86 research outputs found

    DeltaImpactFinder: Assessing Semantic Merge Conflicts with Dependency Analysis

    Get PDF
    In software development, version control systems (VCS) provide branching and merging support tools. Such tools are popular among developers to concurrently change a code-base in separate lines and reconcile their changes automatically afterwards. However, two changes that are correct independently can introduce bugs when merged together. We call semantic merge conflicts this kind of bugs. Change impact analysis (CIA) aims at estimating the effects of a change in a codebase. In this paper, we propose to detect semantic merge conflicts using CIA. On a merge, DELTAIMPACTFINDER analyzes and compares the impact of a change in its origin and destination branches. We call the difference between these two impacts the delta-impact. If the delta-impact is empty, then there is no indicator of a semantic merge conflict and the merge can continue automatically. Otherwise, the delta-impact contains what are the sources of possible conflicts.Comment: International Workshop on Smalltalk Technologies 2015, Jul 2015, Brescia, Ital

    AnimDiff: Comparing 3D Animations for Revision Control

    Get PDF
    The process of animating a complex 3D character can be a time consuming activity which may take several iterations and several artists working in collaboration, each iteration improving some elements of the animation but potentially introducing artifacts in others. At present there exists no formal process to collate these various revisions in a manner that allows for close examination of their differences, which would help speed up the creation of 3D animations. To address this we present a method for equivalence checking and displaying differences between differing versions of an animated 3D model. Implemented in a tool that allows selective blending of animations, this provides a first step towards a 3D animation revision control system

    Semantic Deltas for Live DSL Environments

    Get PDF
    Domain-specific languages (DSLs) require IDE support, just like ordinary programming languages. This paper introduces semantic deltas as a foundation for building live DSL environments to bridge the "gulf of evaluation" between DSL code and the running application. Semantic deltas are distinguished from textual or structural deltas in two ways. First, they have meaning in the application domain captured by the DSL. Second, they can be interpreted at runtime so that the behavior of the running system adapts to the evolved DSL code. Semantic deltas have the potential to support back-in-time debugging, application state persistence, version control, retroactive updates and exploring what-if scenarios. I present early experiences in building a live DSL environment and identify areas for future research

    Towards hybrid model persistence

    Get PDF
    Change-based persistence has the potential to support faster and more accurate model comparison, merging, as well as a range of analytics activities. However, reconstructing the state of a model by replaying its editing history every time the model needs to be queried or modified can get increasingly expensive as the model grows in size. In this work, we integrate change-based and state-based persistence mechanisms in a hybrid model persistence approach that delivers the best of both worlds. In this paper, we present the design of our hybrid model persistence approach and report on its impact on time and memory footprint for model loading, saving, and storage space usage

    Semantic Deltas for Live DSL Environments

    Get PDF
    Domain-specific languages (DSLs) require IDE support, just like ordinary programming languages. This paper introduces semantic deltas as a foundation for building live DSL environments to bridge the "gulf of evaluation" between DSL code and the running application. Semantic deltas are distinguished from textual or structural deltas in two ways. First, they have meaning in the application domain captured by the DSL. Second, they can be interpreted at runtime so that the behavior of the running system adapts to the evolved DSL code. Semantic deltas have the potential to support back-in-time debugging, application state persistence, version control, retroactive updates and exploring what-if scenarios. I present early experiences in building a live DSL environment and identify areas for future research

    Model-independent differences

    Get PDF
    corecore