such as test name, mentioned in section

5.2.1.1, in order to be able to further distinguish different faults.

In the second investigation a method of incorporating test measurements into the matching
procedure is devised and its effect on system performance is examined.

The rest o f this chapter considers each of the above in a greater detail.

10.2 More Comprehensive Matching

10,2.1 Introduction

The matching procedure employed in the system described in chapter five was based on

ignoring the conditions, under which tests are carried out, and using only test names in

matching. The above matching method could be referred to as exact matching, since it only

considers two tests to be a match if they are exactly identical.

By examining the different tests in the data, it can be seen that tests which are related to each

other (in either the type of the task they perform or the components they test), contain some

common terms which reflect their relationship with each other, examples of these tests are
the fo llow ing: 1

1) ovp-test a-wire thyristor on state and

ovp-test b-wire thyristor on state

143

2) curr feed active slic ,

curr feed disable stic , and

curr feed polrev act

3) freq distortion d-a

freq distortion a-d

For each of the above examples many other tests exist and also more cases exist in which

similarities could be seen. If familiarity exists with the circuit that these tests are applied to,

it can directly be seen that the tests in 1 test the protection circuitry and in particular the

thyristor, tests in 2 also are designed to test the same device, and tests in 3 are testing a similar
function which is the quality of signals produced by a certain device. This similarity in the
groups above can be reflected in the common terms which exist among the test names of each
group. This procedure of closely investigating individual test names forms the basis of a more

comprehensive matching procedure, which is the subject of this section.

Further analysis o f cases such as the above led the way to investigating the performance of

the system if test names are considered more closely rather than just checking whether the

test names are exactly identical (match) or not (not a match). This means that matching should

be such that, tests could be considered a match even if they only have some common features
and are not identical. This type of matching is termed inexact matching. This section describes

investigations carried out in order to achieve inexact matching.

10.2.2 Evaluating a Match

In order to incorporate inexact matching into the procedure employed by the matcher, see
section 5.2.2, a method of comparison between two tests are required. Such a method must
be able to compare the tests of a match-pattern, which is extracted from a failure report, with
the tests o f each test-pattern in the knowledge-base and produce a score for each test in the

144

match-pattern which reflects the quality o f its similarity with the tests of the test-pattern. For

this reason a scoring function is required which compares two tests and produces a score of
the degree of their similarity. This procedure resembles the exact matching procedure which

compares the similarity of different test-patterns, however, here the matching is carried out

within the test names.

This scoring function is the basic element of the inexact matching method since it is a means
of comparing a single test in the match-pattern to another in the test-pattern of a given fault
entry, therefore, the rest of this section will be devoted to it.

Basically, the function compares two test names and produces a score, which is a number in

the range 0-9 which indicates the degree o f similarity between two tests (9 indicates that the
tests are identical). The score represents; the num ber of the common term s in the two test
(com m on). relative to the to tal num ber o f different term s in the two tests nam es (to ta ll.
in a mathematical form:

common----- — X scale
total

Scale is the number 9 to make the score in the range 0-9. As with the matching scores of

section 5.2.2, this is chosen since it provides a normalised representation for the scores.

Tests mentioned in 1, 2, and 3, see section 10.2.1, are examples of tests which are required
to be identified by inexactly matching them using the technique developed here. The scoring

should reflect in its scores the similarities in each of the above cases. The efficiency of the

scoring function will be demonstrated through three cases in which the function will be used

to compare three common cases in which inexact matching will be required with different
scoring in each case.

Case 1

ovp-test A-wire positive diode in diodebridge

ovp-test B-wire positive diode in diodebridge

The above two tests are used to test the protection circuitry in different individuals of
the circuit and occur frequently in the data. Common is 5 and total is 7, hence the score
is 6.

145

Case 2

For first two tests in 2, section 10.2.1, common is 3 and total is 5, hence the score is

5.

Case 3

The tests No Offhook and No Onhook are two tests which test the same device for two

related functions. Since the two tests test the same device, then in most cases1 the failure

o f any of the tests will indicate the failure of the same device.

when the two tests were compared using the scoring function, then applying the defi
nition in the previous section; common is 1 and total is 3, hence the score is 3.

The comparison performed by the scoring function is not as efficient as that performed by

an experienced diagnostic technician. This is because it is difficult to implement a system
which could recognize an indirect relationship between two tests in a manner which resembles

that of the expert who develops skills in recognition and comparison of tests based on his/her

experience and familiarity with the board circuitiy.

From the experience gained by analyzing the data, the tests in case 1 are the ones with greatest

relation to each other since they both test the same function except that they are applied on

different I/O lines. The score 6 is reasonable since it is less than 9 (identical tests) and higher
than average since the two tests are largely related.

The tests in cases 2 and 3 are less related than case 1 with the tests in case 3 being the less
related. The scoring function is applied to most of the tests in the data in which a functional

relationship exists. When the results are compared with each other, the scores seemed, in

majority of cases, representative of the degree of their similarity. In case 3, a diagnostic
technician can recognize the relationship between the two tests more efficiently than the

scoring function. Since the technician will recognize the common term hook which is one of

the functions tested for in the PCB circuit. Hence a technician might associate a higher score

than that provided by the scoring function which cannot detect the above similarity. This is
because the function does not examine within the terms of the individual test names. The

1 If the two tests are not within a large pattern of failed tests, then their failure indicates
the failure o f the same device.

146

procedure of adapting the scoring function to perform the above is a complicated task which

offers only a little reward (due to the small number of cases in which it is needed). For this

reason it is not pursued further in this thesis.

Another drawback of this method is in considering some common terms which have no
significance inside test names. Although such cases were not very common because the test
names are very brief and are made in such a way that the test task is represented in minimum

amount of words, in some minor cases this could have an effect on the matching performance.

10.2.3 The Matching Procedure

It can be deduced from the previous section that one of the critical aspects in performing
inexact matching (between two sets of tests) is selecting those tests in one of the sets which
do not exactly match the tests in the other set, but are thought to be related (i.e. are inexactly

matching tests). One way in which inexact matching could be performed (by a diagnostic
technician) is to select exact tests first. Next, the two groups are scanned for tests which are

related to each other. The knowledge of the tests and some of the functions of the circuit

(developed by experience) are used later to eliminate those tests which are poorly related and

the remaining ones are considered as inexact tests. The inexact tests are used together with

the exact tests in judging the quality of the match between the two sets.

Based on the procedure above, the matching procedure can be modified such that the scoring
function can be used in comparing the tests (in the test-pattern and the match-pattern) during
the scanning process. The quality of the score produced for each pair of tests can be used to
select those tests considered to be inexacts. As mentioned above both exact and inexact tests

are used to evaluate the quality of the match.

From all the above, the overall matching procedure will be similar to that described in section

5.2.2. However, in order to determine the four matching scores, i.e. (S, P, G, F), while

comparing the match-pattern extracted from the report with a given test-pattern in the

knowledge-base, each test in the match-pattern must be classified into one of the following
groups:

Exacts : test(s) which are exactly matched with tests in the test-pattern. Each test must have
a score of 9 by the scoring function.

Inexacts: test(s) which are inexactly matched, each test is identified by a score which is in
the range 1-8 by the scoring function. Although, the scoring function above
allocates scores which could vary in the range 1-8, tests considered as inexacts
must have a score which should exceed a threshold value termed the score limit.

147

Nomatches: test(s) for which no exact or partial match exists. Those tests are identified as

the ones which do not fit into either of the above two groups, that is tests which

have scores equal to or less than the score limit.

It must be noted that in inexact matching match-tests in the match-pattern and the test-pattern
are considered to be both exacts and inexacts. Total-tests are the individual tests of both the

match-pattern and the test pattern i.e.

match-tests = exacts u inexacts

total-tests = match-pattern u test pattern

When comparing a given match-pattern with each test-pattern in the knowledge-base, each
test in the match-pattern is compared to each test in the test-pattern. If a given test in the

match-pattern exactly matches one or more of the tests in the test-pattern then it is added to

the exacts and is not considered any more even if it inexactly matches other tests in the

test-pattern. Otherwise, if the test inexactly matches at least one of the tests in the test-pattern
then its added to the inexacts. The idea behind such matching is to treat tests as matches even

if they are not exactly similar to the tests seen before as long as they share a certain degree

of similarity (specified by the score limit). In order to understand how inexact matching is
performed, consider the example in figure 10-1. The example illustrates a match-pattern and
a test-pattern which are to be matched inexactly. Failed tests in the example are made such
that they resemble the actual tests in the data.

match-pattern test pattern
Device-1 BW Device-1 BW

Power Test Cable.1 Device-1 Gain

Power Test Cable_3 Power Test Cable.1

Power Test

Signal Linearity

Power Test Cable-2

Figure 10-1: An inexact matching example.

With exact matching, match-tests are those with exact matches in the test-pattern, hence:

m atch - t e s t s *■
f D evice_ lB W 1
\P ow erT est Cable

However, performing inexact matching without setting any restrictions on the value of the
score lim it will discriminate the following groups of tests:

f D evice _ \B W 1
exacts = l „ „ „ ,, l

\P ow erT est Cable
fPow erTestC able 3]

inexacts «■) „ „ ~ l
I Pow erTest J

nomatches « {Signal L inearity}

Device JLBW

match -tests =
PowerTestCable
PowerTestCable J i

PowerTest

In the above case, the inexact tests have the scores 4 and 6 respectively. Now, if the score

limit is set to be 6, then the three groups of tests are modified such that:

exacts
f Device J.B W 1
yPowerTestCable inexacts = {PowerTest}

nomatches -
PowerTestCable _3

SignalLineariiy

f Device _\BW '
m atch-tests = i PowerTestCable _l .

I PowerTest

The matching scores used for inexact matching are similar to those used for exact matching
(see section 5.2.2). However, the scores are modified, where necessary, in order to consider

the inexact matches in addition to the exact ones. The new definitions of the four scores are

as fo llow s:

S is defined as the number of tests in match-tests.

P is defined as the number of tests in match-tests relative to the number of tests in total-tests.

match — tests
total — tests

G, which represents the Overall Significance, is defined as the sum of the significances of

match-tests relative to the sum of significances of total-tests, the definition of significance is

mentioned in section 5.2.2. In mathematical form.

q _ Significance(match - tests)
Significance (total — tests)

F represents, as before, the frequency count of the test pattern in the knowledge-base.

The utilisation o f the above scores in evaluating the quality of a match involves using the
same rule-table as that described in chapter five.

149

Here, the performance of the system is monitored for different values of score limit. The

following changes can be observed in the performance of the system :

i. Choosing low values for the score limit, i.e. including all the tests in a report

with a test score, see section 10.2.2, which is in the range 1-2 as inexacts, the
system showed a poor performance at most stages of the diagnosis in comparison

with the performance of the original system described in chapter five.

ii. As the value of the score limit is increased up to 4, an improvement is noted

especially at early stages of the diagnosis, i.e. during the diagnosis of the first
50-70 reports. The performance achieved with early reports improves on the
performance of the original system and on the performance achieved when rule
learning was employed, see chapter eight. The best performance with the early

reports is achieved when the score limit is 4 where 8% improvement is achieved
in comparison with the original system. The performance at later stages of the

diagnosis does not match either that of the original system or the system using

rule learning. The performance of the system is illustrated in the learning curve

o f figure 10-2 (a) and (c).

iii. A t values o f the score limit which are greater than 4, the good performance with
the early reports deteriorates slightly, however, it remains better than that of the
original system. Figure 10-2(b) illustrates the performance of the system with

one o f the values in this range, the score limit = 7. As it could be seen from the

figure about 6% improvement is achieved in comparison with the original system

in figure 10-2(c).

Setting the score lim it to be 1 or 2, as in (i), allows those tests which are poor matches to

corresponding tests in the knowledge-base to be included as inexacts and hence effecting the

matching scores which lead to a deterioration in performance. In (ii) most of these tests with

poor scores are not included and hence an improved performance is observed.

The situation in (ii) reveals one of the main advantages of the inexact matching by considering
only those tests with a relatively good score (tests with scores over a score limit of 4) as
inexact matches. It can be deduced from the learning curve obtained for this situation (figure
10-2a) that in the early stages o f the diagnosis procedure, when the system has encountered
only a few reports, inexact matching can provide a better diagnosis than the exact matching
employed by the original system. However, it must be noted that this improvement is only

10.2.4 Analysis of the Results

150

experienced within the first 100 reports introduced to the system. As the learning curves

confirm, the performance deteriorates in comparison to the exact matching and more turbulent

learning is experienced. The reason for this deterioration is thought to be as follows.

(a) Limit = 4 (b) Limit = 7

(c) Exact

Figure 10-2: Obtained learning curves.

As mentioned earlier in chapter five (section 5.2.1), most of the reports in the data confirm

that the failure o f some tests are the characteristics of the failure of certain devices. Such

characteristic test sequences were termed match-patterns. The whole matching process is
based upon associating a match-pattern on a failure report with previously seen ones. The

use o f inexact matching involves including some additional tests in match-patterns by

including those tests which are similar, but not identical to the characteristics tests in the
match-pattern. This will cause the test-pattern to be more general and less specific, we term
this as the blurring effect. This means that the test-pattern will no longer be the characteristic

of the failure of a single device, but a number of devices. This is because the tests included

by inexact matching, although similar, might not point to the failure of the same device. An

151

example is the group of tests within "ovp-tests". These tests are common tests which are used

to test different components of the protection circuitry within a given individual in the board.

The tests are usually very similar to each other and could provide high scores using the scoring

function. If these tests are counted as matches then the correct faulty component could not

be recognized since the two ovp tests could be for different devices in the protection circuitry.

Hence, the blurring effect caused by inexact matching is hepful at early stages during the
operation of the system (when the knowledge-base has very limited amounts of information.
At this stage blurring will help the system in identifying suspects since exact matching alone

might not provide enough suspects for the system to choose from. However, as more examples
are encountered by the system many of the well known test-patterns of the different suspect

faults will be known to the system. Hence, when a well known case is encountered the exact
matching can identify the fault exactly, but by continuing to use inexact matching the

identification will be less specific by including other components with similar likelihood to
the real fault (caused by the inexact tests). This will provide difficulty in discriminating the
different suspects and hence will lead to a wrong diagnosis.

Figures 10-3 and 10-4 illustrate the performance of the system (at score limit values of 4 and

7) using bar charts. The charts confirm the information obtained from the learning curves in

that the number of faults identified in the 1st 100 is more significant when the score limit is
4. In addition, the charts carry information about faults diagnosed with less likelihood by the
system. One of the observations made during experimentation with inexact matching is the
relative increase in the values of std compared to previous bar charts obtained when exact

matching and rule learning were employed. This could be noted in the bar charts. The increase

in std values point to the fact that the percentage fault detection values, obtained in the different

random trials during analysis of system performance, show more variation compared to other

methods. The increase in the values of std were investigated by varying the number of random

trials over which mean and std values are calculated, however, no significant changes were
noted.

152

5 3 STD

Figure 10-3: Mean fault identification charts, score limit = 4.

153

b) Second 100

(c) Third 100 d) Fourth 100

S I STD

Figure 10-4: Mean fault identification charts, score limit = 7.

10,2.5 Investigating Alternative Approaches

This section describes further investigations which are carried out in order to find alternative
ways o f performing inexact matching. One approach which was investigated involves
calculating an additional score representing the quality of inexact matching. This score is

used with the other matching scores, which unlike the previous approach, are not altered here.

154

The additional score is a number which reflects the number and quality of the inexactly

matched tests in the match-pattern with the test in the considered test-pattern in the fault entry.

The score is calculated using the scoring function, described in section 10.2.2. A match-pattern

is compared with a given test-pattern and the inexactly matched tests are identified by their
scores (scores 1-8). The scores of these tests are added together to form an integer number.
Later, a final score is obtained by normalizing the value previously obtained by dividing it
by the number o f inexact tests. The normalization is useful in comparing scores obtained for
a given match-pattern. As in the original matching technique, the process is repeated by

comparing the match-pattern with all the patterns in the knowledge-base. Hence, each suspect

is evaluated with five scores (i.e. the above score and the previous four).

Since each score value obtained by the scoring function is an indication of the quality of the

match and since it is added for all the inexact tests in a single report when compared to a
pattern, and also it is performed for each pattern in the KB, therefore, the final score for the
pattern should be proportional to the number and quality of the inexact matches in the pattern

(as compared to the report).

This overall score was just observed on the debugging system output, to see whether an

improvement is possible to the matching result. However, by examining different set of results
it was clear that this additional score is not effective since it was significant in test-patterns
of the wrong faulty component and vice versa. Hence, the diagnosis system was not adapted
to use this fifth score.

