1,782 research outputs found

    Segmentation Methods for Biomedical Images

    Get PDF

    IVUS-based histology of atherosclerotic plaques: improving longitudinal resolution

    Get PDF
    Although Virtual Histology (VH) is the in-vivo gold standard for atherosclerosis plaque characterization in IVUS images, it suffers from a poor longitudinal resolution due to ECG-gating. In this paper, we propose an image- based approach to overcome this limitation. Since each tissue have different echogenic characteristics, they show in IVUS images different local frequency components. By using Redundant Wavelet Packet Transform (RWPT), IVUS images are decomposed in multiple sub-band images. To encode the textural statistics of each resulting image, run-length features are extracted from the neighborhood centered on each pixel. To provide the best discrimination power according to these features, relevant sub-bands are selected by using Local Discriminant Bases (LDB) algorithm in combination with Fisher’s criterion. A structure of weighted multi-class SVM permits the classification of the extracted feature vectors into three tissue classes, namely fibro-fatty, necrotic core and dense calcified tissues. Results shows the superiority of our approach with an overall accuracy of 72% in comparison to methods based on Local Binary Pattern and Co-occurrence, which respectively give accuracy rates of 70% and 71%

    International Union of Angiology (IUA) consensus paper on imaging strategies in atherosclerotic carotid artery imaging: From basic strategies to advanced approaches

    Get PDF
    Cardiovascular disease (CVD) is the leading cause of mortality and disability in developed countries. According to WHO, an estimated 17.9 million people died from CVDs in 2019, representing 32% of all global deaths. Of these deaths, 85% were due to major adverse cardiac and cerebral events. Early detection and care for individuals at high risk could save lives, alleviate suffering, and diminish economic burden associated with these diseases. Carotid artery disease is not only a well-established risk factor for ischemic stroke, contributing to 10%–20% of strokes or transient ischemic attacks (TIAs), but it is also a surrogate marker of generalized atherosclerosis and a predictor of cardiovascular events. In addition to diligent history, physical examination, and laboratory detection of metabolic abnormalities leading to vascular changes, imaging of carotid arteries adds very important information in assessing stroke and overall cardiovascular risk. Spanning from carotid intima-media thickness (IMT) measurements in arteriopathy to plaque burden, morphology and biology in more advanced disease, imaging of carotid arteries could help not only in stroke prevention but also in ameliorating cardiovascular events in other territories (e.g. in the coronary arteries). While ultrasound is the most widely available and affordable imaging methods, computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), their combination and other more sophisticated methods have introduced novel concepts in detection of carotid plaque characteristics and risk assessment of stroke and other cardiovascular events. However, in addition to robust progress in usage of these methods, all of them have limitations which should be taken into account. The main purpose of this consensus document is to discuss pros but also cons in clinical, epidemiological and research use of all these techniques

    Intravascular Ultrasound

    Get PDF
    Intravascular ultrasound (IVUS) is a cardiovascular imaging technology using a specially designed catheter with a miniaturized ultrasound probe for the assessment of vascular anatomy with detailed visualization of arterial layers. Over the past two decades, this technology has developed into an indispensable tool for research and clinical practice in cardiovascular medicine, offering the opportunity to gather diagnostic information about the process of atherosclerosis in vivo, and to directly observe the effects of various interventions on the plaque and arterial wall. This book aims to give a comprehensive overview of this rapidly evolving technique from basic principles and instrumentation to research and clinical applications with future perspectives

    Development of Imaging Mass Spectrometry Analysis of Lipids in Biological and Clinically Relevant Applications

