7,262 research outputs found

    Efficient hardware debugging using parameterized FPGA reconfiguration

    Get PDF
    Functional errors and bugs inadvertently introduced at the RTL stage of the design process are responsible for the largest fraction of silicon IC re-spins. Thus, comprehensive func- tional verification is the key to reduce development costs and to deliver a product in time. The increasing demands for verification led to an increase in FPGA-based tools that perform emulation. These tools can run at much higher operating frequencies and achieve higher coverage than simulation. However, an important pitfall of the FPGA tools is that they suffer from limited internal signal observability, as only a small and preselected set of signals is guided towards (embedded) trace buffers and observed. This paper proposes a dynamically reconfigurable network of multiplexers that significantly enhance the visibility of internal signals. It allows the designer to dynamically change the small set of internal signals to be observed, virtually enlarging the set of observed signals significantly. These multiplexers occupy minimal space, as they are implemented by the FPGA’s routing infrastructure

    Producing Scheduling that Causes Concurrent Programs to Fail

    Get PDF
    A noise maker is a tool that seeds a concurrent program with conditional synchronization primitives (such as yield()) for the purpose of increasing the likelihood that a bug manifest itself. This work explores the theory and practice of choosing where in the program to induce such thread switches at runtime. We introduce a novel fault model that classifies locations as .good., .neutral., or .bad,. based on the effect of a thread switch at the location. Using the model we explore the terms in which efficient search for real-life concurrent bugs can be carried out. We accordingly justify the use of probabilistic algorithms for this search and gain a deeper insight of the work done so far on noise-making. We validate our approach by experimenting with a set of programs taken from publicly available multi-threaded benchmark. Our empirical evidence demonstrates that real-life behavior is similar to what our model predicts

    The Making of Cloud Applications An Empirical Study on Software Development for the Cloud

    Full text link
    Cloud computing is gaining more and more traction as a deployment and provisioning model for software. While a large body of research already covers how to optimally operate a cloud system, we still lack insights into how professional software engineers actually use clouds, and how the cloud impacts development practices. This paper reports on the first systematic study on how software developers build applications in the cloud. We conducted a mixed-method study, consisting of qualitative interviews of 25 professional developers and a quantitative survey with 294 responses. Our results show that adopting the cloud has a profound impact throughout the software development process, as well as on how developers utilize tools and data in their daily work. Among other things, we found that (1) developers need better means to anticipate runtime problems and rigorously define metrics for improved fault localization and (2) the cloud offers an abundance of operational data, however, developers still often rely on their experience and intuition rather than utilizing metrics. From our findings, we extracted a set of guidelines for cloud development and identified challenges for researchers and tool vendors

    On-stack replacement, distilled

    Get PDF
    On-stack replacement (OSR) is essential technology for adaptive optimization, allowing changes to code actively executing in a managed runtime. The engineering aspects of OSR are well-known among VM architects, with several implementations available to date. However, OSR is yet to be explored as a general means to transfer execution between related program versions, which can pave the road to unprecedented applications that stretch beyond VMs. We aim at filling this gap with a constructive and provably correct OSR framework, allowing a class of general-purpose transformation functions to yield a special-purpose replacement. We describe and evaluate an implementation of our technique in LLVM. As a novel application of OSR, we present a feasibility study on debugging of optimized code, showing how our techniques can be used to fix variables holding incorrect values at breakpoints due to optimizations

    Dagstuhl Reports : Volume 1, Issue 2, February 2011

    Get PDF
    Online Privacy: Towards Informational Self-Determination on the Internet (Dagstuhl Perspectives Workshop 11061) : Simone Fischer-Hübner, Chris Hoofnagle, Kai Rannenberg, Michael Waidner, Ioannis Krontiris and Michael Marhöfer Self-Repairing Programs (Dagstuhl Seminar 11062) : Mauro Pezzé, Martin C. Rinard, Westley Weimer and Andreas Zeller Theory and Applications of Graph Searching Problems (Dagstuhl Seminar 11071) : Fedor V. Fomin, Pierre Fraigniaud, Stephan Kreutzer and Dimitrios M. Thilikos Combinatorial and Algorithmic Aspects of Sequence Processing (Dagstuhl Seminar 11081) : Maxime Crochemore, Lila Kari, Mehryar Mohri and Dirk Nowotka Packing and Scheduling Algorithms for Information and Communication Services (Dagstuhl Seminar 11091) Klaus Jansen, Claire Mathieu, Hadas Shachnai and Neal E. Youn
    • …
    corecore