A more comprehensive inexact matching is to start breaking the single terms inside the test

names and try to find some more common terms in them. Since the failure of tests such as:

false xdata

false bdata
false zdata

indicate the failure of the same device, however xdata, bdata, and zdata will be completely

different terms for the method in this chapter. The task of looking inside the terms in test

names require certain amount of time and effort computationally and manually and this is

not advisable considering the small amount of tests in which such action is required. The
success of this method is not guaranteed since as seen from the results of this section, the
more similarity is searched in side the test names the less is the performance of the system.

155

Another method could involve including the names of different tests which cause the failure

of the same component in the body of the program. This method can allow us to group the
tests which are observed in the data commonly as being similar types, although they have
different names. However, this will make the system usable only with circuit boards which

have similar components and are tested with the same test program, i.e. the system will not
be a general fault finder which can be used with different circuit boards. The system without

using the specific tests in the program, is a general one since if the knowledge base is cleared

and new faults and patterns are introduced to the system, then after a certain period of time,

when the KB has enough data, the system will start recognizing the faulty components.

10.3 Utilization of Measured Parameters

10.3.1 Introduction

Matching utilizes only a portion of the information provided on a report about the failure of

each test. Specifically, matching mainly considers the test names with individual numbers
and test numbers being used external to matching. Although such use of matching was decided

after thorough investigations using both test names and conditions, such investigations never

included the measured parameters on the failure report due to their non-discrete nature which

makes them unsuitable for a process such as matching.

Measured parameters include parameter values measured during the testing procedure. These
are different for different tests, examples o f these parameters are gain, voltage, and current
values. It was thought that such information could assist in boosting and analyzing the per

formance of the system. This chapter describes the modifications performed into the

knowlege-base in order to incorporate measured parameters. Later, the chapter investigates

a method for utilizing these in the diagnosis procedure.

10.3.2 Modification to Knowledge-base Structure

In order to adapt the system such that measured parameters can be utilized, the knowledge-base

structure had to be modified for accommodating such information. However, prior to

reconstruction of the knowledge-base a number of tools were developed for analyzing these
parameters. Such tools included examining the range of values, if such a range exists!,
regarding the failure of each test for a certain faulty component and later comparing the result
with the failure o f the same test in a different component.

156

Different analysis tools such as the one above revealed that for most tests in the data; if the

measured values of each test are considered individually, i.e. irrespective of the whole

test-pattern o f which the considered test is a member, then no clear range of values emerge.

However, if the tests are considered within identical or similar test-patterns then in most cases

a range could be determined by examining the values of these tests. This is expected due to
the significant important of test-patterns in the matching process. It must be remembered that
the original matching technique is developed in order to identify sequences of tests, i.e.
test-patterns, rather that single tests due to the common occurrence of specific patterns for
different component failures. In addition, it is thought that different test-pattern failures for

a given component indicate different circumstances (conditions) of failure and hence the
result of the analysis is logical.

VaSuel --- ValueN

Figure 10-5: The added structure for storing values.

For the reason above, the new knowledge-base structure stores measured values of each test
separately for each different test-pattern seen in a given fault. The new knowledge-base
structure is similar to that of figure 5-1. The only change is to the structure of the test-pattern
which is made to store each value of each test for any test-pattern encountered by the system.

A structure such as the one shown in figure 10-5 is added to the original test-pattern structure

for storing the values.

10.3.3 Investigating the Diagnosis

Although measured parameters cannot be matched directly, they could be used such that they

effect the outcome of the diagnosis process. For this reason the method investigated is
developed such that for a given match-pattern and a test-pattern a score (or a value), termed

measurement score (Sm), is developed which reflects the amount in which each test in the

match pattern varies from the values stored in the test-pattern within the knowledge-base.
Hence, it is assumed that a more suspicious fault will have a smaller score for its values. It
must be remembered that this score should be considered with the other matching scores
discussed in chapter five.

Supposing that a match-pattern {Tl5 T 2, . . . , TN}, which consists of N tests, is compared to a

identical test-pattern in the knowledge-base. Sm for such a pattern is calculated as follows :

157

Where

N is the number of tests in the match-pattern (and test pattern).

Vt is the measured value of the ith test in the match-pattern.

is the jth seen measured value for the above ith test stored in the test-pattern

o f the knowledge-base.

n is the number o f seen measured values for a given test in the test-pattern.

Consider the following example in which a match-pattern consists o f the tests {Tx T2}.

Supposing that the measured values of the tests in the match-pattern are such that V) is 0.5
and V2 is 0.2. The corresponding vector of values in a given test-pattern of the knowledge-base

is such that is {0.4 0.45} and P2 is {0.25 0.2}. The calculation of Sm is as shown b e low :

The system was modified such that the new value score is calculated for each suspect fault
(with the previous four matching scores). The results obtained by the system were analysed

by examining the effect of the value score in comparison with the rest of the scores. The aim
of this analysis was to see whether the new scores could recover the cases where the other
four matching scores fail, i.e. the aim was to see whether any additional information is obtained

1 0 .5 -0 .41 + 10 .5-0 .451
2 = 0.075

10 .2 -0 .2 5 1 + 1 0 .2 -0 .2)
2 = 0.025

5,m

10.3.4 Results

158

from these new scores. If the analysis here points to a possible improvement in performance
then, as with the previous scores, the rules in the rule-base can be modified to include the

new score.

However, the analysis indicated that the value scores obtained mainly confirm the cases which
could be distinguished by the previous scores whereas in the cases where the four matching

scores fail to distinguish the correct fault the new score carries no additional information. For

this reason the score is ignored and is not incorporated into the matching rules.

Analyzing the data provide some indication as to the failure of using measured parameters
which is summarized by the following. It was clear from the results of chapters five and six
that matching, using the four scores, could discriminate most of the faults by their common
test-patterns, however, failure occurs mainly with new, less common, test-patterns. From

the analysis it is clear that the number of measured values for these less common cases are

small, which is expected. For this reason a reliable score could not be determined especially

if an out of range value exists, i.e. noise. In the cases where a common test-pattern exists for

more than one fault, the value score shows a contradiction to most of the other four scores

which are more reliable.

For this reason the value score is ignored for the time being and is suggested to be re-introduced
as more data are provided, which will lead to more abundance of values per test in the
knowledge-base. It is also useful to investigate a different method of involving the measured
values in the diagnosis procedure.

The main advantage of this work is in the adaptation of the knowledge-base for the accom

modation of the measured parameters since they represent valuable information which must

be remembered in case of future modifications to the system. Furthermore, the system

knowledge-base represents a source of information for the company concerned and hence

could be analysed by the company periodically in order to monitor their manufacturing

procedure. For this reason it is more efficient if most of the failure information is incorporated

to the system.

10.4 Conclusion

This chapter detailed the work involved in carrying out two additional investigations which
aim to improve system diagnosis by performing a more comprehensive matching.

First, the use o f inexact matching was investigated. Tests are considered to be inexactly
matched if one or more terms exist which are common in their test names. Hence in this case

test names do not have to be exactly identical in order to be considered a match.

159

In order to perform inexact matching a scoring function was required in order to evaluate the

quality o f inexact matching among different tests. The scoring function is used in matching

tests of a given match-pattern against the various test-patterns in the knowledge-base. The

original matching scores developed in chapter five are modified in order to include inexact

matches.

It was noted that for best inexact matching results the score generated by the scoring function
for a given pair of tests should be greater than a certain limit in order to avoid including poor

matches*

Results obtained with inexact matching indicated an improvement in system performance at
early stages of the diagnosis in comparison to exact matching. However, this improvement
is not sustained as more reports are introduced to the system.

The improvement achieved by inexact matching at early stages of the diagnosis is an important

feature which should be employed efficiently. For example, the use o f inexact matching could
be restricted to early stages in diagnosing new boards.

The second investigation described in this chapter concerns adapting the system such that

information about measured parameters can be manipulated by the system. In order to process

these measured parameters, the knowledge-base had to be modified such that this information

can be accommodated. Next the effect of using these parameters in the diagnosis procedure
was investigated, however, no significant improvement was achieved. One of the reasons for

this is thought to be due to insufficient amount of information (including measured parameters)

especially for cases where improvements are required, since most of these cases are cases

which occur less frequently. One of the reasons for the deficiency of measured parameters

per test is due to the new structure of the knowledge-base which stores measured values of

similar tests only within similar test-patterns. Although such a structure reduces the number

of values per test, investigations showed that it is an efficient way of storing values since

most common faults can be identified with a number of test-patterns each of which is caused
by different condition o f failure and hence the values of similar tests within different

test-patterns are mostly inconsistent. It is thought that efficient use of measured values could
only be made when sufficient number of values exist for the tests within their test patterns.
This requires additional examples of the failure patterns currently in the knowledge-base.

The structure developed for the knowledge-base is maintained even though measured para
meters are not actually utilized in matching. This is because if such information is stored then
there is a possibility of using them in the future when more information is accumulated in

160

the knowledge-base. Furthermore, the knowledge-base acts as a source of information which
could be analyzed for monitoring the actual manufacturing process for these boards, i.e.

frequency of some faults might point to a certain malfunction in the actual manufacturing
process. Hence it is desirable to store as much as possible of the information about the failure
cases since this will enable a better and more thorough analysis.

161

CH A PTER ELEVEN
DIAGNOSIS O F M U LTIPLE PCB STYLES

11.1 Introduction

The next stage in the development of the system is to examine its performance when used in
diagnosing failures of different PCB styles, i.e. boards with variation in their design with
respect to each other.

This chapter describes the use of the system in diagnosing two additional PCBs. The first of

which is similar to the PCB used in the previous chapters. The second, however, is completely

different.

For each board, this chapter describes the differences in design and in the failure report format
pointing out, in each case, the results obtained in comparison to those obtained with the initial
board. The Chapter concludes by describing the required modification to the system in order
to operate in a multiple board environment (MBE).

For simplicity, the rest o f this chapter will refer to the three boards used according to the

follow ing:

PCBj The initial PCB used in the previous chapters.

PCB2 & PCB3 The new boards, which will be explored here.

11.2 Board PCB2

11.2.1 Characteristics

This board resembles PCB! in the modularity of its circuit design and the functionality o f its

circuit, i.e. the task it performs. The difference in this board is mainly represented in the

addition o f some new components and the removal of others from the circuit.

In addition, the format of the failure report for this board is similar to that of PCB! in that the
information mentioned about the failure of each test in the report is identical; including
parameters such as test number, test nam e,.. .etc. (see section 5.2.1.1). This similarity is due
to the use o f a similar ATE controlled by a similar test program.

Due to the similarities between this board and the initial one, a knowledge-base with an
identical structure to that described in section 5.2.1.1 is used. Since the matching procedure

162

and the matching rules are implemented to cope with various report formats (providing enough

information exists for matching), therefore, the same matcher and the same rule-base format

are employed.

11.2.2 Results and Analysis

In excess o f200 failure reports were provided for this board. These include reports diagnosed

to be due to a fault in some of the newly added components.

Due to the similarities in this board with PCBl5 the results are obtained in two stages as

described below :

1. First, the reports of PCB2 alone are presented to the system for diagnosis. The
results are presented in charts similar to that used in chapter five and are shown
in figure 11-1.

(•) P in t 100 (b) Second 100

Mean SSTD
Figure 11-1: Results of PCB2 alone.

2. Next, a knowledge-base is constructed using the reports available for PCBi
(approximately 500 reports). Later, the reports of PCB2 are presented for diag
nosis and the performance is monitored. The results are illustrated in figure 11-2.

163

Mean E 3 STD

Figure 11-2: Results o f PCB2 with PCB1

Note that the charts of both figures 11-1 and 11-2 conform to the same axes of the charts for
chapter five and each chart illustrates the mean and std obtained over a number of random

trials.

The results obtained in (1), see figure 11-1, are slightly better than the corresponding ones

obtained with PCBj for the first and second 100, see figure 5-6. This improvement can

especially be noted in the faults diagnosed as the first best fault. It can be seen from the charts

of figure 11-1 that approximately 64-76% of the reports are identified if position number one

alone is considered while 72-90% of the reports are identified in considering the first three

positions. One of the reason for the improvement in performance with PCB2 is because of
the consistency of the reports in the data. This consistency could be the result of adjustments

in the manufacturing procedure by the company.

Considering the results obtained in (2), see figure 11-2, the number of reports diagnosed
correctly in the first three positions remain high, however, the pattern of fault detection in

the first and second 100 vary as follows.

During the diagnosis of the first 100, the number of faults diagnosed in the first position (and
the first three) increase by about 5% (9%). This is expected since the reports of PCB j provide
the knowledge-base with enough information to recover some of the regularly occurring faults

164

which repeat in both boards. Hence the system can identify these reports even in the early

stages o f diagnosing PCB2. Whereas during the same stage in (1), these reports are still new,

although they are frequent cases, early in the first 100 and hence some of these cases are

wrongly diagnosed, however, update informs the knowlege-base of these cases hence leading

to an improvement in diagnosis later.

The diagnosis of the second 100, however, show a slight deterioration in performance
compared with corresponding one in (1). The deterioration is about 3% in the first position

(6% in the first three positions). In order to understand the reason for this deterioration, the

individual matches in 1 and 2 are compared and analysed.

The above investigation revealed that this deterioration in performance is mainly due to the
components which are added to PCB2, as replacements to other components or circuitry in
PCB,. In a number of cases which involved diagnosing a newly added component, the system
indicated the old component as the main suspect with the new component in a position other
than the first. It was found that this is especially the case if the report is a common symptom

for the failure of the two components in both boards. In such a case the scores of the removed

component, especially the frequency count, are better than the new component and a relatively

large number o f reports are needed to shift the high likelihood of the old component to the

new one.

In very few of the cases, the deteriorations could be due reports which contain test-patterns

common to more than one fault with the frequency of it occurring being shifted in the reports

of PCB2 from that of PCB ,. However, as mentioned earlier these cases are less frequent and

could be due to the small number of reports for PCB2 relative to that of PCB,.

The procedure in (2) tests the efficiency of the system in coping with changes in the design

of a given board which has been previously diagnosed by the system. In practice, it is common

to modify the design of the boards (in the company) by either the addition or the removal of

some components. The results above indicate that the system can cope with the changes

between the design of PCB, and that of PCB2. This is because the system maintains its high
failure identification rate. However, equipping the system to cope more effectively with

changes in board design require new modifications to the system. Such modifications include
the addition of a mechanism for removing information, related to the removed components,
from the knowledge-base (temporarily or permanently). This mechanism will be discussed
further in chapter thirteen.

165

11.3 Board PCB2

11.3.1 Characteristics

This board can be distiguished from the other two, PCB j and PCB2, in the non-modularity of

its circuit design. This means that unlike the other two boards, in which the circuit is divided

into blocks of components, this board consists of a single block of circuitry.

The board is tested by an ATE which is different from the one used in testing the other two.

The format o f the failure report also varies from the other two in that it lists additional

parameters about each failed test such as; The test points in the circuit and the line number

in the ATE program at which the test failed. However, the tests used by the ATE for testing
this board are not classified according to the function they perform in the circuit, as in the

other two boards. Hence, test numbers are not included within the parameters listed in the

report about each test.

In view of the above changes in the parameters presented about a test failure from the previous

two boards, the only change necessary to the system is to the representation of a single test

in the knowledge-base. The changes are performed such that the new parameters are con

sidered and the old ones are ignored.

11.3.2 Results and Analysis

The number of reports available for this board is significantly less than that provided for the
previous two boards. In total approximately 140 reports were provided by the company

concerned.

%
40 y ”

Fault laaatlaa Poa

Figure 11-3: Results of PCB3

166

After performing the necessary modifications to the system, in order to accomodate changes

in report format, the performance is tested with the new data. The results of a number of

random trials are illustrated in figure 11-3.

The figure indicates a significant deterioration in performance compared to the results
obtained with the previous two boards. Investigation of the performance is performed by
thorough examination of the results. The investigation lead to a number of factors which

could cause the deterioration in performance. These are listed below :

1. Lack o f sufficient number o f examples

The number o f reports obtained for this board is smaller than the reports obtained for
both PCI?! (~500) and PCB2 (~200). However, the deterioration in performance can be

noticed even if the results of the first 100 of the three boards are compared.

The number of examples could still be the main factor for this deterioration in per

formance although similar number o f reports of each board are compared. This is

because o f the modularity of the circuit design in the case of PCE*! and PCB2.

The reason why modularity of the circuit in these boards help in multiplying the number

o f examples for them is due to the following. Each module represents identical circuitry

consisting of identical components to the other modules. From our basic understanding
about the operation of the circuit, these modules operate in an identical manner to each

other and hence during the testing procedure, similar tests are applied to each individuals
which involves operating the individual circuitry under similar conditions. For this

reason, examples regarding the failure of a given component in a given module could

be used as an example of failure of the corresponding component in any other module.