    Get PDF
    La spectromĂ©trie de masse mesure la masse des ions selon leur rapport masse sur charge. Cette technique est employĂ©e dans plusieurs domaines et peut analyser des mĂ©langes complexes. L’imagerie par spectromĂ©trie de masse (Imaging Mass Spectrometry en anglais, IMS), une branche de la spectromĂ©trie de masse, permet l’analyse des ions sur une surface, tout en conservant l’organisation spatiale des ions dĂ©tectĂ©s. Jusqu’à prĂ©sent, les Ă©chantillons les plus Ă©tudiĂ©s en IMS sont des sections tissulaires vĂ©gĂ©tales ou animales. Parmi les molĂ©cules couramment analysĂ©es par l’IMS, les lipides ont suscitĂ© beaucoup d'intĂ©rĂȘt. Les lipides sont impliquĂ©s dans les maladies et le fonctionnement normal des cellules; ils forment la membrane cellulaire et ont plusieurs rĂŽles, comme celui de rĂ©guler des Ă©vĂ©nements cellulaires. ConsidĂ©rant l’implication des lipides dans la biologie et la capacitĂ© du MALDI IMS Ă  les analyser, nous avons dĂ©veloppĂ© des stratĂ©gies analytiques pour la manipulation des Ă©chantillons et l’analyse de larges ensembles de donnĂ©es lipidiques. La dĂ©gradation des lipides est trĂšs importante dans l’industrie alimentaire. De la mĂȘme façon, les lipides des sections tissulaires risquent de se dĂ©grader. Leurs produits de dĂ©gradation peuvent donc introduire des artefacts dans l’analyse IMS ainsi que la perte d’espĂšces lipidiques pouvant nuire Ă  la prĂ©cision des mesures d’abondance. Puisque les lipides oxydĂ©s sont aussi des mĂ©diateurs importants dans le dĂ©veloppement de plusieurs maladies, leur rĂ©elle prĂ©servation devient donc critique. Dans les Ă©tudes multi-institutionnelles oĂč les Ă©chantillons sont souvent transportĂ©s d’un emplacement Ă  l’autre, des protocoles adaptĂ©s et validĂ©s, et des mesures de dĂ©gradation sont nĂ©cessaires. Nos principaux rĂ©sultats sont les suivants : un accroissement en fonction du temps des phospholipides oxydĂ©s et des lysophospholipides dans des conditions ambiantes, une diminution de la prĂ©sence des lipides ayant des acides gras insaturĂ©s et un effet inhibitoire sur ses phĂ©nomĂšnes de la conservation des sections au froid sous N2. A tempĂ©rature et atmosphĂšre ambiantes, les phospholipides sont oxydĂ©s sur une Ă©chelle de temps typique d’une prĂ©paration IMS normale (~30 minutes). Les phospholipides sont aussi dĂ©composĂ©s en lysophospholipides sur une Ă©chelle de temps de plusieurs jours. La validation d’une mĂ©thode de manipulation d’échantillon est d’autant plus importante lorsqu’il s’agit d’analyser un plus grand nombre d’échantillons. L’athĂ©rosclĂ©rose est une maladie cardiovasculaire induite par l’accumulation de matĂ©riel cellulaire sur la paroi artĂ©rielle. Puisque l’athĂ©rosclĂ©rose est un phĂ©nomĂšne en trois dimension (3D), l'IMS 3D en sĂ©rie devient donc utile, d'une part, car elle a la capacitĂ© Ă  localiser les molĂ©cules sur la longueur totale d’une plaque athĂ©romateuse et, d'autre part, car elle peut identifier des mĂ©canismes molĂ©culaires du dĂ©veloppement ou de la rupture des plaques. l'IMS 3D en sĂ©rie fait face Ă  certains dĂ©fis spĂ©cifiques, dont beaucoup se rapportent simplement Ă  la reconstruction en 3D et Ă  l’interprĂ©tation de la reconstruction molĂ©culaire en temps rĂ©el. En tenant compte de ces objectifs et en utilisant l’IMS des lipides pour l’étude des plaques d’athĂ©rosclĂ©rose d’une carotide humaine et d’un modĂšle murin d’athĂ©rosclĂ©rose, nous avons Ă©laborĂ© des mĂ©thodes «open-source» pour la reconstruction des donnĂ©es de l’IMS en 3D. Notre mĂ©thodologie fournit un moyen d’obtenir des visualisations de haute qualitĂ© et dĂ©montre une stratĂ©gie pour l’interprĂ©tation rapide des donnĂ©es de l’IMS 3D par la segmentation multivariĂ©e. L’analyse d’aortes d’un modĂšle murin a Ă©tĂ© le point de dĂ©part pour le dĂ©veloppement des mĂ©thodes car ce sont des Ă©chantillons mieux contrĂŽlĂ©s. En corrĂ©lant les donnĂ©es acquises en mode d’ionisation positive et nĂ©gative, l’IMS en 3D a permis de dĂ©montrer une accumulation des phospholipides dans les sinus aortiques. De plus, l’IMS par AgLDI a mis en Ă©vidence une localisation diffĂ©rentielle des acides gras libres, du cholestĂ©rol, des esters du cholestĂ©rol et des triglycĂ©rides. La segmentation multivariĂ©e des signaux lipidiques suite Ă  l’analyse par IMS d’une carotide humaine dĂ©montre une histologie molĂ©culaire corrĂ©lĂ©e avec le degrĂ© de stĂ©nose de l’artĂšre. Ces recherches aident Ă  mieux comprendre la complexitĂ© biologique de l’athĂ©rosclĂ©rose et peuvent possiblement prĂ©dire le dĂ©veloppement de certains cas cliniques. La mĂ©tastase au foie du cancer colorectal (Colorectal cancer liver metastasis en anglais, CRCLM) est la maladie mĂ©tastatique du cancer colorectal primaire, un des cancers le plus frĂ©quent au monde. L’évaluation et le pronostic des tumeurs CRCLM sont effectuĂ©s avec l’histopathologie avec une marge d’erreur. Nous avons utilisĂ© l’IMS des lipides pour identifier les compartiments histologiques du CRCLM et extraire leurs signatures lipidiques. En exploitant ces signatures molĂ©culaires, nous avons pu dĂ©terminer un score histopathologique quantitatif et objectif et qui corrĂšle avec le pronostic. De plus, par la dissection des signatures lipidiques, nous avons identifiĂ© des espĂšces lipidiques individuelles qui sont discriminants des diffĂ©rentes histologies du CRCLM et qui peuvent potentiellement ĂȘtre utilisĂ©es comme des biomarqueurs pour la dĂ©termination de la rĂ©ponse Ă  la thĂ©rapie. Plus spĂ©cifiquement, nous avons trouvĂ© une sĂ©rie de plasmalogĂšnes et sphingolipides qui permettent de distinguer deux diffĂ©rents types de nĂ©crose (infarct-like necrosis et usual necrosis en anglais, ILN et UN, respectivement). L’ILN est