49,484 research outputs found

    Adaptive text mining: Inferring structure from sequences

    Get PDF
    Text mining is about inferring structure from sequences representing natural language text, and may be defined as the process of analyzing text to extract information that is useful for particular purposes. Although hand-crafted heuristics are a common practical approach for extracting information from text, a general, and generalizable, approach requires adaptive techniques. This paper studies the way in which the adaptive techniques used in text compression can be applied to text mining. It develops several examples: extraction of hierarchical phrase structures from text, identification of keyphrases in documents, locating proper names and quantities of interest in a piece of text, text categorization, word segmentation, acronym extraction, and structure recognition. We conclude that compression forms a sound unifying principle that allows many text mining problems to be tacked adaptively

    Improving the translation environment for professional translators

    Get PDF
    When using computer-aided translation systems in a typical, professional translation workflow, there are several stages at which there is room for improvement. The SCATE (Smart Computer-Aided Translation Environment) project investigated several of these aspects, both from a human-computer interaction point of view, as well as from a purely technological side. This paper describes the SCATE research with respect to improved fuzzy matching, parallel treebanks, the integration of translation memories with machine translation, quality estimation, terminology extraction from comparable texts, the use of speech recognition in the translation process, and human computer interaction and interface design for the professional translation environment. For each of these topics, we describe the experiments we performed and the conclusions drawn, providing an overview of the highlights of the entire SCATE project

    F-formation Detection: Individuating Free-standing Conversational Groups in Images

    Full text link
    Detection of groups of interacting people is a very interesting and useful task in many modern technologies, with application fields spanning from video-surveillance to social robotics. In this paper we first furnish a rigorous definition of group considering the background of the social sciences: this allows us to specify many kinds of group, so far neglected in the Computer Vision literature. On top of this taxonomy, we present a detailed state of the art on the group detection algorithms. Then, as a main contribution, we present a brand new method for the automatic detection of groups in still images, which is based on a graph-cuts framework for clustering individuals; in particular we are able to codify in a computational sense the sociological definition of F-formation, that is very useful to encode a group having only proxemic information: position and orientation of people. We call the proposed method Graph-Cuts for F-formation (GCFF). We show how GCFF definitely outperforms all the state of the art methods in terms of different accuracy measures (some of them are brand new), demonstrating also a strong robustness to noise and versatility in recognizing groups of various cardinality.Comment: 32 pages, submitted to PLOS On

    Preparing, restructuring, and augmenting a French treebank: lexicalised parsers or coherent treebanks?

    Get PDF
    We present the Modified French Treebank (MFT), a completely revamped French Treebank, derived from the Paris 7 Treebank (P7T), which is cleaner, more coherent, has several transformed structures, and introduces new linguistic analyses. To determine the effect of these changes, we investigate how theMFT fares in statistical parsing. Probabilistic parsers trained on the MFT training set (currently 3800 trees) already perform better than their counterparts trained on five times the P7T data (18,548 trees), providing an extreme example of the importance of data quality over quantity in statistical parsing. Moreover, regression analysis on the learning curve of parsers trained on the MFT lead to the prediction that parsers trained on the full projected 18,548 tree MFT training set will far outscore their counterparts trained on the full P7T. These analyses also show how problematic data can lead to problematic conclusions–in particular, we find that lexicalisation in the probabilistic parsing of French is probably not as crucial as was once thought (Arun and Keller (2005))
    corecore