Thus examples of components of the same type in different modules are used together

in diagnosis and update, hence leading to quicker learning.

For PCB3 however, examples of similar components cannot be used, since they are part
of different circuitry responsible for carrying out different tasks. For this reason when

these components are tested they are not tested similarly and hence cannot be used as
examples o f each other.

In order to illustrate the effect of circuit modularity on the diagnosis procedure, consider the
following analysis performed with PCBj (since this is the board which initiated the work in
this thesis and it has the largest amount of data associated with it).

167

In general, the circuit o f PCBj consists of 21 Integrated Circuit (IC) chips and approximately

another 450 devices (which include relays, rectifier bridges, thyristors, inductors, fuses,

resistor networks, resistors, and capacitors).

The reports associated with this board were presented to the system in order to generate a
knowledge-base to assist in the analysis. Examination of the information in the knowlege-base
indicated the following. The knowledge-base includes failures of approximately 200 com
ponents (42% of the total components of the circuit) which includes all the ICs in the circuit.

Most of the components which have not failed at all are either resistors or fuses which belong

to the control circuitiy or the power circuitry.

The analysis also revealed that the above faults include a total of approximately 210 different
failure conditions (situations). This is deduced from the number of test-patterns associated
with each fault in the knowledge-base (since test-patterns are the main objects of identifying
faults in different components for the system. In addition, it is thought that different

test-patterns associated with the failure of a given component indicate different situations

under which the component fails). The failure conditions above ranged from approximately

60 such conditions for some of the complex ICs to 1-2 for resistors and capacitors. The use

o f test-patterns in order to deduce the failure conditions of the different devices point only

to those conditions encountered so far. However, it is more accurate than other ways of
deducing the number o f failure conditions for the different devices. This is because most of

the components in the circuit are analogue and hence could have a very wide range of states

at which they could fail. Furthermore, many of the ICs perform a wide range of tasks some

of which are not provided for the technicians or the engineers. For this reason, details of all

the conditions of their failure cannot be deduced.

The above knowledge-base stores all information related to the failure of similar components

in different individuals together. This assists the system in making a better diagnosis. In order

to appreciate this consider the following. Approximately 192 of the faults in the

knowledge-base (96% of the total faults in the knowledge-base) are that of components in

the individual circuitry. By treating faults in similar components together. The system reduces

the number o f faults to 24 (i.e. l/8th of the 192 faults).

Hence, examples in excess of 210 failure conditions are used to identify approximately 30
faults (including those which are not in the individuals). However, if modularity was not used
then the same number of failure conditions would be used to identify 200 faults.

168

2. Insufficient number o f tests

Analysis performed on the data for all the boards revealed that the overall number of

tests available for this board is significantly less than that of the other two boards. This

factor is significant since all of the circuits are of similar sizes.

3. Short report length

It is noted that reports o f this board include the failure of smaller number o f tests in

comparison with the other two boards. The average number of tests failed per report is

1-2 tests, in comparison with 6-7 tests for PCBj and PCB2. The maximum number of

tests failing in a report for this board is 3 in comparison with more than 50 tests failing
in a single report for the other two. The small number of tests per report could be due
the test strategy incorporated in the ATE program, since some test programs could be

made to halt after the failure of the board for one or more of the tests. The idea is to

concentrate the attention of the technician to the first (or first few tests) as they are more
likely to direct the diagnosis to the correct faulty component. However, as experience

with different boards show, this is not always the case. Since in some cases the final

failed tests point out to the correct fault (as in multiple individual failure, see chapter

six), whereas in others a larger group of tests are required for finding the best test pattern
during matching in the knowledge-base.

The short report length added to the small number of the overall tests, mentioned in 2,
allow for a smaller test-patterns. Since our diagnosis technique is mainly based on

storing test-patterns and recognizing by matching these test-patterns and since the

number of possible faults are approximately equal to the other two boards. Therefore,

only a small number of test-patterns are possible, for this board, in order to recognize

same number of faults as the other two boards.

11.4 Operating in a Multiple Board Environment

So far the system has been used separately for each board. The modifications required by
each board were performed to the different parts of the system, such as the KB, by treating
the system to be specific for diagnosing the board under consideration. However, in order to
operate in a MBE a single system is required which recognizes each board style and performs
a diagnosis appropriately.

169

This section considers the necessary modifications in order to enable the system to recognize

and diagnose boards of different design tested by different ATEs.

11.4.1 Modifications

Currently, the system must be informed (by the test engineer) about the specific field (in the
failure report) which should be used in the matching procedure. As mentioned in chapter five,
the best field for matching was found to be the test name. This was deduced by manually
informing the system about each field to be used in matching and comparing the performance

with the different fields. In a MBE, the system will be required to deal with reports which

are related to the failure of different PCBs produced by different ATEs. For this reason, the

information in a failure report could vary depending on the test program running the ATE,

such as the type of test program e.g. functional. The above points to a need for automating

the process o f selecting the field in the report which is to be used in the matching procedure.

As it was seen in the previous sections, the variation in the report format is mainly caused by
the difference in the information provided by different ATEs about each test failure in a given

report. Considering PCB2 and PCB3, for example, the failure report for PCB3 include infor

mation such as test points and line of failure in test program, which are not provided for PCB2.

Another difference in the reports of the two boards is caused by hierarchical classification of

tests, by the ATE program of PCB2, according to the functionality of the tests. This lead to
including information such as test group numbers in the failure report.

The above represents some of the features in which reports produced by different ATEs differ

from each other. For this reason efficient automation of the field selection procedure (men

tioned above) for different reports can only be achieved by modifying the representation of

a single test within the system. This representation will be employed during matching and in

order to store the appropriate information about each test in the knowledge-base. In order to

deal with different report formats, a general test representation, GTR, is required which can
be used for dealing with maximum number of test representations in different failure reports.

Due to our limitations to the board styles provided, GTR is chosen to best suit their reports.

GTR is required to be simple avoiding the nested structure chosen for PCB! and PCB2, shown
in figure ll-4 (a) , and more like the structure used for PCB3 as seen in figure ll-4 (b), i.e.

flattened, however in a more general form such that any number of test parameters can be
incorporated within it. The structure chosen for GTR is shown in figure 1 l-4(c). The different
test parameters can be allocated to one of the fields shown in the figure. This structure offers
simplicity and efficiency during manipulation for ease of access to any of the parameters.

170

._____________ I_____________ ,I I 1 1
T e s t In d iv id u a l T e a t N o V a lu e s

N a m e C o n d it io n

,_______________ i_______________r i i i i
N a m e P ro g .L n C o n t a c t s C o n d it io n V a lu e s

(a) (b)

I ~
Field 1 F/e/dz

J_______________
I I

........................... Field
N

(C)

Figure 11-4: Test representations.

11.4.2 Use of Circuit Connectivity

We demonstrated in chapter seven, how the use of basic circuit connectivity information was

employed in the diagnosis of cases which could not be recovered using matching alone and

hence assisting in boosting the performance of the system. The routines developed then are

general and can be used with different circuit designs.

This chapter makes further use o f connectivity in order to assist the system in dealing with
boards of different design.

The circuit compiler, described in section 7.2, can be used to introduce any new board to the

system by creating arecord for it and storing it with records of all the known boards, introduced

earlier. When boards are modified in design, they could either be recompiled to replace old

design or be introduced as a new board, this is helpful if the old design remains in circulation

(use) since the possibility of maintenance repairs exist.

In addition to introducing new/modified boards to the system, connectivity could also be used

to inform the system of the features of a board currently under consideration. Hence, when

a report indicates a failure in a given board it is presented to the system. This is performed
by finding the appropriate board record and placing it in the current pcb buffer, see figure

11-5.

Some connectivity handling routines were developed which inform the system of specific
information about the board design such as; whether the board is modular or not, whether a
certain device is heavily interconnected in the board. Such information assists the system in

the following manner:

171

1. Extracting an appropriate match-pattern, see section 5.2.2, from the report. This

is especially effective when multiple module/component failures are reported.

2. Providing the different connectivity manipulation routines with the appropriate

information required about the circuit of the board under consideration. Without
connectivity information, a number of specific routines will be necessay to deal
with specific cases of each board. As new boards are introduced to the system
new routines must be added to its program in order to cope with the board. Hence,

providing connectivity information to more general routines will assist the

system to be used with multiple boards and hence a more general system is

produced.

Figure 11-5, illustrates the system components required in order to cope with diagnosing
more than one board design. The system operation can be summarized as follows.

When a report is introduced to the system, the pcb type is identified from the information in
the report and hence the appropriate PCB information is occupied in the current PCB buffer,

this will also lead into activating the appropriate knowledge-base (KB) and rule-base (RB).
Information about the basic features of the PCB (e.g., Type and number of modules) are used

to extract a match-pattern. Matching uses KB and RB to identify a list of suspects. Appropriate
connectivity analyses are performed where needed by identifying required features in the
suspects/report (see chapter six).

Each time a new PCB is introduced to the system, its circuit description is entered in the

appropriate format (currently, is a Lisp list format - similar to EDIF and is readily translatable

to a standard format) using an editor. The compiler checks for basic syntax errors and puts

the circuit in a form which is easy to manipulate by the system. Some of the connectivity

analysis are performed at the compilation stage to avoid delay during fault diagnosis.

172

Figure 11-5: The full system operation in a MBE.

11.5 Conclusion

This chapter further examines the performance of the system developed in the previous
chapters by using reports which are associated with the failure of two additional PCBs.

The two boards are different in their variation from the initial PCB, i.e. P C B T h e first board
is slightly different from PCB, while the second one is completely different from it.

Results show that the performance of the system with PCB2 matches (and is even slightly

better than) earlier results obtained with PCB^ In addition, experiments were performed by

presenting reports of PCB2 to the system after constructing a knowledge-base with the reports

of PCB!. The results indicated that the system can cope efficiently with limited changes in

board design. This is one o f the advantages of the system since, in practice, boards are

commonly modified in their design. This point is pursued further in the final chapter.

However, significant deterioration in performance was noted with the final board, PCB3.

Investigations showed that this deterioration could be due to number of reasons such as;
insufficient number of tests to distinguish test-patterns for different faults and lack of
examples.

173

The chapter concludes by describing the required modification to the system in order to
operate in a multiple board environment mentioning among many things further use of

connectivity information.

Although our experimentation is restricted only to a system which creates/uses a separate KB

and RB for each different board style (even if the boards are similar to a certain extent like
PCBi and PCB2), it is recommended in the future to utilize connectivity more by using it to

monitor similarities in different boards and using such information as a guide in sharing
appropriate information from their knowledge-bases. For example, if a new board (which has
a number o f common components and modules with a board which is known to the system)
is introduced. Then the system would be able to recognize the common components and
modules and use the appropriate information already available for the old board in diagnosing
failures in these components with the new board. This is useful since it makes efficient use

o f gained information and is especially significant where insufficient information exist

regarding the new boards (especially at earlier stages of introducing the board to the system).

The above suggests the sharing of information regarding different boards in a controlled

manner, decided by connectivity. In this way, the system can detect components which are

replaced in one o f the boards by others corresponding ones. This will avoid the deterioration

in performance caused by such replacements, as it was noted when diagnosing PCB2 reports
with a knowledge-base initially built with reports of PCBj.

The system could be used in diagnosing a limited number of boards. This is due to the difficulty
of obtaining information (failure reports + Design information) about PCBs, since companies

restrict the access of their designs and their operation strategy to the outside world. However,

it will be interesting to examine the performance of the system with boards and test data

produced by different companies in the future in order to compare the performances.

174

CHAPTER TWELVE
FINAL CONCLUSIONS AND SUGGESTIONS FOR THE FUTURE

12.1 Sum m ary and M ain Conclusions o f the Thesis

The main goal of the work described in this thesis was to enable the utilization of the failure
reports in the data, and those continuously produced by the ATEs, in the actual failure
diagnosis procedure. The aim being to increase the efficiency of the diagnosis procedure on
the factory floor by avoiding the loss of information, since technicians cannot remember

failure cases specifically. In addition, the utilization of the data in the diagnosis process can
reduce the diagnosis time by avoiding the delay introduced by manual probing of the failed

PCBs.

Initially the use of a standard machine learning technique was investigated in processing the

reports. The technique analyses the failure reports to produce a decision tree. The analysis is
performed by clustering then making generalizations by similarity detection. However, this

technique had a number of drawbacks which questioned its suitability for a diagnosis system

based on the analysis o f test data used here. One of these drawbacks is the failure of the

technique in completing the decision tree when an identical report is shared by more than

one of the faults. Due to the common occurrence of such reports in the data a technique was
sought which could deal with these cases automatically with the rest of the data and does not
require their manual isolation/manipulation (by test engineers) as with the construction o f a
decision tree. Another drawback is in the diagnosis procedure which involves searching down

the tree for a recognition function which includes the report. Our experimentation with this

technique revealed that this procedure is effective only if the report is identical or slightly

different from the example reports used in constructing the tree. Furthermore, the tree could

be out of date with the introduction of new examples and will require re-building. This is not

practical since the construction of the decision tree takes a relatively long time (this will
increase with the increase in the number of examples) and hence cannot be carried out regularly
during diagnosis.

The decision tree technique, mentioned above, is based on identifying different groups of
faults from each other by developing a recognition function for each group by comparing it
with the other groups (chapter four). The technique operates efficiently if the examples of
the different groups are well separated from the examples of the other groups (i.e. if the
boundaries of the groups are well defined) by producing recognition functions which are good

generalizations of their respective groups. However, if the boundaries of the groups are not

175

well defined then the generalization will result in recognition functions which could classify

examples of certain groups with others. A number of fault groups in the data could be con
sidered as examples of the latter case since a number of their example reports closely resemble

examples in other fault groups. Other cases exist in which identical reports identify different

faults. As mentioned above the technique could not operate with the latter cases and required
their manual separation from their respective fault groups.

Due to the above drawbacks further investigations were carried out in order to look for a

technique which could avoid the above. Investigations carried out on the data revealed that

reports o f a given fault share common sequences of test failures, however, the reports need

not be identical or very similar. In addition, identical (or similar) reports which are common

in more than one fault usually occur with varying frequencies in these faults. This could be
used in deducing the most likely fault if a similar report is encountered.

The results above lead the way to the development of a technique which makes use of the
above features in the data. The technique is based on automatically generating a fault dic
tionary in which each test report in the data is stored, together with its identified fault, in a

knowledge-base. When a new test report is presented, the knowledge-base is searched for a

sequence of tests which match the test(s) in the new testreport. The knowledge-base is updated

as each new fault is confirmed by the technician. This approach can make use of various
heuristics in matching the test(s) in the report with the ones already in the knowledge-base.
Initial results obtained with such a system were encouraging in that 65-70% of the faults in
the data were diagnosed correctly. For this reason the technique was developed as a basis for
a fault diagnosis system.

The results obtained with the diagnosis system above revealed that about 20-25% of the faults

in the data could not be identified (incorrectly matched or no matches are found) with about

5-10% being identified as least likely suspects (such as 4th position, 5 th . .etc). Analysis of

the results revealed that a proportion of the latter cases could be recovered by using circuit

connectivity information in the diagnosis procedure. In this thesis, a number of heuristic

techniques were developed which utilize connectivity information. Such techniques proved
especially useful in the following cases :

1. W here the failure o f multiple components/modules are indicated in the report.

2. Where diagnosis using matching cannot discriminate among a number of suspect
faults.

176

In order to incorporate connectivity information into the system a number of routines were

developed for introducing and manipulating connectivity information.

A small proportion of the faults, which could not be recognized by matching, were recovered
by carrying out a more detailed matching (inexact matching) especially at early stages in the

diagnosis procedure when the information in the knowledge-base is not complete. Our
investigations revealed that this type of matching could prove especially useful at early stages

of introducing reports of a new board to the system, however, as information is added to the
knowledge-base its effect reverses and normal matching must be resumed.

For the system to perform effective matching a number of matching rules were developed
and were stored in a table like rule-base for fast access. These rules were developed manually
by studying the output of the system. A number of techniques were developed in this thesis

which attempt to enable the system to learn these matching rules and re-construct its rule-base

automatically. The results obtained indicated that the system can construct its rule-base to a
state similar to that of the manually tuned system. However, one of these techniques improves

on the manual system by learning faster and in a more uniform manner.

The performance of the rule learning techniques developed were compared to that obtained

with a standard concept learning algorithm, ’version spaces’. However, the algorithm could
not cope with the large concept space covered by the matching rules which required manual
intervention such as restricting learning to a limited number of reports and excluding noisy
examples. The techniques developed were based on mimicking the procedure followed by a
human expert in developing manual rules. This procedure allows the techniques to use some

heuristics (which are based on experience). These heuristics equip the techniques to deal with

noise and the large data space. Another advantage of the heuristic techniques is the possibility

o f initialisation. This could be performed by providing a previously prepared rule-base which

the system can use initially. During its operation the system can adjust some of these rules

if they contradict the majority of the encountered examples. This is useful to improve system
performance at early stages.