associĂ© avec la rĂ©ponse aux traitements chimiothĂ©rapiques, alors que l’UN est associĂ© au fonctionnement normal de la tumeur.Mass spectrometry is the measurement of the mass over charge ratio of ions. It is broadly applicable and capable of analyzing complex mixtures. Imaging mass spectrometry (IMS) is a branch of mass spectrometry that analyses ions across a surface while conserving their spatial organization on said surface. At this juncture, the most studied IMS samples are thin tissue sections from plants and animals. Among the molecules routinely imaged by IMS, lipids have generated significant interest. Lipids are important in disease and normal cell function as they form cell membranes and act as signaling molecules for cellular events among many other roles. Considering the potential of lipids in biological and clinical applications and the capability of MALDI to ionize lipids, we developed analytical strategies for the handling of samples and analysis of large lipid MALDI IMS datasets. Lipid degradation is massively important in the food industry with oxidized products producing a bad smell and taste. Similarly, lipids in thin tissue sections cut from whole tissues are subject to degradation, and their degradation products can introduce IMS artifacts and the loss of normally occurring species to degradation can skew accuracy in IMS measures of abundance. Oxidized lipids are also known to be important mediators in the progression of several diseases and their accurate preservation is critical. As IMS studies become multi-institutional and collaborations lead to sample exchange, the need for validated protocols and measures of degradation are necessary. We observed the products of lipid degradation in tissue sections from multiple mouse organs and reported on the conditions promoting and inhibiting their presence as well as the timeline of degradation. Our key findings were the increase in oxidized phospholipids and lysophospholipids from degradation at ambient conditions, the decrease in the presence of lipids containing unsaturations on their fatty acyl chains, and the inhibition of degradation by matrix coating and cold storage of sections under N2 atmosphere. At ambient atmospheric and temperature, lipids degraded into oxidized phospholipids on the time-scale of a normal IMS experiment sample preparation (within 30 min). Lipids then degraded into lysophospholipids’ on a time scale on the order of several days. Validation of sample handling is especially important when a greater number of samples are to be analyzed either through a cohort of samples, or analysis of multiple sections from a single tissue as in serial 3D IMS. Atherosclerosis is disease caused by accumulation of cellular material at the arterial wall. The accumulation implanted in the cell wall grows and eventually occludes the blood vessel, or causes a stroke. Atherosclerosis is a 3D phenomenon and serial 3D IMS is useful for its ability to localize molecules throughout the length of a plaque and help to define the molecular mechanisms of plaque development and rupture. Serial 3D IMS has many challenges, many of which are simply a matter of producing 3D reconstructions and interpreting them in a timely fashion. In this aim and using analysis of lipids from atherosclerotic plaques from a human carotid and mouse aortic sinuses, we described 3D reconstruction methods using open-source software. Our methodology provides means to obtain high quality visualizations and demonstrates strategies for rapid interpretation of 3D IMS datasets through multivariate segmentation. Mouse aorta from model animals provided a springboard for developing the methods on lower risk samples with less variation with interesting molecular results. 3D MALDI IMS showed localized phospholipid accumulation in the mouse aortic sinuses with correlation between separate positive and negative ionization datasets. Silver-assisted LDI imaging presented differential localization of free fatty acids, cholesterol / cholesterol esters, and triglycerides. The human carotid’s 3D segmentation shows molecular histologies (spatial groupings of imaging pixels with similar spectral fingerprints) correlating to the degree of arterial stenosis. Our results outline the potential for 3D IMS in atherosclerotic research. Molecular histologies and their 3D spatial organization, obtained from the IMS techniques used herein, may predict high-risk features, and particularly identify areas of plaque that have higher-risk of rupture. These investigations would help further unravel the biological complexities of atherosclerosis, and predict clinical outcomes. Colorectal cancer liver metastasis (CRCLM) is the metastatic disease of primary colorectal cancer, one of the most common cancers worldwide. CRC is a cancer of the endothelial lining of the colon or rectum. CRC itself is often cured with surgery, while CRCLM is more deadly and treated with chemotherapy with more limited efficacy. Prognosticating and assessment of tumors is performed using classical histopathology with a margin of error. We have used lipid IMS to identify the histological compartments and extract their signatures. Using these IMS signatures we obtained a quantitative and objective histopathological score that correlates with prognosis. Additionally, by dissecting out the lipid signatures we have identified single lipid moieties that are unique to different histologies that could potentially be used as new biomarkers for assessing response to therapy. Particularly, we found a series of plasmalogen and sphingolipid species that differentiate infarct-like and usual necrosis, typical of chemotherapeutic response and normal tumor function, respectively

