
This is a repository copy of Towards hybrid model persistence.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/163902/

Version: Published Version

Article:

Yohannis, Alfa, Rodriguez, Horacio Hoyos, Polack, Fiona orcid.org/0000-0001-7954-6433 
et al. (1 more author) (2018) Towards hybrid model persistence. CEUR Workshop 
Proceedings. pp. 594-603. ISSN 1613-0073 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Towards Hybrid Model Persistence

Alfa Yohannis1,3, Horacio Hoyos Rodriguez∗1, Fiona Polack∗∗2, and
Dimitris Kolovos1

1Department of Computer Science, University of York, United Kingdom
2School of Computing and Maths, Keele University, United Kingdom

3Department of Computer Science, Institut Teknologi dan Bisnis Kalbis, Indonesia

{ary506, dimitris.kolovos}@york.ac.uk
∗

horacio hoyos rodriguez@ieee.org
∗∗

f.a.c.polack@keele.ac.uk

Abstract. Change-based persistence has the potential to support faster

and more accurate model comparison, merging, as well as a range of

analytics activities. However, reconstructing the state of a model by re-

playing its editing history every time the model needs to be queried or

modified can get increasingly expensive as the model grows in size. In

this work, we integrate change-based and state-based persistence mech-

anisms in a hybrid model persistence approach that delivers the best of

both worlds. In this paper, we present the design of our hybrid model

persistence approach and report on its impact on time and memory foot-

print for model loading, saving, and storage space usage.

1 Introduction

Change-based persistence (CBP) of models [1] conforming to metamodelling ar-
chitectures such as MOF/EMF [2,3] comes with notable advantages over state-
based persistence (SBP): it provides support for fast comparison and differencing
of versions of the same model [4,5,6,7] – which can also substantially speed up
incremental model management activities, and enables novel model analytics
activities (e.g. pattern detection in the editing history to understand how mod-
ellers use modelling languages and tools) [8]. However, CBP comes at the cost
of ever-growing model files [6,8] since all changes (even deleting model elements)
are recorded in an editing log, which naturally leads to longer loading times [9].
In this work, we address the latter challenge by introducing the concept of hybrid
persistence of models. In hybrid model persistence the change-based representa-
tion is augmented with a state-based representation (which may be derived from
the change-based representation) of the latest state of the model which is used
to speed up model loading and querying.

The paper is structured as follows. Section 2 introduces the concept of change-
based model persistence and recent work on state-based model persistence. Sec-
tions 3 and 4 present our approach to hybrid model persistence and its im-
plementation. Section 5 presents experimental results and evaluation. Section 7
provides an overview of related work, and Section 8 concludes with a discussion
on directions for future work.



2 Change and State-based Model Persistence

To explain the differences, benefits and drawbacks of CBP and SBP, consider
a modelling activity on a UML model as presented Fig. 1. The sub-figures 1a
to 1f depict the evolution of a UML model at different time stamps. Classes
are created and added/removed from Package X. In SBP, for each session,
only the final state of the model is persisted (the state of previous session are
overridden by the state of the latest session). Thus, to represent the final state of
the UML model, only the information about Package X and Class C needs
to be persisted, as presented in Listing 1 (XMI format). In CBP, all the changes
in the model are persisted. Thus, a list of all the events generated by the model
editor is needed to represent the final state of the model.

(a) Time stamp 1 (b) Time stamp 2 (c) Time stamp 3

(d) Time stamp 4 (e) Time stamp 5 (f) Time stamp 6

Fig. 1: The states of the example model after certain changes and their corre-
sponding lines in Listing 2.

A session depicts a set of changes made between save events, i.e. a session
comprises all the changes that happened since the last time that the model was
persisted. The CBP representation is shown in Listing 21. Lines 1-7 represent
the initial state (Fig. 1a), followed by lines 8 (Fig. 1b), 9 (Fig. 1c), 11 (Fig. 1d),
12 (Fig. 1e), and 13 (Fig. 1f).

Table 1 summarises the benefits (+) and drawbacks (-) of change and state-based
model persistence. To load an SBP model, only the elements that exist in the final
state need to be loaded into memory. To load a CBP model, all the events that
lead to the final state must be replayed to load the model in memory. Loading
times for SBP models are proportional to the size of the model. Loading times
for CBP models are proportional to the number of events. As a result, loading
times of CBP models will always increase over time and are considerably longer
than for SBP [10,9].