Finally, the performance of the system was investigated with additional board styles. The
investigations revealed that the performance of the system is dependent on the number of
examples in the data and the test information available in the report with respect to each board
style.

177

12.2 A Final Comment on System Performance

Initial results obtained with the diagnosis system (using matching alone) indicated that

approximately 65-70% of the faults in the data were identified correctly. Additional
improvements to the system (such as the utilization of circuit connectivity information and
the use of inexact matching) only improved specific cases which are considered a minority
in the data. For this reason, no significant improvement occurred on the overall performance
of the system (around 70% of the faults identified as the best match).

The results obtained in this thesis agree with that mentioned in [EVA91], which is a report

based on a number of Al-based diagnosis systems used in industry. The report mentions that

: "It is possible to approach 90% fault coverage with a rule-based system but it could take up

to three man years to reach that level. The first 75%, say, could be achieved with around 200

rules, but to achieve the extra fault coverage would probably need around 2000 to 3000 rules.
And even then, there could be internal conflicts with such a high number of rules - given
different diagnosis for particular faults".

Although the above report considers traditional rule-based systems which are developed by

manually incorporating rules (developed by experts) into the system, it could also apply to

the system developed here. Since the heuristic matching rules can successfully identify the
majority o f the cases in the data, additional modifications can only recover certain minority
cases in the data. In fact, the analysis of the data (such as that carried out in chapter six)
indicate that a number of such minority cases exist in the data which includes most of the

20-25% not identified as the best match. The analysis also indicated that such cases occur

regularly, but less frequently than the majority cases. This explained the lack of sufficient

examples for a number of these minority cases which prevented their analysis and hence their

treatment. It can be deduced from all of the above that a number of modifications may be

required (in the form of connectivity heuristics, matching heuristics, or a heuristics based on

different approaches) to treat each of the minority cases in the data. For other cases, a relatively
long time may be required to collect sufficient examples for the matching procedure to be
able to identify these cases.

In addition to the above, the data includes a number of inconsistent cases, referred to as noise.

These are thought to be due to errors by the diagnostic technicians and/or some other
ambiguous reasons. If the ATE input is directed to the system (instead of passing through the
technician), then technician errors (such as, incomplete test reports and wrong diagnosis)

178

could be eliminated. Currently, the system installed at the company (its operation manual is
included in appendix E) can accept only a limited number of the boards manufactured in the

company directly from ATEs.

12,3 Comparison of Standard and Heuristical Techniques

In a number o f occasions in this work, standard machine learning techniques were employed
so that their performance could be compared with corresponding heuristical techniques

developed specifically for the different aspects of the diagnosis problem here. Such a com

parison was made with the decision tree technique and the fault dictionary based technique

and later during the automation of the rule-base where the version space algorithm was

compared with both statistical and statistical-ranges techniques. In both cases the heuristical
techniques showed an improvement over the standard ones. This was mainly due to the
inability of the latter techniques in coping with the relatively large data space (or example
space) in both o f the cases. The data space is the set of all possible failure reports which
includes all possible failure test patterns for all the possible faults which could occur.

The comparison of this section will concentrate on the decision tree technique and the fault

dictionary based technique because these were intended for the backbone of the system since

they can achieve learning and diagnosis. Some of the differences between the two techniques

had already been mentioned in section 12.1.

The possibility of obtaining a complete data space for our diagnosis problem is remote. This
is because the examples provided in the data are based on actual failure cases on the factory

floor manifested in processes such as manufacturing the components, assembly on boards,

soldering . . etc. Hence failures over certain periods of time are restricted to those which

occur due to a malfunction in one of these processes. In addition, as was noticed from the

data, failures are restricted to some common faults which occur frequently, others which

occur less frequently, but regularly, and those which occur once or twice and do not occur

any more. It was noticed that approximately 20-25% of the components in the circuit have

never failed. Furthermore, it is unlikely to encounter every possible sequence of failed tests
(test-patterns) for each of the faults encountered in the data. In view of the above, obtaining
a complete data space may only be achieved over a relatively long period of time over which
aspects such as manufacturing procedure and/or test procedure could change. In addition, in
a situation such as our diagnosis problem information are introduced to the system pro
gressively as reports are available rather than providing a complete example space at once.

179

The above suggests that the problem requires a technique which can cope with an incomplete
data space as efficiently as possible and can learn progressively (make best use of information

provided as quickly as possible, so that it could be used as soon as possible, without delaying
the system). It is impractical to construct a decision tree during the diagnosis process. This

is because each time a new example is introduced, the tree must be reconstructed with both
old and new examples. This is a lengthy process especially as the number of examples in the
data increases. In contrast updating the knowledge-base in the case of the fault dictionary
based technique is a relatively fast process since updating a single report affects the section
o f the knowledge-base related to the diagnosed fault only.

In addition, during diagnosis in the decision tree technique, the decision tree is searched for

a recognition function which either identifies or does not identify the considered report (in
dicated in boolean terms; True or False). This suggests that approximate identification cannot

be performed i.e. the expression "the report is about 90% recognized by the recognition

function" is invalid. However, such an approximate identification is one of the advantages

of the fault dictionary based technique since initially matching could select a number of

suspect faults, some of which do not have exactly matching test patterns, to the report in
question. Later these are sorted, by the rule-base, according to the quality of their match as

reflected in their corresponding matching scores.

The large concept space covered by the matching rules is also the reason for the limited
performance of the standard machine learning technique represented in the version space

algorithm in comparison with the superiority of the heuristic techniques. Constructing a
rule-base by providing examples covering the whole of the concept space will produce a

better rule-base, however, as with the case of the decision tree technique this could only be

achieved after a long period of time (the time required for encountering all the possible

numeric combinations of the four scores between two faults could be very long). In summary,

The main reasons of the limited performance of the standard techniques as opposed to heu-
ristical ones are the following ;

1. Inability to handle noise (inconsistent examples), hence the need for manual
intervention in separating cases of noise individually.

2. Inability to use heuristics and other parameters. Tracing and manipulating the

accumulative frequency of different cases allows distinguishing between com
mon cases and cases of noise. Once identified each case could be treated
appropriately. Accumulative frequency closely corresponds to the experience

180

factor in humans. The use of frequency and heuristics is the main reason which

enables heuristical techniques to overcome the obstacle introduced by the large

data/concept space in both of the cases above.

3. Being less suitable for situations requiring progressive learning as in the diag

nosis case.

12.4 Originality of Research

The diagnosis procedure of the system developed here is distinct in that the core of the

diagnosis is performed by matching information on the failure report with previously stored

cases. No such diagnosis procedure was found during the literature survey which was carried
out up to the time of publishing [ARS90]. This could be due to the difficulty of obtaining test
data from companies for commercial reasons caused by competition.

A number of heuristical techniques was developed here. These use connectivity information
for recovering cases which could not be isolated using matching alone. Such techniques are

CAT and treating multiple component/module failures as described in chapter seven.

In addition a number of rule learning techniques are developed for learning the matching

rules. These techniques are especially developed to operate on scores produced by the
matching procedure. The techniques are developed to mimic the procedure used by test

engineers in analysing matching scores and developing rules appropriately in order to recover

individual cases. The techniques are based on monitoring frequency of individual cases (the

different conditions imposed by the scores with their corresponding consequence for each

encountered example).

Most of the techniques developed as part of this work apply to any board style as long as the

board is tested by an ATE which produces information which could be matched adequately

by the system. The circuit information regarding each board can be introduced to the system
via the circuit compiler developed here.

The work aimed to develop a general system which could handle different board styles and

is as independent of external intervention as possible. Although, this aim is achieved, a number
of other steps might be required in the future for preparing such a system for commercial use.
Some of these are described in the next section.

181

Finally, as mentioned in section 12.2, approximately 70% of the faults in the data are identified

successfully. This performance matches that of other systems which mainly perform their

diagnosis by using circuit specific information [EVA91]. In such systems, circuit information
is obtained by simulation or asking the experts (see chapter two). Both of the previous tasks

are lengthy and complex (for example, simulating a circuit as complex as the Slac (chapter

three) could last for days). However, the research described in this thesis shows that diagnosis
could be achieved by using simple heuristic matching (with other heuristic techniques

developed here) and yet the performance could match that of systems which use more technical
information.

12.5 System Implementation

The research in this thesis was implemented using the Lisp programming language. In excess
of 7000 lines o f lisp code were developed. These routines include the following:

1. The construction of decision trees and performing diagnosis using these (Approx.
800 lines).

2. The construction of a fault dictionary based diagnosis system which can utilize

different matching techniques; i.e. exact and inexact, with different test para

meters (Approx. 1500).

3. The development of different rule-learning techniques (Statistical, Statistical-
Ranges, Version Spaces) which include mechanisms for rule execution and
update procedures (Approx. 1000).

4. Circuit compilation routines for introducing circuit connectivity information to

the system (Approx. 800).

5. The development of a number of techniques which exploit connectivity infor

mation for improving diagnostic performance (Approx. 1400)

6. Data analysis tasks for identifying characteristics of the failure reports in the data

(or only that of individual groups). Examples of such tasks include finding out
the different conditions under which a given test (or a group of tests) can fail,
identifying the range of voltage (or current) measured values for a given test
(Approx. 1500).

7. Utility programs for analysing the diagnostic performance of the system in
response to the different improvement attempts investigated. These include
statistical information regarding the diagnostic performance at different stages

182

of building a knowledge-base. Routines were developed for constructing bar

charts and putting performance results in a form which could be used by the

different packages, available in the department, for more thorough examination

o f the results (Approx. 800)

The routines above do not include the modifications performed in order to enable the system
to be used in the company. These include tasks such as building a menu interface for the
users, interfacing the system with the ATEs in the company, and adapting a new form for
information storage which is consistent with the standard format used in the company (these
in turn total up to 4000 lines, 500 in C and the rest in Lisp). These are not included in this

thesis since they do not contribute to the research work in it. Appendix E describes the above
in greater detail.

The use o f a lower level programming language (such as C) would have increased the amount

of time required for developing the routines mentioned above. This would have decreased
the amount o f research by an increase in the tasks involved in programming. For example,
by considering aspects such as variable declaration and memory allocation.

Frame-based tools, such as expert system shells, were an alternative to be used in this work,
however, the main reason for not using such tools is that they were not available.

Lisp is available in our department and offers a reasonable alternative to frame-based tools.
It also offers the flexibility of a programming language in developing general routines such

as connectivity analysis and circuit compilation, statistical analysis,...etc. This is in addition

to being able to develop traditional AI based systems. Using Lisp meant choosing a more

computationally expensive method (since tasks such as memory allocation and garbage

collection are performed automatically). In our research, however, up to 15 Megabytes of
RAM could be exploited and hence the use of lisp could be afforded (this did not effect the

diagnosis time o f the developed techniques, which usually takes seconds). In addition, The

flexibility o f dynamic Lisp data structures and the interpreter means that Lisp is a good
language for prototyping.

12.6 Suggestions for Future Work

This section proposes a number of tasks which could be carried out in order to increase the

efficiency of the system developed here. The tasks aim to create a more independent system
able of performing a better diagnosis.

183

12.6.1 Automatic Disposal of Old Data

Currently, the system accumulates all the data in its knowledge-base. However, it is possible

that some o f the information in the knowledge-base might get out of date especially in the
case o f some temporary faults appearing in one (or more) of the board batches due to a
malfunction in processes such as manufacturing, assembly, soldering,. . . etc. Such faults

vanish after adjusting the responsible process and might not occur again.

It is recommended that a mechanism be developed for treating data associated with such

faults in the system. It is suggested that this is accomplished by adding a date-related parameter

in the knowledge-base, such as the date at which a given test-pattern was last encountered in
a given fault. This requires the modification of the test-pattern structure within a fault-entry
(see section 5.2.1) such that an additional field, representing the date (date and time), is added.
Each time a known test-pattern is encountered, its frequency count will be incremented and

the date will be updated. For a new test pattern, however, a whole test-pattern structure must

be created (with a frequency count of 1 and the date being the current one).

Later, test-patterns in the knowledge-base could be removed if they have not been encountered

over a certain period of time. The duration of such a period must be investigated which may

suggest monitoring the actual manufacturing and diagnosis procedure in the factory floor to

obtain a realistic time period.

A more efficient procedure could be transferring the data (instead of removing them) to
another location (file) from which they could be recalled if the fault happens to appear again

(or for analysis purposes).

Another aspect o f the test-pattern structure which need to be investigated is the frequency

count. Currently this field is incremented with each test-pattern encountered. It may be

necessary to normalize (i.e. reduce to a certain level) the frequency counts regularly. This

will decrease the effect of patterns which occurred frequently in the past and will prevent

them from effecting new patterns. Again this requires further investigation in order to find

the best conditions under which normalization should be executed and how (i.e. whether to

affect all the test-patterns in the knowledge-base simultaneously or only those which grow
larger relative to other test-patterns).

W ithout normalization some test-patterns may be very large such that even if they occur no
more their effect may remain dominant. However, it must be noted that normalization may
not be required if the period at which old test-patterns are removed from the knowledge-base
is relatively short since the above dominant patterns will be removed.

184

It is thought that the period at which old test-patterns should be removed from the

knowledge-base would be relatively long (weeks or months depending on the procedure at
the company). For this reason a limited amount of normalization may be required.

12.6.2 Automatic Selection of a Match Parameter

As seen in the previous chapters matching only uses a limited number of the test parameters
provided on the report. Investigations carried out in chapter seven revealed that the use of

test names only provides the best results.

The investigations above were carried out by instructing the system to use a specific test

parameter (see section 3.3) in the matching procedure and examining the results over a number
of trials. It is more effective if the system can carry out such investigations independently,
as more data are available, and deduce the parameter which provides the best results. This is
especially significant for a system which handles a number of board styles tested by different

ATEs. The information for different boards may be different and hence the bestparameter(s),
for matching, must be chosen.

It is recommended that a mechanism be developed which carries out matching separately
with each parameter (or sequence of parameters) and compares results over a number of trials

for the different cases. Such investigations could be carried out at a stage when the system

is off-line (durations when not in use e.g. at night). The procedure could be performed each
time certain amount o f reports are added to the ones already accumulated for a given board.

The system is already developed such that all the information on the report is stored (in

separate fields). In addition, matching implemented such that any of the fields could be used.

Only the mechanism of automation is required for the above.

12.6.3 Investigating the Use of Neural Networks

Neural Networks [RIC91] proved successful in areas such as image processing and speech

recognition. In both these areas most of the problems are cases in which a large number of

examples exist and neural networks try to adapt internally (mainly by adjusting the weights
on the network connections) to the specific features in the examples. With each new example
the network will adjust itself such that the new case is included.

The process o f learning from examples is performed in both the decision tree technique and
the fault dictionary based technique. Neural networks could be trained with the test sequences
of the different faults in the data and the diagnosis performance using such a network could

185

be compared to the techniques above. It must be noted that for this to be achieved, the data

may require some transformation/coding to a form more adequate for manipulation by a

neural network.

In addition, neural networks could be employed in order to learn the matching rules (section
5.2.3). Matching scores could be fed into the inputs of the network and the network could
adapt itself by learning from the scores of all the reports in the data. The performance could

be compared with standard and heuristic techniques.

12,6.4 Continuation of Analysis with New Data

Most of work carried out in this thesis was based on the analysis of the data. These analysis

revealed groups of examples which share common features. By both manual analysis and
developing programs to analyse some of these cases different heuristics were developed to
detect and deal with similar examples when encountered by the system in the future.

However, a number o f other cases exist which currently have only few examples in the data
hence analysis could not be carried out effectively. It is necessary to carry out such analysis

as more data are provided in order to treat them if possible.

An example o f a case where more examples are necessary is the investigations to incorporate

measured parameters in the matching since currently the number of values for cases which
cannot be recovered with current way of matching is not enough. Since these are the cases
where additional means are necessary for improvement, more examples must be collected.

More examples are also necessary to carry out further experiments with the diagnosis of

multiple board styles. Furthermore, it is useful to test the performance of the system with
data and boards obtained from other sources.

186

APPENDIX A

DATA FO R BIASING TH E DECISION TREES

This appendix reveals the data used in deciding the initial specifications of the decision trees
discussed in chapter four. Once the initial specifications were chosen (in terms of minimum

or maximum sparseness and the structure of the tree being symmetrical or non-symmetrical),
they were used in constructing the decision trees with the real data.