    Plaque imaging volume analysis: technique and application

    Get PDF
    The prevention and management of atherosclerosis poses a tough challenge to public health organizations worldwide. Together with myocardial infarction, stroke represents its main manifestation, with up to 25% of all ischemic strokes being caused by thromboembolism arising from the carotid arteries. Therefore, a vast number of publications have focused on the characterization of the culprit lesion, the atherosclerotic plaque. A paradigm shift appears to be taking place at the current state of research, as the attention is gradually moving from the classically defined degree of stenosis to the identification of features of plaque vulnerability, which appear to be more reliable predictors of recurrent cerebrovascular events. The present review will offer a perspective on the present state of research in the field of carotid atherosclerotic disease, focusing on the imaging modalities currently used in the study of the carotid plaque and the impact that such diagnostic means are having in the clinical setting

    Carotid Atheroma Rupture Observed In Vivo and FSI-Predicted Stress Distribution Based on Pre-rupture Imaging

    Get PDF
    Atherosclerosis at the carotid bifurcation is a major risk factor for stroke. As mechanical forces may impact lesion stability, finite element studies have been conducted on models of diseased vessels to elucidate the effects of lesion characteristics on the stresses within plaque materials. It is hoped that patient-specific biomechanical analyses may serve clinically to assess the rupture potential for any particular lesion, allowing better stratification of patients into the most appropriate treatments. Due to a sparsity of in vivo plaque rupture data, the relationship between various mechanical descriptors such as stresses or strains and rupture vulnerability is incompletely known, and the patient-specific utility of biomechanical analyses is unclear. In this article, we present a comparison between carotid atheroma rupture observed in vivo and the plaque stress distribution from fluid–structure interaction analysis based on pre-rupture medical imaging. The effects of image resolution are explored and the calculated stress fields are shown to vary by as much as 50% with sub-pixel geometric uncertainty. Within these bounds, we find a region of pronounced elevation in stress within the fibrous plaque layer of the lesion with a location and extent corresponding to that of the observed site of plaque rupture
    • 

    corecore