1 We use a natural language pseudo-code for CBP, introduced in [1,10]



To store an SBP model, all the elements that exist in the final state must be
persisted. To save a CBP, only the change events in the last session need to be
persisted. Storing times of SBP models are proportional to the size of the model.
Storing times of CBP models are proportional to the number of events in a ses-
sion. As a result, storing times of CBP models can be considerably shorter than
for SBP models [10]. Comparing and finding the differences between two versions
of a state-based model is expensive [11] (O(N2) in the general case) which affects
the efficiency of change visualisation and comprehension, and has a substantial
impact on downstream activities such as incremental model transformation [12]
and validation.

Listing 1: The UML2 model of the example
model in Fig. 1.

1 <uml:Package xmi:id="1" name="X">

2 <packagedElement xsi:type="uml:Class"

xmi:id="3" name="C"/>

3 </uml:Package>

Table 1: Comparison of model persistence ap-
proaches.

Dimensions Change-based State-based

Load Time − +
Save Time + −

Comparison Time + −

Storage Space − +

Listing 2: The textual CBP for
producing state-based model in
List. 1. Its visual illustration is
in Fig. 1.

1 session 1

2 create p1 type Package

3 set p1.name to "X"

4 create c1 type Class

5 set c1.name to "A"

6 create c2 type Class

7 set c2.name to "B"

8 add c1 to p1.

packagedElement

9 add c2 to p1.

packagedElement

10 session 2

11 set c2.name to "C"

12 remove c1 from p1.

children

13 delete c1

By contrast, in CBP, changes are first-class entities in the persisted model file and
as such, model comparison and differencing is relatively inexpensive. The main
downsides of CBP are it’s model file sizes [8,6] and ever-increasing loading times
[9]. Loading times can be reduced by around 50% by processing the changelog,
detecting, memorising and subsequently ignoring change events that have no
impact to the final state of the model. The loading times are still substantially
longer – more than 6.4 times slower and even longer as the persisted changes
increase – than loading times for state-based approaches [10].

3 Hybrid Model Persistence

To achieve the best of both worlds we introduce a hybrid model persistence ap-
proach which combines change-based and state-based model persistence, to work
together side-by-side. An overview of the proposed approach is illustrated in Fig.
2. In the proposed approach a hybrid model is stored in two representations at
the same time: a change-based (e.g. using CBP) and a state-based represen-
tation (e.g. using XMI or a database-backed approach such as NeoEMF). The
change-based representation is perceived as the main representation of a model,
while the state-based representation can be fully derived from the change-based
representation.



Fig. 2: The mechanism of hybrid model persistence.

Loading a hybrid model. Models are loaded into in-memory object graphs
that clients (e.g. editors, transformations) can then interact with2. In the pro-
posed hybrid approach, if the state-based counterpart already exists, the in-
memory object graph is populated from it; otherwise, it is populated by replaying
the complete editing history recorded in the change-based representation.

Changing a hybrid model. When an element in a loaded model is created,
modified or deleted, the change is applied to the in-memory object graph and
is also recorded in an in-memory list of changes (Editing session changes in Fig
2). We use the term editing session for the period between loading a model and
saving back to disk.

Saving a hybrid model. The current version of the in-memory object graph is
stored in the preferred state-based representation. The list of changes recorded
in the current editing session (with optional processing, as described above) is
appended to the change-based representation.

Versioning a hybrid model. Since the state-based representation is fully de-
rived from the change-based representation, if a model needs to be versioned (e.g.
in a Git repository), only the change-based representation needs to be stored.
The first time it is loaded after being checked out/cloned, the state-based rep-
resentation is computed and persisted locally and is used in subsequent model
loading steps.

Comparing hybrid models. To compare two hybrid models3, their change-
based representations are used: this is much more efficient than state-based com-
parison.

2 Depending on the state persistence mechanism, the object graph may be loaded in
its entirety at startup (e.g. XMI) or loaded progressively, in a lazy manner (e.g.
NeoEMF/CDO)

3 The work of the hybrid model comparison is still in the preliminary stage and out
of the scope of this paper.



4 Implementation

We have implemented the proposed hybrid model persistence approach in a
prototype4 on top of the Eclipse Modeling Framework (EMF) [3]. The prototype
makes use of an existing implementation of change-based model persistence, the
Epsilon CBP [1], augmented with two state-based persistence implementations:
NeoEMF [13] and XMI [14].

XMI has been selected as a standard state-based model persistence format (na-
tively supported by EMF), and NeoEMF as a best-of-breed representative of
database-backed state-based model persistence frameworks. The core compo-
nents of the prototype are presented in Fig. 3.