These data are relatively small in size and contain only eight faults which are represented by

faultl,fauU2,fault3,...,fauU8. Associated with each fault are a list of dummy test reports,

which contain a number of failed tests. A single failed report is presented in the form :

(fno te s t l tests2...... etc.)

no represents the fault number

The rest o f the report contains a number o f failed tests which are represented by one of the following symbols:

tO t l , t 2 1 3 t 4 1 5 t 6 1 7 1 8 1 9 sO s i s 2 s 3 s 4 s S s 6 s 7 s 8

A report which caused the failure o f f a u l t 1 and consist o f the failure of 3 tests, which are t4 , t5 ,and t7 is presented

in the following form:

(f l t 4 t 5 t 7)

N o te

The tests which did not fail are not shown in the report.

The following represents the faults with their corresponding reports:

f a u l t l :

(f l t3 s i)

(fiatisi)
(f l t3 s i)

(f i s i)

f a u i a :

(f 2 t 7 s 2)

(f 2 t 7 s 2)

(J 2 t 7 s 2)

187

(f3 tO s 3)

(/ 3 t 0 s 3)

(f 3 t 0 t 9 s 3)

f a u l t 4 :

(f 4 t 6 s 4)

(f 4 1 6 s 4)

f a u l t s :

(f5t2s5)

(f 5 1 2 s5)

(f S a s S)

f a u l t 6 :

(f 6 t l s 6)

(f 6 t l s 6)

(f 6 t l t 8 s6)

(f 6 t l t 8 s 6)

(f 6 t l s 6)

f a u U 7 :

(f 7 t 9 s 7)

(f 7 t 9 s 7)

(f 7 t 9 s 7)

f a u l t 8 :

(f 8 t 6 s 8)

(f 8 t 6 s 8)

faults:

The above data were used to construct both a symmetrical and non-symmetrical trees. Each

tree was in turn constructed with a minimum and a maximum sparseness. Testing the trees

was performed by subjecting them to eight examples of each of the above faults. Examples

of each fault were implemented by using all or some of the characteristic tests of the fault.

In some cases some additional tests were also added to the examples. This implementation
is followed in order to make the examples above resemble those in the actual data.

The rationale in using the dummy data is in their simplicity in comparison with the real data.

A lthough. Using the dummy data, trees could be produced faster and easier. The simplicity
o f the data will assist in producing a more efficient tree (since it is easier to understand the
procedure of identifying each of the trial examples and spot any wrong identifications).
Additional detail, regarding the above, could be found in chapter four.

188

APPENDIX B
TH E M ANUAL RULE-TABLE

s p G F SR

> > > > OK

> > > = OK

> > > < OK

> > = > OK

> > = = OK

> > = < OK

> > < > OK

> > < = OK

> > < < OKifCSjF*)

> = > > OK

> = > = OK

> = > < OK

> - = > OK

> = = = OK

> = = < OK

> = < > OK

> = < = OKif(S2)

> = < < OKif(S2F2)

> < > > +

> < > = +

> < > < +

> < = > +

> < = = +

> < = < +

> < < > +

189

> < < = +

> < < < +

= > > > OK

= > > = OK

= > > < OKif(F2)

= > = > OK

= > = = OK

= > = < OKif(F2)

= > < > OKif(S2)

= > < = OKif(S2)

= > < < OKif(S2F2)

= = > > OK

= = > = OK

= = > < OKif(F2)

= = = > OK

= = = = OK

= = = < ~OK

= = < > +

= = < = ~OK

= = < < ~OK

- < > > OKif(P2)

= < > = OKif(P2)

= < > < +

= < = > +

= < = = ~OK

= < = < O K

= < < > ~OKif(F7)

= < < = ~OK

= < < < ~OK

190

< > > > +

< > > = +

< > > < +

< > = > +

< > = = +

< > = < +

< > < > +

< > < = +

< > < < +

< = > > +

< = > = ~OKif(S2)

< = > < +

< = = > +

< = = = ~OK

< = = < ~ 0K

< = < > ~ 0 K

< = < = ~ 0 K

< = < < ~ 0 K

< < > > -OKifCSjF*)

< < > = ~ 0 K

< < > < ~ 0 K

< < = > ~ 0 K

< < = - ~ 0 K

< < = < ~ 0 K

< < < > ~ 0 K

< < < = ~ 0 K

< < < < ~ 0 K

191

refere to the relationship of the corresponding matching score (section 6.2.2) in the two test-patterns

presented to the rule-base. The relationships of each set of scores in a given table entry define

con d ition a l for the main rule (section 6.2.3.2) defined by the table entry.

SR

represents the secondary rule o f the main rule.

S.P.G.F

O K

The two test-patterns are in the correct order.

~ O K

The two test-patterns are in the wrong order, swap them.

+

Add the scores of each test-pattern and compare the total. The correct order is if the test-pattern
with the largest total is first.

O K if (X)

The two test-patterns are in the correct order as long as the following is satisfied:

Xpatffml~Xpatttm2 i

X is one o f the matching scores
i an integer value deduced by inspection of the data

~ O K if (X)

The two test-patterns are in the wrong order as long as the following is satisfied:

Xpatteml- p̂attem2 ^ i

This is the opposite case o f the previous one.

O K i f l x y)

The two test-patterns are in the correct order as long as the following is satisfied:

p̂atlcml~̂ panrm2 <̂— 1 and
Ypatteml--̂ pattem2 ^ J

X and Y are one o f the matching scores

i and j are integer values deduced by inspection of the data

~ O K i f (x y)

The two test-patterns are in the wrong order as long as the following is satisfied:

p̂atteml“̂ pattem2 ^ i 2nd
Yp,ttrml~ Ypattrm2 ^ J

This is the opposite case o f the previous one.

192

APPENDIX C

IN V ESTIG A TIN G TH E USE O F CONNECTIVITY ANALYSIS TABLES
W ITH EX TRA CTED EXAM PLES FRO M TH E DATA

This appendix illustrates the use o f the connectivity analysis tables (see chapter eight) with examples extracted
from the data The examples could not be improved with the matching rules since they have identical scores

(and in some cases the scores are close).

The case o f each example is represented in a separate case (see below). Some o f the cases contain detailed

explanation others have small comments since the procedure followed is the same, a number of symbols are

used to assess the result of applying connectivity analysis and are listed below:

R F ull R ecovery

N N o R ecovery

I Im proved, however, true fa u lt still not in N o .l position.

C Confirm ed, True fa u lt is a lready in the N o .l position. This is purely accidetal, since it depends

on the order the fa u lts are m et by the matching algorithm.

A s m ensioned in the prev iou s section, Connectivity analysis in CAT looks a t the fo llow ing between each tw o

com ponents (say; x & y) :

i . M in connectivity relationship between x and y are used FIRST: e.g, the type o f connection exsts

betw een the tw o components:

d irec t (d),

p a sse s thr. one com ponent (1),

p a sse s thr. tw o com ponents (2),

..... N (N).

(Initially w e look a t the m ost d irect (shortest) path between x a n d y).

i i . Infom ation such a s how m any d irect paths, H ow m any indirect pa th s (and the number o f

com ponents p a sse d through) are considered i f (i) d id not provide enough to discriminate.

N.B:

The entries in the table were made by observing the connections on the circuit diagram.

193

CASE::1

S u spect L is t :

(534 (44 (5 9 9 1)) (494 (5 9 9 1)) (514 (5 9 9 1)) (54 (5 9 9 1)) (534 (5 9 9 1)) (542 (5 9 9 l) j (541 (4 7

9 1)) (214 (4 7 9 1)) (31 (5 6 5 1)) (114 (5 6 5 1)) (74 (4 3 2 4)) (394 (3 5 9 1)) (334 (3 5 9 1)) (504 (2 3

0 1)) (35 (5 1 0 1)))

CAT:

1 44
1 1 d d 3

4 9 4 2 2 2 2

514 2 2 X

5 4 1 X

5 3 4 X

542

order dedu ced fro m above is 44 54 534, w ith the last two being in any order.

CA SE:;2

S u spect L i s t :

(500 (516 (1 9 9 3)) (506 (1 9 9 3)) (266 (1 9 9 2)) (496 (1 9 9 1)) (76 (1 9 9 1)) (456 (1 9 9 1)) (56 (1 4

4 1)) (256 (1 4 4 1)) (566 (1 4 4 1)) (46 (1 4 3 1)) (540 (1 2 01)))

(R)
The dispute here is about the position s o f 5 1 6 and 506 since they both have the sam e scores. Although the

com ponents proceed in g them are different in the overall scores,however, they share the sam e f ir s t 3 scores

which a re m ajor scores, when these fau lts 2 6 6 496 76 456 are used to to determine which o f 5 1 6 an d 5 0 6 is

the best, connectivity analysis show s b y a narrow margin that 506 is a better choice. This is expected since the

com ponents are closely connected to each other and are both relays which perform m any tasks com m only

CA SE:: 3

S u spect L is t :

(536 (536 (1 9 9 1)) (406 (1 9 9 1)) (446 (1 9 9 1)) (46 (1 4 2 1)))

15 36 1 2 \s 3 6 i 2 d \5 3 6 1 3 22 d l

406 2 406 2 d 406 24 d2 => 5 M 1 3 2 2 d l (R)

446 => 446 1 = > 446 11 => 406 1324d2

m 46 m 46

The case above is interesting, since it is so lved in THREE iterations o f using connectivity.

194

1 . U s in g o n ly th e c o m p o n e n ts w ith th e sa m e s c o r e c o n n e c tiv i ty d id n o t d is tin g u ish b e tw e e n 5 3 6

a n d 4 0 6

2 . In c lu d in g 4 6 g iv e s e q u a l c o n n e c t iv i ty s c o r e s to b o th s in c e 4 6 i s c o n n e c te d d ir e c t ly to b o th

3 . H o w e v e r w h e n c o n s id e r in g a l l th e c o n n e c tio n s b e tw e e n e a c h 2 c o m p o n e n t in s te a d o f ta k in g

th e m o s t d ir e c t c o n n e c tio n . 5 3 6 h a s c lo s e r c o n n e c tio n s w ith a l l th e r e s t th a n 4 0 6 . (s m a lle r

n u m b e r s = > m o r e in te rc o n n e c tio n s) .

CASE::4

S u s p e c t L i s t :

(4 0 (5 3 0 (3 9 9 2)) (4 0 (3 9 9 1)) (5 1 0 (3 9 9 1)) (5 4 1 (3 9 9 1)) (2 1 0 (3 9 9 1)) (5 4 2 (3 7 7 1)) (5 0 (3 7 6 1))

(4 9 0 (3 7 5 1)) (7 0 (3 2 1 4)) (3 9 0 (2 6 9 1)) (31 (2 4 5 1)) (3 3 0 (2 4 5 1)) (1 1 0 (3 3 4 1)) (5 0 0 (1 2 0 1)) (3 5 (3

101)))

A lth o u g h th e f i r s t s c o r e h a s a f r e q u e n c y -C o u n t d iffe r in g b y 1 f r o m th e o th e r s th e s c o r e s c o u ld b e c o n s id e r e d

a s s im ila r . C o n n e c t iv i ty r e v e a ls th e tr u e f a u l t a s N o l .

CA SE::5

S u s p e c t L i s t :

(5 0 4 (5 0 4 (2 9 9 2)) (2 6 4 (2 9 9 2)) (7 4 (2 9 9 1)) (2 5 4 (2 9 9 1)) (5 1 4 (1 4 9 3)) (5 4 (2 4 4 1)) (4 5 4 (1 4 9 1))

(4 9 4 (1 3 4 9)) (5 4 1 (1 3 4 1)) (4 4 (1 3 3 1)) (5 4 0 (1 2 0 1)))

{C}

C o n n e c t iv i ty p r o v id e s c o n f irm a tio n r a th e r th a n c h a n c e a s a b o v e s e e p a p e r

CA SE:;*

S u s p e c t L i s t :

(3 9 7 (4 7 (2 9 9 1)) (3 9 7 (2 9 9 1)) (3 3 7 (2 9 9 1)) (4 9 7 (2 6 8 1)) (5 3 7 (2 4 5 2)) (5 7 (2 4 5 1)) (5 4 2 (2 4 4 1))

(1 1 7 (2 3 3 1)) (5 1 7 (2 4 1 1)) (5 4 1 (1 4 9 1)) (7 7 (1 4 8 1)) (31 (2 3 3 1)) (2 1 7 (1 3 6 1)) (4 4 7 (2 2 2 1)) (3 5 (2

101)))

C A T .

1 47
d d d 1

3 9 7 1 2

3 3 7 1

4 9 7

C_AS E ;;7

{ N }

S u s p e c t L i s t :

(4 4 (5 4 (3 9 9 4)) (4 4 (3 9 9 1)) (3 1 4 (3 9 9 1)) (4 0 4 (3 5 4 1)) (4 5 4 (3 4 3 1)) (3 5 (3 1 0 1)))

195

5 4 d 1

4 4 d

3 1 4

m

CASE::8

S u s p e c t L i s t :

(5 3 2 (5 1 2 (3 9 9 1)) (5 4 1 (3 9 9 1)) (5 3 2 (3 9 9 1)) (2 1 2 (3 9 9 1)) (4 2 (3 7 7 1)) (5 4 2 (3 7 7 1)) (5 2 (3 7 6 1))

(4 9 2 (3 7 5 1)) (7 2 (3 2 2 4)) (3 9 2 (2 6 9 1)) (31 (2 4 5 1)) (5 0 2 (1 2 0 1)))

C A T :

| 5 1 2 d 2 2

5 4 1 3 1

5 3 2 1

2 1 2

A c c o r d in g to a b o v e a p o s s ib le o r d e r f o r th e f a u l t s w o u ld b e :

(5 1 2 d 2 2) (5 4 1 d 3 1) (5 3 2 1 2 3) (2 1 2 1 1 2)

CASEi;?

S u s p e c t L i s t :

(4 9 1 (4 9 1 (1 9 9 1)) (5 0 1 (1 9 9 1)) (71 (1 9 9 1)) (41 (1 4 6 1)) (2 6 1 (1 4 4 3)) (5 1 (1 2 2 1)) (5 4 0 (1 2 0 1)))

| 4 9 1 d 1

5 0 1 2 d

71

CASE:: 10

S u s p e c t L i s t :

(5 1 7 (5 1 7 (1 9 9 2)) (5 0 7 (1 9 9 2)) (2 6 7 (1 9 9 2)) (4 9 7 (1 9 9 1)) (4 5 7 (1 9 9 1)) (2 5 7 (1 4 5 1)) (7 7 (1 4 2 1))

(5 7 (1 2 2 1)) (5 4 0 (1 2 0 1)))

C A T :

196

| 5 1 7 d d 2 X

5 0 7 1 1 11 X

2 6 7 3 3 X

4 9 7 X

4 5 7

{ C }

th e f a u l t w i th tw o d i r e c t c o n n e c t io n s i s 5 1 7 p r o b a b ly f o l lo w e d b y 5 0 7 w ith (d l l 1 1) a n d o th e r s to f o l lo w

w h e r e n i s a n u m b e r : M e a n s n c o m p o n e n ts s e p a r a te th e tw o c o m p o n e n ts w ith th e c o n n e c tio n p a s s in g th ro u g h

th e n c o m p o n e n ts

tw o n u m b e rs in d ic a te tw o c o n n e c tio n p a th s e x is t b e tw e e n th e tw o c o m p o n e n ts , e a c h h a v in g s o m e n u m b e r o f

c o m p o n e n ts s e p a r a tin g th em .

o u r d e c is io n g iv e s p r io r i t y to th e n u m b e r o f d ir e c t c o n n e c tio n s th e o th e r a r e b a s e d lo g ic a n d s u b je c t to

e x p e r im e n ta tio n .

CASE::11

S u s p e c t L i s t :

(2 5 1 (5 1 (2 9 9 1)) (2 5 1 (2 9 9 1)) (5 1 1 (2 6 5 2)) (4 1 (2 6 5 1)) (3 6 (2 6 5 1)) (5 0 1 (2 6 4 1 5)) (4 3 1 (2 3 2 3))

(3 1 (2 4 2 1)) (7 1 (2 1 1 4)) (5 3 1 (2 1 0 1)))

C A T :

\ SI
2 2 d 1 1

2 5 1 1 d 1 d

5 1 1 1 1 d

4 1 1 d

3 6 d

5 0 1

{R}

A lth o u g h c o n n e c t iv i ty a n a ly s is s h o w s th a t m o s t o f th e c o m p o n e n ts a r e c o n n e c te d to 5 0 1 , i t s o u ld b e r e m e m b e r e d

f r o m p r e v io u s c a s e s th a t w e u se th e f a u l t s w ith r e la t iv e ly (c o n v in s in g ly) c lo s e s c o r e s o n ly to s h o w w h ic h o f th e

tw o f a u l t s w i th b e s t id e n tic a l m a tc h in g s c o r e s i s th e m o s t d e s e r v a n t o f th e N o l p o s i t io n , s in c e s o r t in g a c c o r d in g

t o m a tc h in g a lr e a d y d e c id e d th e p o s i t io n o f th e o th e r s a n d w e u se c o n n e c tiv i ty to ch a n g e p o s i t io n o f th e id e n tic a l

f a u l t s w i th m a k in g le a s t d is tu r b a n c e p o s s ib le to th e m a tc h in g d e c is io n , s in c e i t i s r e l ia b le (s in e 6 0 % d ia g n o s is

i s a c h iv e d u s in g m a tc h in g o n ly) .

