7,975 research outputs found

    Mainstream parallel array programming on cell

    Get PDF
    We present the E] compiler and runtime library for the ‘F’ subset of the Fortran 95 programming language. ‘F’ provides first-class support for arrays, allowing E] to implicitly evaluate array expressions in parallel using the SPU coprocessors of the Cell Broadband Engine. We present performance results from four benchmarks that all demonstrate absolute speedups over equivalent ‘C’ or Fortran versions running on the PPU host processor. A significant benefit of this straightforward approach is that a serial implementation of any code is always available, providing code longevity, and a familiar development paradigm

    Uniqueness Typing for Resource Management in Message-Passing Concurrency

    Get PDF
    We view channels as the main form of resources in a message-passing programming paradigm. These channels need to be carefully managed in settings where resources are scarce. To study this problem, we extend the pi-calculus with primitives for channel allocation and deallocation and allow channels to be reused to communicate values of different types. Inevitably, the added expressiveness increases the possibilities for runtime errors. We define a substructural type system which combines uniqueness typing and affine typing to reject these ill-behaved programs

    A Concurrent Language with a Uniform Treatment of Regions and Locks

    Full text link
    A challenge for programming language research is to design and implement multi-threaded low-level languages providing static guarantees for memory safety and freedom from data races. Towards this goal, we present a concurrent language employing safe region-based memory management and hierarchical locking of regions. Both regions and locks are treated uniformly, and the language supports ownership transfer, early deallocation of regions and early release of locks in a safe manner

    Guppy: Process-Oriented Programming on Embedded Devices

    Get PDF
    Guppy is a new and experimental process-oriented programming language, taking much inspiration (and some code-base) from the existing occam-pi language. This paper reports on a variety of aspects related to this, specifically language, compiler and run-time system development, enabling Guppy programs to run on desktop and embedded systems. A native code-generation approach is taken, using C as the intermediate language, and with stack-space requirements determined at compile-time

    CPL: A Core Language for Cloud Computing -- Technical Report

    Full text link
    Running distributed applications in the cloud involves deployment. That is, distribution and configuration of application services and middleware infrastructure. The considerable complexity of these tasks resulted in the emergence of declarative JSON-based domain-specific deployment languages to develop deployment programs. However, existing deployment programs unsafely compose artifacts written in different languages, leading to bugs that are hard to detect before run time. Furthermore, deployment languages do not provide extension points for custom implementations of existing cloud services such as application-specific load balancing policies. To address these shortcomings, we propose CPL (Cloud Platform Language), a statically-typed core language for programming both distributed applications as well as their deployment on a cloud platform. In CPL, application services and deployment programs interact through statically typed, extensible interfaces, and an application can trigger further deployment at run time. We provide a formal semantics of CPL and demonstrate that it enables type-safe, composable and extensible libraries of service combinators, such as load balancing and fault tolerance.Comment: Technical report accompanying the MODULARITY '16 submissio

    Modelling Garbage Collection Algorithms --- Extend abstract

    Get PDF
    We show how abstract requirements of garbage collection can be captured using temporal logic. The temporal logic specification can then be used as a basis for process algebra specifications which can involve varying amounts of parallelism. We present two simple CCS specifications as an example, followed by a more complex specification of the cyclic reference counting algorithm. The verification of such algorithms is then briefly discussed
    • 

    corecore