Fig. 3: Class diagram showing the core components of the hybrid model persis-
tence implementation.

The Epsilon CBP provides a ChangeEventAdapter class [1] that extends from
Ecore’s EContentAdapter adapter class. This class collects changes made to the
in-memory object graph of an EMF model in the form of a list of events change-
Events. Based on this class, we derived an adapter class, HybridChangeEvent-
Adapter, for the hybrid model persistence implementation. It is an abstract
class so that it can be further derived to create different implementations of
adapter classes for different types of state-based persistence. The HybridNeo-

EMFChangeEventAdapater is the adapter class for NeoEMF, and the HybridXMI-

ChangeEventAdapater for XMI. These classes override notifyChanged(Notification)
in the ChangeEventAdapter class, to handle events that are specific to NeoEMF
and XMI, respectively.

We also created a resource class for hybrid persistence, HybridResource (a re-
source class is a class dedicated to interacting with a persistence, e.g. save, load,
get contents), derived from the Ecore’s ResourceImpl. The class is again abstract
so that it can be realised in different resource implementation classes for differ-
ent state-based persistence. The HybridResource class contains the stateBased-

Resource field which is used to refer to a state-based persistence that is being

4 The prototype is available under https://github.com/epsilonlabs/

emf-cbp.



used, and the cbpOutputStream field that refers to an OutputStream (e.g. file, in-
memory) as the representation of the CBP for saving changes. HybridResource has
an association with HybridChangeEventAdapater, so that the former can access
the events collected by the latter, and the latter can also use facilities provided
by the former (e.g. getting the identity of an element in the resource; saving
changes to a change-based model representation).

The resource implementation classes for NeoEMF and XMI are HybridNeoEMF-

ResourceImpl and HybridXMIResourceImpl respectively. HybridNeoEMFResource-

Impl also implements the NeoEMF’s PersistenceResource interface so that specific
NeoEMF’s methods can be used (e.g. close(), to close a connection with a back-
end database).

5 Evaluation

In this section, we compare hybrid model persistence (Epsilon CBP with each of
NeoEMF and XMI) vs state-based persistence (NeoEMF or XMI only) on storage
space usage, loading and saving time and memory footprint, and demonstrate
that hybrid model persistence can still perform fast model loading and saving.

The evaluation was performed on Intel R© CoreTM i7-6500U CPU @ 2.50GHz
2.59GHz, 12GB RAM, and the JavaTM SE Runtime Environment (build 1.8.0
162-b12). For the evaluation, we used models reverse-engineered from the Java
source code of the Epsilon [15,16] and BPMN2 [17] projects. For state-based
representation of the models, we used the MoDisco tool [18] to generate XMI-
based UML2 [19] models that reflect the classes, fields, and operation signatures
of the source code of the project and then imported the generated models into
NeoEMF. We also derived MoDiscoXML models [20] from the Wikipedia article
on the United States [21]. We then used reverse-engineering to generate a CBP
for each project based on the differences between consecutive versions of the
models.

Table 2: Space usage for the Epsilon and BPMN2 projects, and the Wikipedia’s
United States article.

Case Epsilon BPMN2 Wikipedia

Generated
From

940 commits 192 commits 10,187 versions

Type XMI NeoEMF CBP XMI NeoEMF CBP XMI NeoEMF CBP

Element
Count

88,020 88,020 — 62,062 62,062 — 13,112 13,112 —

Event
Count

— — 4.3 m — — 1.2 m — — 62.3 m

Space
Size

9.44
MBs

188
MBs

406
MBs

6.55
MBs

134
MBs

109
MBs

1.28
MBs

31.8
MBs

5.85
GBs

Average
Space
Size

112
bytes/
element

2
KBs/

element

98
bytes
/event

110
bytes/
element

2
KBs/

element

92
bytes
/event

102
bytes/
element

2
KBs/

element

98
bytes
/event

m = million events, MB = Megabytes, KB = Kilobytes



5.1 Storage Space Usage

For the Epsilon project, we have successfully generated a CBP from version 1
up to version 940 and also CBPs for the BPMN2 project and Wikipedia article
up to version number 192 and 10,187 respectively. The details (element count,
event count, space size, and average space size per element or event) of their
models, when persisted in XMI, NeoEMF, and CBP are shown in Table 2. The
last row of the table derives an average space usage per element (for the SBPs)
or event (for the CBP). We can estimate the storage space usage for a hybrid
model persistence to be the combination of CBP and the appropriate SBP space
usage.