197

CASE:: 12

S u s p e c t L i s t :

(5 1 (1 5 1 (1 9 9 1)) (51 (1 9 9 1)) (3 1 1 (1 9 9 1)) (4 5 1 (1 3 1 1)) (41 (1 2 1 1)) (71 (1 1 0 1)))

| 1 5 1 d 1

5 1 m u

3 1 1

b o th 1 5 1 a n d 5 1 h a v e tw o d ir e c t c o n n e c tio n s to th e m a n d a p a th w h ic h p a s s e s th r. o n e c o m p o n e n t J io w e v e r ,th e

n u m b e r o f su c h p a s s e s a r e m u ch m o r e in 5 1 m a k in g i t th e n o l c o ic e . 3 1 1 h a s n o s in g le d ir e c t h e n c e i t is n o t a

c a n d id a te f o r N o l p o s i t io n .

CASE;; 13

S u s p e c t L i s t :

(5 6 (4 9 6 (7 9 9 1)) (5 6 (7 9 9 1)) (5 3 6 (7 9 9 1)) (4 6 (7 8 7 1)) (31 (7 6 6 1)) (5 4 1 (5 6 9 1)) (2 1 6 (5 6 9 1)) (7 6

(7 4 2 1)) (3 9 6 (3 4 9 1)) (5 1 6 (2 3 9 2 2)))

C A T :

I 4 9 6 2 2 1 2

5 6 1 d d

5 3 6 d 1

4 6 d

3 1

{R}

* T h e d is p u te i s a b o u t th e p o s i t io n o f : 4 9 6 5 6 5 3 6 s in c e T h e r u le s c a n n o t d is t in g u ish a m o n g

e x a c t m a tc h e s (R u le s d e te rm in e b e s t M a tc h lfa u lt b e s t o n th e m a tc h in g s c o r e s o n ly , i f th e se

a r e e q u a l th en th e re i s n o w a y o f d is c r im in a tin g a m o n g fa u lts) .

* C o n s tr u c t in g th e C A T f o r o n ly th e 3 g iv e s n o su ff ic ien t in fo rm a tio n to d is c r im a n a te . H e n c e ,

T h e F a u lts w ith th e N e x t h ig h e s t s c o r e s a r e u s e d T o d is c r im in a te a m o n g 4 9 6 5 6 5 3 6 (th is is

im p o r ta n t, th e s e f a u l t s w i l l n o t b e c a n d id a te s f o r th e N o l p o s i t io n s in c e th e R u le s a lr e a d y

d is t in g u is h e d th e m f r o m th e o th e r s) , h o w e v e r , th e y w i l l o n ly b e u s e d to g e t a c o n f id e n t

c o n f irm a tio n a b o u t th e p o s i t io n o f th e 3 c o n te n d e r s f o r N o l .

T h e A S S IS T A N T F A U L T S a r e :4 6 a n d 3 1 s in c e th e s e :

* h a v e th e n e x t h ig h e s t s c o r e s

* th e ir s c o r e s a r e c lo s e t o e a c h o th e r a s s h o w n b e lo w :

s iz I n t(m o s t s ig n if ic a n t s c o r e) a r e id e n tic a l

P r o p in t d if fe re n c e i s 2

198

S ig d if fe re n c e i s 1

f r e q C a r e id e n tic a l

a n d h e n c e a r e c h o se n b o th .

CASE::14

S u s p e c t L i s t :

(5 3 7 (4 9 7 (6 9 9 1)) (5 3 7 (6 9 9 1)) (4 7 (6 8 7 1)) (31 (6 6 6 1)) (5 4 1 (4 6 9 1)) (2 1 7 (4 6 9 1)) (5 1 7 (2 3 9 1 4))

(3 9 7 (2 3 9 1)) (7 7 (4 2 1 1)))

C A T :

| 4 9 7 2 1 2

5 3 7 d 1

4 7 d

3 1

m

5 3 7 h a s a d ir e c t c o n n e c t io to i t f r o m th e o th e r g o o d q u a lity m a tc h e s f a i l e d c o m p o n e n ts , w h e r e a s ,4 9 7 d o e s n o t.

S in c e , d is p u te i s a b o u t 4 9 7 a n d 5 3 7 th en c le a r ly 5 3 7 d e s e r v e s T h e N o l p o s it io n .

CASE;;15

S u s p e c t L i s t :

(5 3 0 (5 4 1 (3 9 9 1)) (5 3 0 (3 9 9 1)) (4 9 0 (3 7 6 1)) (4 0 (2 6 7 6)) (3 9 0 (2 6 9 1)) (5 1 0 (1 3 9 1 2)) (31 (3 3 2 1))

(7 0 (3 2 1 1)))

C A T :

| 5 4 1 3 1

5 3 0 2

4 9 0

{RI

E v e n b y ta k in g o n ly 4 9 0 , (s in c e i t i s th e o n ly f a u l t w ith n e x t s c o r e s , th e r e s t w h ic h f o l lo w v a r y in th e ir s c o r e s

a n d a r e n o t c lo s e to 4 9 0 s s c o r e , b u t 4 0 a n d 3 9 0 a r e th e n e x t b e s t) , i t i s c le a r th a t 5 3 0 h a s th e b e s t c o n n e c tio n s

w ith 4 9 0 a n d 5 4 1 th a n th e c o n n e c t io n s o f 5 4 1 w ith 5 3 0 a n d 4 9 0 .

CA SE:: 16

S u s p e c t L i s t :

(5 3 (4 3 (3 9 9 1)) (5 3 (3 9 9 1)) (4 5 3 (3 2 1 1)))

C A T :

199

1 43
d 1

5 3 d

4 5 3

5 3 h a s tw o d i r e c t c o n n e c tio n s , w h ile 4 3 is o n ly d ir e c t ly c o n n e c te d to 5 3 .

CASE::17

S u s p e c t L i s t :

(4 2 (4 2 (1 1 2 1)) (3 1 (1 1 2 1)) (5 3 2 (1 1 1 1)))

{Q
C A T c o n f ir m s c h o ic e w h ic h o th e r w is e d e p e n d s o n o r d e r

CA SE:: 18

S u s p e c t L i s t :

(5 1 7 (5 1 7 (1 9 9 1)) (5 0 7 (1 9 9 1)) (2 6 7 (1 9 9 1)) (2 5 7 (1 4 4 1)) (7 7 (1 4 3 1)))

(Q
C A T c o n f irm s c h o ic e w h ic h o th e r w is e d e p e n d s o n o r d e r

CASE::19

S u s p e c t L i s t :

(2 6 6 (5 0 6 (2 9 9 1)) (7 6 (2 9 9 1)) (2 6 6 (2 9 9 1)) (2 5 6 (2 9 9 1)) (5 1 6 (1 4 9 2)) (4 5 6 (1 4 9 1)) (4 9 6 (1 3 4 3))

(5 4 1 (1 3 4 1)))

C A T .

| 5 0 6 d 1 d

7 6 2 1

2 6 6 2

2 5 6

IR}

A n e x a m p le w h e r e th is te c h n iq u e f a i l s to im p r o v e r e s u l ts s in c e 5 0 6 h a s tw o d ir e c t c o n n e c tio n s w ith th e o th e r s

f a i le d .

CASE::20

S u s p e c t L i s t :

(7 3 (4 9 3 (1 9 9 2)) (7 3 (1 9 9 2)) (5 1 3 (1 9 9 1)) (5 0 3 (1 9 9 1)) (2 6 3 (1 4 4 3)) (4 3 (1 4 6 1)) (5 3 (1 2 2

1)) (5 4 0 (1 2 0 1)))

C A T :

200

| 4 9 3 d 2 1

7 3 1 d

5 1 3 d

5 0 3

m

* T h e p o s i t io n s o f 4 9 3 a n d 7 3 a r e d is p u te d

* T h e a im i s to u se 5 1 3 a n d 5 0 3 .s in c e th e y a r e c lo s e , to d e d u c e w h ic h o f 4 9 3 , 7 3 d e s e r v e s th e N o l p o s i t io n

* U s in g c o n n e c t iv i ty i t c a n b e a r g u e d th a t 7 3 i s a b e t te r c h o ic e (s e e C A T)

201

APPENDIX D

LEARNING CURVES

This appendix includes all learning curves obtained for the manual system and those using

the two learning techniques developed in chapter nine. For each system, curves are plotted

at steps (see chapter nine) o f 10, 30,50.

D .l Using M anual Rules

IM Ii trtM tet M l h l

100 ZOO 300 400
M*.

(a) Steps of 10 Reports

to o 200 300 400

(b) Steps of 30 Reports

r*«M * 4 slss M as *•- I

100 2 0 0 300 400 000
H*. at la fstts

(c) S tep s o f 50 Report«

202

D.2 Using Rule-Learning Techniques

D.2.1 Initialised Rule-Table

100 8 0 0 3 0 0 4 0 0 6 0 0 100 2 0 0 3 0 0 4 0 0 9 0 0

(a) Statistical

root* m m m m n*. i

0 100

(a) Statistical

(b) Statistical-Ranges

Steps of 10 reports

2 0 0 3 0 0 4 0 0 9 0 0 100 2 0 0 3 0 0 4 0 0 9 0 0

(b) Statistical-Ranges

Steps of 30 reports

0 1O0 2 0 0 9 0 0 4 0 0

(a) Statistical

h ilM i» > m n M M«. 135

3 0

£6

8 0

16

10

6

O LOO 2 0 0 3 0 0 4 0 0 9 0 0
Ik 4 lapiiH»

(b) Statistical-Ranges

Steps of 50 reports

203

D.2.2 Non-Initialised Rule-Table
M U twmi« ■ * • . (

0 t o o 2 0 0 3 0 0 4 0 0 0 0 0
m . «t im m

(a) Statistical

t o o 2 0 0 3 0 0 4 0 0 0 0 0
M*. M hf«t«

(b) Statistical-Ranges

Steps of 10

O t o o 200
Ma.

(a) Statistical

4 0 0 o oo 0 t o o 2 0 0 3 0 0 4 0 0 e o o

(b) Statistical-Ranges

Steps of 30

30

•

20

•
*

00 too
(a) Statistical

3 0 0 4 0 0 0 0 0 0 t o o 8 0 0 3 0 0 4 0 0 000
Na. «* Ka»a«a

(b) Statistical—Ranges

Steps of 50

204

APPENDIX E

IN T ELL IG EN T FAULT DIAGNOSIS SYSTEM

(IFADS)
User M anual

E .l In troduction

The system described in this manual was developed for Ericsson Telecommunications Ltd.
at The University o f Hull as part o f a research contract for using AI techniques in board
failure diagnosis.

The manual describes the basic use of the Intelligent Fault lDiagnosis System (IFADS). It
refers to the different menu options and the restrictions involved regarding the user input.

The manual starts with a walk through menu options describing only the restrictions on the

user input at each stage since the menu options are self explanatory.

Next, the system environment is described with emphasis on the different files which are

used by the system and their location within the system environment. The user hierarchy is

described in section 3.3. Section 4 briefly describes system maintenance and trouble-shooting.

Finally, a brief theoretical background is provided about the fault diagnosis technique used

by the system with indication on the significance of the system output.

205

E.2 A walk through menu options

The system has two main menus; The OPERATOR MENU and the ADMINISTRATION
MENU. The first section will be devoted to the former menu and the second section will

describe the latter.

E.2.1 Menu selection error recovery

A key is available at most menu options which will exit the user from the current menu to

the previous one in the hierarchy. In most cases the key must be confirmed by the user. The

user can exit from any position in a menu by typing q or Q.

E.2.2 Operator Menu

The operator menu displays the following options :

Note

<1> Automatic Fault Diagnosis
<2> Update PB A Record
<3> Manual Fault Input
<4> Advice Diagnosis
<5> System Administration

The user is warned to observe the restrictions associated with each menu option
(mainly regarding input field locations and the input form) mentioned at the

appropriate sections. Failing to comply, will lead to feeding the system with

erroneous data or system failure during diagnosis or performing one of the
administration tasks.

A global requirement in all menu options is:

F a u l t P o s i t io n N o . 3 d ig its ! c h a ra c te r s

B o a r d S e r ia l N o . 1 0 d ig i ts

The following sub sections will consider each individual option in the operator Menu.

206

This option is used to perform a diagnosis for a given board and failure report. In general, to

perform a diagnosis the following conditions must be satisfied :

L A P B A f i l e m u s t e x i s t w ith a v a l id f a i lu r e r e p o r t in i t

i i I n th e c a s e w h e r e m o r e th a n o n e f a i lu r e r e p o r t e x is t , d ia g n o s is i s a lw a y s p e r f o r m e d o n th e

l a s t n o n - d ia g n o s e d r e p o r t F o r th is to b e p e r f o r m e d su c c e s s fu lly , th e p r e v io u s d ia g n o s e d r e p o r t

m u s t b e u p d a te d (i f th e p r e v io u s r e p o r t i s n o t d ia g n o s e d th e n d ia g n o s is w i l l p r o c e e d) .

E.2.2.1 Automatic Fault Diagnosis

On choosing this option, the operator is prompted for the Board Serial Number which is

used to retrieve the contents of a given PBA file and introduce a single failure report (if more
than one report exists) to the Diagnosis system.

When the serial number is input and confirmed by the user the system starts its fault
identification process by searching the knowledge-base (see section 5) during which the

screen displays the following (during which which no key should be p ressed):

* 41* * * * * * * * *

Identifying F ault......WAIT

The result o f the diagnosis displays, at most, the best 3 suspects. Each suspect will be

associated with a percentage score indicating the quality of its match. In most cases, choosing
the fault according to order only should point to the most likely fault (for more information

about evaluation of system result, refere to section 5.4). The following is an example of the

system diagnosis output.

RESULT OF FAULT DIAGNOSIS

FauU • %

41 60

S31 30

32A 10

E x a m p le o f d ia g n o s is o u tp u t

207

In addition to the above, the diagnosis procedure will place up to seven of the best suspect

components in the appropriate fields of the diagnosis flags at the end of the report in the PB A

file (see section 3.1.3.1).

In cases where no diagnosis is found, the first diagnosis flag position is changed to the sequence
of characters DIG for the possibility of updating (section 2.2) when the fault is located
manually, otherwise updating is not possible according to the diagnosis procedure followed
in the factory.

208

E.2.2.2 Update PBA Record

Once the fault is known, this option can be used to enter the component/grid in the appropriate

field in the PBA failure record. This, however, does not involve updating the component in

the knowledge-base of the system.

I f more than one report exists in a PBA file, then the last diagnosed (and not updated) report
is selected for update.

The faulty component must not be greater than 3 digits!characters, this is due to the internal

structure of a PBA file. Entering a number which is greater than 3 digits will lead to system

failure (to recover from system failure, refer to appropriate section).

A fault could either be a component position number (numeric) or a grid identifier (alpha
numeric). Depending on the type of input for the fault (see above) the system displays one

o f the following menus :

SELECT FAULT CATEGORY No

1. MISSING COMPONENT
2. WRONG COMPONENT
3. REVERSED COMPONENT
4. COMPONENTLEADNOTTHR.

HOLE
7. COMPONENT FAULT

CATEGORY N O ?

SELECT FAULT CATEGORY No

5. SO W E R BRIDGES
6. BAD SO W ERED JOINT(S)
10 MISCELLANEOUS FAULT(S)

CATEGORY N O ?

(a) N um eric fa u lt categories (b) Alphanum eric fa u lt categories

Each menu displays the possible categories any corresponding fault could belong to. When

the CATEGORY No is entered, the user will be prompted for the same number again as
confirmation.

W hen the update is complete, the fault is updated in the 7th field of diagnosis flags of the
report record in the PBA file (see section 3.1.3.1) while the category no will be set in the 10 th
field representerd in the form :

F+ CATEGORY No (e .g .F IO)

The user will be prompted if another board is required to be updated.

209

E.2.2.3 Manual Fault Input

This option is used to enter the details of a failure report manually, instead of sending the

failure report via the LPA and through the serial port. A PB A file will be created if the board

has not been seen before otherwise the appropriate file will be updated. This option will not
perform a diagnosis on the entered report, to perform a diagnosis, the option in section 2.1
must be used.

The user will be prompted for the information in the following table, and should conform to
the specifications mensioned regarding the input size :

R e q u i r e d I n fo r m a tio n E x p e c te d n o o f D ig its ! c h a rs

L P A T e s t S ta tio n N o 2

P r o g r a m ty p e (G N /T P) 2

P r o g r a m R e v is io n . . .

S e r ia l N u m b e r 1 0

Next, The Fault Code for each failed test must be entered. Information about the test must

be presented in the form below (separated by semicolons). Each field is associated with its

size.:

No bid name condition flg ... vat!sig

2 2 2 2 1 ... *

A value com ponent (val) is represented in 6 digits.

A signal com ponent (sig) is represented in 3 digits.

The following are few examples :

01;02;01;01;

01;02;01;0l;0;-1232;x;x;

01;02;01;01;0;-1232;25334;74.000; (Value)

01;02;01;01;1;003;255;041;007;008;025; (Signal)

210

The fields must be represented in the required no of digits since

the system depends on the positions of the different fields in its recognizing the

different fields.

Inconsistent field length will lead to system failure during diagnosis or/inaccurate
diagnosis. In case of system failure refer to the appropriate section.

The following are examples of incorrect fault code :

0 1 ;0 2 ;01 ;0 1 (e n d ; m is s in g)

;0 1 ;0 2 ; 0 1 ;0 1 ; (e x tra ;)

0 1 ;0 2 ;0 1 ;01 ;0 ; (in c o m p le te)

0 1 ;0 2 ;0 1 ;0 1 ;0 ;2 3 .4 ;x ;x ; (v a lu e r e p r e s e n te d in 4 d ig i t s in s te a d o f 6)

Note

E.2.2.4 Advice Diagnosis

This option can be used if a diagnosis was required for a failure report without entering the

report into the system records (PB A files/Knowledge-base). Hence, the user will be prompted
only for a fault code for each of the failed tests in the report.

The fault code representation will be identical to that described in section 2.2.3. Refere to
section 2.2.1 on the explanation of diagnosis output.

E.2.2.5 System Administration

This option is provided for the system manager to perform some tasks such as; updating

complete reports in the PB A files in the knowledge-base, backing up passed boardsetc.

The user will be prompted for a password inorder to access the administration menu.

211

The administrator menu displays the following options :

E.2.3 Administrator Menu

<1> Update PBAs to KB (Sweep to KB)
<2> Backup Updated PBAs (Sweep to .bk Files)
<3> MS-DOS Window
<4> Monitor Serial Port
<5> Exit System

<6> Return to Main Menu

E.2.3.1 U pdate PBAs to KB

Choosing this option will check each failure report in each PBA file, and will perform the

follow ing:

(i) I f the report is updated with a valid fault position number (in the 8th field of the

diagnosis record), then the report will be updated in the system knowledge-base

and the 9th field in the last record of the PBA file will be set (to the same fault

number).

However, if the report is updated with the special set of characters ***, then only
the flag is set without updating the report in the system knowledge-base.

(ii) The different knowledge-base elements are backed up to disk from system

memory. This will prevent loosing the information if system exit was performed

at this stage.

E.2.3.2 Backup Updated PBAs

This option will check each PBA file for the following two conditions:

(i) Board passed test.

(ii) Last report updated in the knowledge-base.

If a PBA file satisfies the above conditions, then the following actions will be perform ed:

(i) The contents o f the PBA file will be appended to the end of the current backup
file, as long as the backup file size is withinits size limit (see sec. 3.1.4), otherwise
a new backup file will be created.

(ii) The PBA file will be removed from the system PBA files directory.

212

E.2.3.3 MS-DOS Window

This option provides an MS-DOS window for different system management tasks, such as
copying backup files to floppy, viewing files, ...etc. When this option is chosen the user will

be prompted w ith the following :

VP/ix Z:\USR\USERS\CurrenM/ser>

Most DOS system commands can be used to manipulate different system files/directories.
To Edit a file, the Unix vi editor can be used. To edit simply type:

vi filename

To exit MS-DOS, type QUIT <Retum>

E.2.3.4 M onito r Serial P o rt

This option allows the manager tore-start the serial port monitoring program. This is necessary
because if the system is shutdown or rebooted the serial port monitoring process will terminate
and hence the process must be re-started without re-booting the system.

The system will warn the user if the previous process is still running.

E.2.3.5 E xit System

Choosing this option will exit the Diagnosis system into the Unix environment.

E.2.3.6 R etu rn to M ain M enu

Returns the user to Operator menu.

E.3 The System Environm ent

This section describes the different system files and the interaction with the Unix environment.

The system environment is formed by the different files/directories which construct the system
and/or allow it to perform its task and the user hierarchy upon which the system can be

accessed.

The different system files are either {Information files) which are used for information back

up or initialisation, or the source code files for the system {Source files).

213

[Machine Hardware

T h e o v e r a l l s y s te m h ie r a r c h y

E.3.1 Information files

E.3.1.1 Initialisation files

These are initially generated by the system and are later used to recover some parameters

(file names , passw ords,. . . etc.) when the system restarts. These are continuously updated
as the value of these parameters are changed by the system. These files are described briefly
in the following sub-sections.

E.3.1.1.1 .backup.init

Path lusrlusers/sys/fdsysl

Contains the number of the current backup file (.bk) used by the system to backup PB A files.

If this file is deleted the system uses a backup file with a number which is the first in the

range 1-99 (i.e, 1) and creates a new file.

E.3.1.1.2 .D sw d .ff

Path lusrl users!sys!

tor in an encrypted form. If the file did not

or a new password and a new file will be

Contains the password for the system administra

exist, then the administrator will be prompted f

created.

E.3.1.1.3 .spinit

Path 1 lusrlusers!sys/spl

Contains the process number of the current serial port monitoring process. The process number
is only for processes initiated from within the administrators menu (see sec. 2.2.4).

E.3.1.2 Knowledge-base files

The system starts by reading these files (with the Initialisation files). The existence of these

files is important for the system to startup, since they contain the basic knowledge-base

parameters which are important for the diagnosis process. The absence of any of these will

lead to system failure.

E.3.1.2.1 ft.ff

Path lusrlusers!kb!

Contains the component failures with the different symptoms seen for each component. The
contents are described in a lisp-specific construct which can be efficiently loaded and
manipulated by the system.

E.3.1.2.2 td is tf f

Path lusrl users! kb!

:nt tests encountered by the system. As with

:t is used to describe the information in this

Contains the statistical information for the différé

the previous file contents, a lisp-specific constnu

file.

E .3.1.3PBA files

Path lusrlusers!boards!

These files contain the failure/pass records of the different PCBs tested via the LPA (input

via the serial port) or entered manually using the appropriate system menu option (see section

2.1.3).

The file names are of the form :

BoardNo.ext

where:

BoardNo: Represents the last 6 digits of the board serial number

ext: brd

E.3.1.3.1 File format

A typical PBA file consists of one or a number of Board Records (BRs). A BR could either
be a Failure Record (FR) or a Pass Record (PR) both of which consist of a number of lines
(Line Records, LRs) which in turn consist of a sequence o f distinct character blocks.

A FR contains information about the board (represented by the PBA file) at certain instance
when it was presented to the tester and failed. However, a PR contains information about the

board if no test failure was indicated.

A LR could take one of the following forms :

Test Record

This is contains information about a single test failure during the testing of
the board and is of the following form :

LPAN o Sériai No Tesi Code

For information about the different blocks and their sizes référé to section

2.2.3.

Report Header

[
[LPAN o Serial No)

1

Report Tail

LPAN o Serial No //? Ptyp Rev 1 Date Diagnosis Falgs

Here, !/? is a single character flag indicating either a pass (/) or a failure (?).

Ptyp referes to the test program type and Rev is its revision. Date is the time

and at which the report was recorded in the PBA file. Each fields are of two
digits seperated by (;). The Diagnosis Falgs are a sequence of characters to
be during diagnosis and update (refere to the appropriate sections). The Flags
are in the following form :

216

NB

-1 .1 -1 ■1 -1 .1 -1 -1

The first 7 flags are reserved for the 7 most suspected faults.
The 8th flag will be set to the correct fault when updated.

The 9th is set when the fault is updated in the
knowledge-base. The 10th will be set to the fault category
number during fault update.

In all of the cases above, separate blocks and fields within must be isolated

by semicolons.

Examples

The following is an example of PB A file content (686402.brd) :

[1 0 ; 9 2 0 1 6 8 6 4 0 2 ;)

1 0 ; 9 2 0 1 6 8 6 4 0 2 ;0 2 ; 0 5 ;0 1 ; 0 1 ;)

1 0 ; 9 2 0 1 6 8 6 4 0 2 ; 0 2 ;0 5 ;0 2 ;0 1 ;)

1 0 ;9 2 0 1 6 8 6 4 0 2 ;? ,-G N ;3 3 3 Z ;] ;2 1 ;2 2 ;5 5 ;0 8 ;0 6 ;9 2 ; -1 ; -1 ; - / , • -1 ;

[1 0 ,9 2 0 1 6 8 6 4 0 2 ;)

1 0 ; 9 2 0 1 6 8 6 4 0 2 ;0 2 ;0 5 ;0 1 ;0 1 ;)

1 0 ; 9 2 0 1 6 8 6 4 0 2 0 2 ;0 5 ; 0 2 ;0 1 ;)

1 0 ; 9 2 0 1 6 8 6 4 0 2 ;? ; G N ; 4 4 4 Z ;] ; 2 1 ;2 2 ; 5 5 ;0 8 ; 0 6 ; 9 2 ; -1 ;

E.3.1.4 B ackup files

Path lusrlusers!backup!

These are large files containing PB A files which satisfied certain conditions (see sec. 2.2.2).

(i) The files have a size limit of 500K for ease of backup to a floppy.

(ii) The file names are of the form

217

x.bk '.where x is a number (1-99)

E.3.2 Source files

These are made of a number of files which collectively perform the tasks of fault diagnosis,
monitoring the serial port, data organization, backup, ...etc.

E.3.2.1 ifad

Path lusr/users/sys/fdsys/

The lisp code which performs the main fault diagnosis, data entry, and all user interaction
procedures. The theory behind the diagnosis technique will be briefly discussed in latter

sections.

E.3.2.2 usrid

Path lusrlusers/sys/fdsysl

Written in C to interact with the user when the users identity is required to be check by ifad.
Interacts with the user if the users identity is not known.

E.3.2.3 msn

Path lusrlusers!sys/spl

An independent program for monitoring the serial port, buffering the incoming data,

organizing them in the appropriate PBA file depending on the serial number of the board,
and performing some additions to the data depending on the type of input.

The program starts monitoring the serial port when the Unix is booted up, however, the system

administrator, can start the process from within the system menus (as described in 2.2.5).

Data blocks recognised by msp must have a start flag which could either be [or (and an end
flag o f either) or J. It must be noted that the start falg is not echoed to the PBA file except
for Report Header blocks (see section 3.1.3.1).

218

E.3.3 System Users

Users in the system are classified according to the authorisation hierarchy over the system

use and its environment. Three users exist with different authority in the system environment.
The users, in the order of increasing authority, are the following :

operator

manager

smanager

The following sub-sections will briefly describe each user and his rights within the system.

E.3.3.1 operator

User name Home directory Group

Ericsson operator lusrlusersloperator —

This is the login for the system faultfinder. This the user with the least authority in the system

and hence has no permission to alter any file other than in his own directory.

When an operator logs in, the system starts directly (without providing access to the operating
system) and then the operator menu is displayed. An operator cannot exit the system and
hence cannot logout (only a person with an access to the system administrator password can
be presented with the appropriate menu to exit the system.

Wamiti?

The only case where an operator could have an access to the lisp interpreter is

in the case of system failure. With the appropriate knowledge of Lisp and Unix

commands (if!) an operator can end up in the operator home directory, However,

the operator cannot perform any modification to files other than his/her own.

In the case of system failure. One of the managers must be informed and the
procedure for system recovery must be followed (see section on System failure).

E.3.3.2 manager

User name Home directory Group

sub manager lusrlusersl manager managers

219

The manager has the right of access for editing any of the files which belong to the following;

PB A files, Backup files, Knowledge-base files (here, care must be taken). However, he is not

the owner of these files.

At login the manager issues commands to the unix system, hence to run the system the

command i f ad must be issued at the shell prompt.

E.3.3.3 sm anager

User name Home directory Group

super manager lusr/userslmanager managers

The super manager is the owner of all the system files and has the right of access for changing
or removing any file or directory which is part of the system environment.

At login the smanager issues commands to the unix system, hence to run the system the
command ifad must be issued at the shell prompt.

E.4 System m aintenance

This section describes some of tasks which occasionally will be required from the system
manager during the operation of the system on the factory floor.

E.4.1 System Pow erdow n

This is a procedure which must be followed before switching the computer off. The procedure
performs tasks such as emptying system buffers into the appropriate files, closing all the open
files, terminating system demons which start at re-boot, ...etc.

The procedure for a system shutdown is as follows :

1. login using the user name powerdown.

2. Enter powerdown password.

3. Answer the questions appropriately, when the system displays the following :

The system is down
Press any key to reboot

Either switch o ff computer or reboot

2 2 0

E.4.2 Trouble-shooting

E.4.2.1 System failure

Currently the system performs some error checking, however, it is not thorough especially
when checking the input such as the test code (due to the numerous possibilities), fault number,

serial Number, program revision, ..etc (these could differ in format for different boards and
LPAs and in many cases are alphanumeric). For this reason a system failure is possible.

Such errors could lead to system failure, in which case the system will display the following

p rom pt:

[n] <cl>

At this stage the user is at the lisp level. To recover, the steps in section 4.2.1.3 must be
followed.

E.4.2.1.1 Initialisation failure

This could occur at the start when the system starts reading the different files which enable

it perform its tasks.

Although, such failures are not possible unless the knowledge-base files are manually edited

(the structure o f files are corrupted) or permissions are changed manually.

In such cases, the smanager can check the initialisation files and knowledge-base files using
one/both o f the following checks :

1. Check the file content, this could be performed using the vi editor. The user is

advised to make a back up before hying to alter the file contents (e.g, cp filename
filename.bk).

2. Check the file permissions. This could be done by typing :

Is-Is

This should only be performed if the permissions in the original system setup
were altered. However, the user is warned not to alter these unless it is necessary
since the system is adjusted to run under certain conditions and altering these
might lead to system failure or lack of system security.

221

E.4.2.1.2 PBA failure

Another case in which a system failure could occur is during reading a PB A file and identifying
the components o f the different reports. The reason for such failures is usually an incorrect
form for the records in PBA files which is caused by the inability of the system of finding a

specific field in a particular record. This could be due to a mistake during manual data input
or via the serial port (less likely). Since, error checking is not thorough during recei-

ving/inputting o f data.

This kind of failure could occur during any of the following options :

Automatic fault diagnosis

Update PBA record

Advise diagnosis

Update PBAs to KB

Backup Updated PBAs

A l l th e a b o v e ta s k s t r y to id e n tify s p e c if ic f i e l d s a t c o n s ta n t lo c a tio n s , h e n c e i f th e r e q u ir e d f ie ld w a s n o t f o u n d

in a r e p o r t , a f a i lu r e w i l l o c c u r .

In such cases of failure, the corresponding PBA file could be viewed and edited.

E.4.2.1.3 System recovery

In case o f system failure, a system manager must be called to recover the system. It is rec

ommended that the following steps are performed :

1. Note the failure message at system level

2. Type at the error prompt

:ex (this exits to Unix)

3. Type ifad (to start the system)

E.4.2.2 A dm in passw ord failure

If the user is not allowed into the administration menu, then the corresponding password
initialization file is corrupted. In such cases the super manager must delete the .pswd.ff file.

When the system administration option is chosen next the user will be prompted for a new

password.

222

E.4.2.3 Serial port errors

The serial port monitoring program performs some basic checks on the records received
(usually records with unexpected number of characters, however, individual record elements

are not examined). If such a record is encountered during reading the serial port, then the

whole record will be recorded in an error log file with a name in the form :

Current_date.e/g

Current_date

A sequence of characters representing the current

date (e.g, 100192 for 10-01-1992)

All subsequent erranous records for the current date will be recorded in this file. The file will

provide the system manager with a limited information about the source of error (e.g, checking

the PBA files for a specific date).

E.5 Theoretical Background of The Diagnosis Technique

In the technique used by the system, each test report is stored, together with its identified
fault, in a knowledge-base. When a new test report is presented, the program searches the

knowledge-base for a report which best matches the new test report. This method makes use
o f a number o f heuristics for performing the match. The fault dictionary is updated as each
new fault is confirmed by the fault finder.