Table 3: The comparison on time and memory footprint for loading and saving
models of the hybrid and state-based-only persistence.

Dimension Case Backend
Hybrid State-based Significance

mean sd mean sd W p-value

Loading
Time

Epsilon
NeoEMF 0.292 0.061 0.279 0.023 258 0.72

XMI 0.317 0.006 0.270 0.018 26 < 0.05

BPMN2
NeoEMF 0.308 0.071 0.286 0.025 230 0.79

XMI 0.212 0.016 0.179 0.016 37 < 0.05

Wikipedia
NeoEMF 0.262 0.048 0.273 0.062 250 0.86

XMI 0.045 0.001 0.040 0.001 0 < 0.05

Saving
Time

Epsilon
NeoEMF 0.0892 0.0421 0.0829 0.0494 216 0.55

XMI 0.411 0.023 0.397 0.015 78 < 0.05

BPMN2
NeoEMF 0.0777 0.0424 0.0775 0.0452 213 0.51

XMI 0.33 0.007 0.28 008 0 < 0.05

Wikipedia
NeoEMF 0.135 0.048 0.120 0.024 218 0.59

XMI 0.024 0.048 0.020 0.002 42 < 0.05

Loading
Memory
Footprint

Epsilon
NeoEMF 38.601 0.878 10.014 1.088 0 < 0.05

XMI 10.72018 0.00022 10.72009 0.00024 0 < 0.05

BPMN2
NeoEMF 40.78 1.29 27.20 1.05 0 < 0.05

XMI 6.73367 1.29305 6.73367 0.00056 101 < 0.05

Wikipedia
NeoEMF 35.91 1.03 27.25 0.54 27.25 0.54

XMI 8.4079 0.0008 8.0933 0.0009 0 < 0.05

Saving
Memory
Footprint

Epsilon
NeoEMF 2.64 1.29 2.61 0.78 283 0.34

XMI 1.56355 0.0005 1.56326 0.0018 408 < 0.05

BPMN2
NeoEMF 1.86 3.86 1.52 0.77 308 0.12

XMI 0.8378 0.00361 0.8375 0.00362 58 < 0.05

Wikipedia
NeoEMF 1.32 1.51 0.97 0.76 189 0.22

XMI 0.0010 0.00044 0.0005 0.00001 0 < 0.05
The time is in seconds, and the memory footprint is in MBs.

5.2 Time and Memory Footprint of Loading and Saving Models

We evaluated the performance of our hybrid persistence prototype against XMI
and NeoEMF regarding time and memory footprint for loading and saving. We
repeated our experiments 22 times for each dimension measured. Since the data



were not normally distributed, we used the nonparametric Mann-Whitney U test
[22] with a significance level of 5%.

As it can be noticed in Table 3, all cases experience a slight slowdown on load-
ing and saving time (hybrid approach’s mean > state-based approach’s mean).
However, almost for all NeoEMF cases, the slowdown is not significant, which
means that side-effect of the hybrid approach on loading and saving time is still
acceptable. The hybrid approach also produces more memory footprint com-
pared to the state-based-only approach. Nevertheless, considering the cost of
main memory, this condition is acceptable in almost all real-world scenarios.

6 Discussion

The use of state-based persistence in hybrid model persistence enables faster
model loading, as shown by the result of loading time evaluation in Section 5.2,
without having to replay all the changes persisted in its CBP – the main chal-
lenge for the change-based approach [10,9]. Hybrid model persistence performs
slightly slower – statistically significant for Hybrid XMI but insignificant for Hy-
brid NeoEMF – compared to loading a state-based model. A slight slowdown
also appears on model saving – statistically significant for Hybrid XMI but in-
significant for Hybrid NeoEMF (Section 5.2). The slowdown is because changes
have to be persisted into two representations, state-based and change-based.

The main drawback of hybrid model persistence is that it consumes more mem-
ory when loading and saving and storage space for persisting models compared
to state-based representation only (Sections 5.2 and 5.1). However, considering
the cost of main memory and storage, the trade-off can be acceptable in most
real-world scenarios.

7 Related Work

There are several non-XMI approaches to state-based model persistence, using
relational or NoSQL databases. For example, EMF Teneo [23] persists EMF mod-
els in relational databases, while Morsa [24] and NeoEMF [13] persist models
in document and graph databases, respectively. None of these approaches pro-
vides built-in support for versioning and models are eventually stored in binary
files/folders which are known to be a poor fit for text-oriented version control
systems like Git and SVN. Connected Data Objects (CDO) [25], which provides
support for database-backed model persistence, also provides collaboration facil-
ities, but CDO adoption necessitates the use of a separate version control system
(e.g. a Git repository for code and a CDO repository for models), which intro-
duces fragmentation and administration challenges [26]. Similar challenges arise
in relation to other model-specific version control systems such as EMFStore [7].