E.5.1 The Knowledge-Base (KB)

The knowledge-base consists essentially of two parts. One part holds the information

about each fault. This knowledge-base contains a list of Fault Entries. Each fault entry

contains two parts : a Fault Number, which indicates a fault in a specific component, and a

Test Patterns part, which is derived from the test reports previously encountered for this fault.

The term Test Pattern refers to a sequence of failed tests occurring in a single test report.

Each single Test Pattern in turn consists of two parts : a Frequency Count, which is

the number of times that a specific test pattern causes the failure of a given component, and
a Tests part, which contains all the tests which form the test pattern.

223

Finally, each single Test has a Test Number and a Test Name. The Test Name consists

of the name o f the test and the condition(s) under which the test was applied. The structure
o f a fault entry is shown in figure D -1.

The second part of the knowledge-base stores statistical information regarding the
occurrence of each test with respect to each fault.

Fault Entry

I------------------1--------------------- 1
Test Patterns Fault No/Name

Test P a t t e m l _________ test Pattern N

Tests Freq Count

I---- -̂--------- 1-------------1---------------1------- :----------------1
Testl T e s t 2 _____________________________TestN

I------------------------- ,
Test No Test Name

I------------ -̂------------- 1
Name Condition(s)

Figure E -l : The structure o f a fault entry

E.5.2 Searching The D ata base (M atching)

When a failure report is presented to the program, the tests in the report are compared
to each test pattern belonging to a given fault entry. This process is repeated for all the fault

entries in the knowledge-base. The system outputs the fault entries which produced the closest

matches.

During comparison, scores for the following are noted :

1) The number o f common tests (S7).

2) The number o f common tests relative to the total number of tests in both the match-pattern

and the fault entry test pattern (S2).

224

3) The sum of the Significances of the common tests relative to the sum of the significances
of all the tests (S3).

The Significance of a single test is the relative frequency of the test failing for the fault

in question compared with its relative frequency over all the faults. The significance is
obtained from the statistical information maintained in the knowledge-base.

4) The frequency count of a test pattern (S4).

E.5.3 The Rule-Base

The choice of the "best" match from the set of matches is performed by comparing the scores
of the different patterns. About 80 rules [3] are used to compare the scores. With each rule

in the rule-base specifying which of the two sets of scores is best Each rule takes into account
the relative importance o f each of the four scores and this varies according to the values of
the scores. The rules were obtained by inspection of the output of the matching process. This

was an iterative procedure in that an initial rule-base was used to produce a set of results.

The results were then used to improve the rules. This procedure was repeated a number of

times.

Example:

An example rule, which discriminates between two suspect faults F ; and F2, each associated
with a set o f matching scores (see section 2.2), would be o f the form:

IF [S j f i > S1F2 & S2pi < S2p2 S3FI < S3F2 ...]

TH EN Most Suspected = Ft

E.5.3 Diagnosis ou tp u t

The Diagnosis outputs at m ost 3 suspects with associated percentage confidence scores for
each. These scores are derived from the most important of the matching scores relative to
each other in the different suspects.

225

However, when inspecting the matching results the order of the suspects should be the main

factor in deciding the best fault since the ordering is the main outcome of the sorting performed

by the rule-base which is based on a logical comparison of the scores and their importance
in matching rather than a quantitative comparison.

It is recommended to use both attributes in deciding the best fault with emphasising more on
the order. For more information about diagnosis référé to section 2.2.1.

226

REFERENCES

[AMB87]

[APF85]

[ARS90]

[BEN82]

[BEN87]

[BIE81]

[BUC89]

[BUS86]

[CHE88]

[DAV84]

[DEK84]

Amble T.: "Logic Programming and Knowledge Engineering", Addison-
Wesley, 1987, ISBN 0-201-18043-X.

ApfelbaumL.: "An Expert Systemfor In-circuit Diagnosis", Proc. Int. TestConf.,

1985, No. 23.3, pp. 868-874.

Arslan T., Bottaci L., Taylor G.E.: "An AI based approach to automatic fault
diagnosis for mixed digital/analogue circuits", IEE Colloquium on mixed ana

logue and digital circuit test, London, November 1990.

Bennetts R. G . : " Introduction to Digital Board Testing", Edward Arnold Ltd.,

1982, ISBN 0-8449-1385-0.

Ben-Bassat M., Ben-Arie D . : "A Case Study With AI-TEST: An Expert System
for Electronic Troubleshooting", Proc. IEEE Int. Automatic Testing Conf., 1987,

pp. 363-9.

Biemacki R., Bandler J . : "Multiple-Fault location of analogue circuits", IEEE
transactions on circuits and systems, vol. CAS-28, No.5, May 1981. pages

361-367.

Buckroyd A . : " Computer Integrated Testing", BSP Professional Books, 1989,

ISBN 0-632-02042-3.

Bust W. W., Darst C. R., Krysl G. G . : "ABNER - A Bum-In Monitor and Error
Reporting Systemfor PBX Systems Test", Proc. Int. Test Conf., 1986, No. 2.2,

pp. 65-73.

Chen G. -D., Parng T. -M .: "A Database Management Systemfor a VLSI Design
System", Proc. Design Automation Conf., June 1988, pp. 257-263.

Davis R . : "Diagnostic Reasoning Based on Structure and Behaviour", Artificial
Intelligence, vol. 24, pp. 347-410, 1984.

De-Kleer J . : "How Circuits Work", Artificial Intelligence, vol. 24, pp. 205-280,
1984.

227

[ECK88]

[ELL90]

[EVA91]

[GUY87]

[HAV89]

[HOC79]

[JAC90]

[KAT89]

[KEN91]

[KOD85]

[KRI86]

[DEK87]

[KR089]

De-Kleer J., Williams B. C. : "Diagnosing Multiple Faults", Artificial Intelli

gence, vol. 32, pp. 97-130, 1987.

Ecklund D. J., Tong F . : "A Context Mechanism to Control Sharing in a Design
Database", Proc. Design Automation Conf., June 1988, pp. 344-351.

Elliott W., Schneider M. : "The Learning Aspects o f The Fault Finder Expert
System", Proc. 20ThInt. Symp. Multiple-Valued Logic, pp. 378-385, May 1990.

Evans D. : "Applying Intelligence to Board Diagnostics", TEST Interfacing

Design and Test, pp. 8-11, May 1991, ISSN 0143-2397.

Guyler I. A., Parry P. S., Bayliss J. S. : "Circuit Testing Using Artificial
Intelligence Techniques", Proc. Third Int. Expert System Conf., pp. 323-31, June

1987.

Havlicsek L. : "Integrating Diagnostic Knowledge", IEEE AES Magazine, pp.

54-59, November 1989.

Hochwald W., Bastian J.D. : "A DC Approach for Analog Fault Dictionary
Determination", IEEE Trans. Circuits & Systems vol. Cas 26, no. 7, Jul. 1979.

Jackson P.: "Introduction to Expert Systems", Addison-Wesley, 1990, ISBN

0-201-17578-9.

Kato J., Shimono T., Kawai M. : "Fault Diagnosis Based on Post-Test Fault
Dictionary Generation", IEEE International Test Conference Proceedings, 1989,

paper P.7.

Kennedy-Davies H.: "AI-based diagnostics for GSM development", TEST

Interfacing Design and Test, pp. 16-19, May 1991, ISSN 0143-2397.

Kodratoff Y .:"Introduction to Machine Learning", Chapter eight, Pitman, 1985.

Kriz J., Sugaya H.:"Knowledge-Based Testing and Diagnosis o f Analogue
Circuit Boards", 16th Annual International Symposium on Fault-Tolerent
Computing Systems (cat. no. 86CH2335-8), Vienna, Austria, 1-4 July 1986,

p.378-83.

Krol J. : "CIRCOR - An Expert System for Fault Correction o f Digital NMOS
Circuits", Proc. European Conf. Circuit Theory and Design, 1989, pp. 674-676.

228

[LEA88]

[LEE79]

[LIN85]

[LUG93]

[MAN86]

[MAN92]

[MAS 89]

[MCK89]

[MCK91]

[MIC75]

[MIC81]

[MIC83]

Lea S. M., Brown N., Katz T., Collins P. : "Expert System for the Functional
Test Program Generation o f Digital Electronic Circuit Boards", Proc. Int. Test

Conf., 1988, No. 14.1, pp. 209-220.

Lee J., Bedrosian S. D .: "Fault Isolation for Analogue Electronic Systems Using
the Fuzzy Concept", IEEE transactions on circuits and systems, vol. CAS-26,
NO.7, July 1979, pp. 518-522.

LinP.M . ,ElcherifY. S .: "Analogue Circuits Fault Dictionary-New Approaches
and Implementation", International Journal of Circuit Theory and Applications,

vol 17, 149-172, 1985.

Luger G., Stubblefield W .:"Artificial Intelligence: Structures and Strategies for
Complex Problem Solving", The Benjamin/Cummings Publishing Company

Inc., 1993, ISBN 0-8053-4780-1.

Mancl D., Sullivan M .: "A Solution to Test Data Acquisition and Management",
Proc. Int. Test Conf., 1986, No. 2.1, pp. 60-64.

Weyerer M., Goldemund G.: "Testability o f Electronic circuits", Prentice Hall,

1992, ISBN 0-13-911801-2.

M assaraR. E . :"Design and Test Techniques for VLSI and WSI Circuits", Peter
Peregrinus Ltd., 1989, ISBN 0-86341-165-7.

McKeon A., Wakeling A. : "Fault Diagnosis in Analogue Circuits Using AI
Techniques", Int. Test Conf., No. 5.2, 1989, pp. 118-123.

McKeon A .: "The Detection and Location of Faults in Analogue Circuits", Ph.D.

Thesis, January 1991, , Dept. Elec. Eng., Imperial College of Science and

Technology, University of London.

Micalski R.:" Variable-valued Logic and its Applications to Pattern Recognition
and Machine Learning", In Rine , pp. 506-34,1975.

Micalski R., Chilausky R.: "Knowledge Acquisition by Encoding Expert Rules
Versus Computer Induction from Examples: A Case Study Involving Soybean
Pathology", In Mamdani and Gaines, pp.247-71, 1981.

Michalski R.S., Carbonell J.G., Mitchell T.M.: "Machine Learning: an AI
Approach”, Tioga Publishing Company, Palo Alto, 1983.

229

[MIT78]

[ODR85]

[PAH82]

[PFL89]

[PRA90]

[PUC92]

[QUI86]

[QUT289]

[QUT88]

[QUT90]

[RAP83]

[MIT77] Mitchell T. M.:" Version Spaces: A candidate elimination approach to rule
learning", Proceedings IJC A I-77,1977.

Mitchell T. M.:" Version Spaces: An Approach to Concept Learning". PhD thesis,
1978, Stanford University, Stanford, CA.

Odryna P., Strojwas A J. : "PROD : A VLSI Fault Diagnosis System", IEEE
Design & Test, pp. 27-35, December 1985.

Pahwa A., Rohrer A. : "Band Faults: Efficient Approximation to Fault Bands
for the Simulation before Fault Diagnosis o f Linear Circuits", IEEE Trans.

Circuits & Systems vol. Cas 29, pp 82-88, 1982.

Pflueger K .W . : " Hybrid Diagnostics Strategy for an Expert System Controlled
Automatic Test System (EXATS)", IEEE AES Magazine, pp. 25-30, October

1989.

Prasad V. C., Pinjala S.N. : "A Fast Algorithm for the Generation of Fault
Dictionary o f Linear Analogue Circuits Using Adjoint Network Approach", Proc.

Int. Symp. Circuits and Systems, pp. 37-40, 1990.

Pucknell D., Eshraghian: "Basic VLSI Design: Systems and Circuits", Prentice

Hall, 1992, ISBN 0-7248-0105-7.

Quinlan J.: "Induction of Decision Trees", Machine Learning 1(1): 81-106,1986.

Al-Qutayri M.: "Development o f testing procedures for mixed mode (Analo-
gue/Digital) integrated circuits - Progress Report No.2", ASCOT progress

reports, ALVY Project, CAD012, University of Bath, 20th February 1989.

Al-Qutayri M.: "Development o f testing procedures for mixed mode (Analo-
gue/Digital) integrated circuits - Progress Report No.l", ASCOT progress

reports, ALVY Project, CAD012, University of Bath, 24th November 1988.

Al-Qutayri M.A., Shepherd P .R .: "On Testing o f Mixed Mode Integrated Cir
cuits", Journal of Semicustom ICs Vol. 7, No. 4,1990.

Rapisarda L., Decarlo R. : "Analogue Multifrequency fault diagnosis”, IEEE
transactions on circuits and systems, vol. CAS-30, NO.4, April 1983. pages
223-234.

230

[RAT86] Ratford V., Keating P. : "Integrating Guided Probe and Fault Dictionary: An
Enhanced Diagnostic Approach", IEEE International Test Conference Pro
ceedings, 1986, paper 10.3.

[RIC89] R ichS.H ., VenkatasubramanianV.: "Causality-Based Failure-Driven Learning
in Diagnostic Expert Systems", AIChE Journal, vol. 35, No. 6, pp. 943-950, June
1989.

[RIC91] Rich E., Knight K.: "Artificial Intelligence", McGraw-Hill Inc, second edition
1991, ISBN 0-07-052263-4.

[ROGC89] Rogel-Favila B., Cheung P. : "Combinational and Sequential Circuit Fault
Diagnosis Using AI Techniques", Int. Test Conf., 1989, No P.16.

[ROGD89] Rogel-Favila B., Cheung P . : "Deep Reasoning Approach to sequential circuit
Fault Diagnosis", Proc. European Conf. Circuit Theory and Design, 1989, pp.

665-669.

[SCH79] Schreiber H. : "Fault Dictionary Based Upon Stimulus Design", IEEE Trans.
Circuits & Systems vol. Cas 26, no. 8, Jul. 1979.

[SHA48] Shannon C.: "A Mathematical Theory o f Communication", Bell System

Technical Journal, 1948.

[TAN88] Tanaka H., Kawai M., Sugasaki I., Hakuba T . : "System Level Fault Dictionary
Generation", IEEE International Test Conference Proceedings, 1988, paper 41.2.

[TAN90] Tanimoto S. L.:"The elements o f artificial intelligence using common lisp",
Computer science press 1990, ISBN 0-7167-8230-8.

[TAY90] Tayeh M. M., Diantonio S. A . : "Troubleshooting Hybrid Circuits Using Arti
ficial Intelligence Technology", Hybrid circuit Technology (CIMFLEX TECH.

CORP., Pittsburgh, PA, USA), vol. 7, pp. 12-19, Jan 1990.

[TUR90] T urinoJ.: "Design to Test", Van Nostrand Reinhold, 1990, ISBN 0-442-00170-3.

[VIS84] Visvanathan V., Szeto E.,Tits A . : "A Robust Simulation before Test Technique
for DC Analog Fault Diagnosis", Proc. Int. Symp. Circuits and Systems, pp.

689-692,1984.

[WAW89] Wawryn K., Zinka W. : "A Prototype Expert System for Fault Diagnosis in
Electronic Device", Proc. European Conf. Circuit Theory and Design, 1989, pp.

667-680.

231

[WEY85]

[WEL85]

[WIL86]

[WIN75]

[WIN86]

[WU82]

[WEY84] Wey C.L.: "On the implementation of an analogue ATPG: the nonlinear case",
IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.
84CH1993-5), Montreal, Que., Canada, 7-10 May 1984 (New York, USA:EEEE
1984), p.213-16 vol.l.

Wey C.L., Saeks R.: "On the implementation of an analogue ATPG: the linear
case", IEEE transactions on instrumentation and measurement, vol. IM-34,No.3,
September 1985. pages 442-449.

Wilkinson A. J. : "MIND: An Inside Look at an Expert System for Electronic
Diagnosis", IEEE Design & Test, August 1985, pp. 69-77.

Wilkins B. R. : "Testing Digital Circuits", Van Nostrand Reinhold (UK) Co.

Ltd, 1986, ISBN 0-442-31748-4.

Winston P.: "Learning Structural Descriptions from Examples”, In The Psy

chology of Computer Vision, ed. P. Winston, New York: McGraw-Hill, 1975.

Winkel M. : "Using a Relational Database to Develop a Statistical Quality
Control System for ATE", Proc. Int. Test Conf., 1986, No. 2.3, pp. 74-79.

Wu C., Nakajima K., Wey C., Saeks R.: "Analogue fault diagnosis with failure
bounds", IEEE transactions on circuits and systems, vol. CAS-29, No. 5, May
1982. pages 227-284.

232