8 Conclusions and Future Work

In this paper, we have proposed a hybrid model persistence approach and eval-
uated its impact on time and memory footprint for model loading and saving,



and storage space usage. Based on the evaluation results, the hybrid model per-
sistence provides benefits on model loading time with an acceptable trade-off on
memory footprint and storage space usage.

Currently, we are still working on the hybrid model comparison (Section 3 –
Comparing hybrid models). So far, the progress is promising. Based on our
preliminary investigation, it can detect atomic changes of models faster than
state-based model comparison, e.g. detecting elements that have been removed
from older versions. In the future, we plan to evaluate hybrid model persistence
on even larger models and perform experiments where software modellers are
asked to construct change-based models. We also plan to develop a solution for
the efficient merging of change-based and hybrid models.

Acknowledgements. This work was partly supported by through a scholarship
managed by Lembaga Pengelola Dana Pendidikan Indonesia (Indonesia Endow-
ment Fund for Education).

References

1. Yohannis, A., Kolovos, D.S., Polack, F.: Turning models inside out. In: Pro-
ceedings of MODELS 2017 Satellite Event: Workshops (ModComp, ME, EXE,
COMMitMDE, MRT, MULTI, GEMOC, MoDeVVa, MDETools, FlexMDE, MDE-
bug), Posters, Doctoral Symposium, Educator Symposium, ACM Student Research
Competition, and Tools and Demonstrations co-located with ACM/IEEE 20th
International Conference on Model Driven Engineering Languages and Systems
(MODELS 2017), Austin, TX, USA, September, 17, 2017. (2017) 430–434

2. OMG: Metaobject Facility. http://www.omg.org/mof Accessed: 2018-02-21.

3. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF: Eclipse Modeling
Framework. Eclipse Series. Pearson Education (2008)

4. Lippe, E., van Oosterom, N.: Operation-based merging. In: SDE 5: 5th ACM
SIGSOFT Symposium on Software Development Environments, Washington, DC,
USA, December 9-11, 1992. (1992) 78–87

5. Ignat, C., Norrie, M.C.: Operation-based merging of hierarchical documents. In:
The 17th Conference on Advanced Information Systems Engineering (CAiSE ’05),
Porto, Portugal, 13-17 June, 2005, CAiSE Forum, Short Paper Proceedings. (2005)

6. Koegel, M., Herrmannsdoerfer, M., Li, Y., Helming, J., David, J.: Comparing
state- and operation-based change tracking on models. In: Proceedings of the 14th
IEEE International Enterprise Distributed Object Computing Conference, EDOC
2010, Vitória, Brazil, 25-29 October 2010. (2010) 163–172

7. Koegel, M., Helming, J.: Emfstore: a model repository for EMF models. In: Pro-
ceedings of the 32nd ACM/IEEE International Conference on Software Engineering
- Volume 2, ICSE 2010, Cape Town, South Africa, 1-8 May 2010. (2010) 307–308

8. Robbes, R., Lanza, M.: A change-based approach to software evolution. Electr.
Notes Theor. Comput. Sci. 166 (2007) 93–109

9. Mens, T.: A state-of-the-art survey on software merging. IEEE Trans. Software
Eng. 28(5) (2002) 449–462



10. Yohannis, A., Rodriguez, H.H., Polack, F., Kolovos, D.: Towards efficient loading of
change-based models. In: Modelling Foundations and Applications - 14th European
Conference, ECMFA 2018, Held as Part of STAF 2018, Toulouse, France, June
25-29, 2018. Proceedings. (2018 (to be presented http://eventmall.info/

ecmfa2018/program)) Accessed: 2018-04-19.
11. Kolovos, D.S., Di Ruscio, D., Pierantonio, A., Paige, R.F.: Different models for

model matching: An analysis of approaches to support model differencing. In:
Proceedings of the 2009 ICSEWorkshop on Comparison and Versioning of Software
Models. CVSM ’09, Washington, DC, USA, IEEE Computer Society (2009) 1–6

12. Ogunyomi, B., Rose, L.M., Kolovos, D.S.: Property access traces for source incre-
mental model-to-text transformation. In: Modelling Foundations and Applications
- 11th European Conference, ECMFA 2015, Held as Part of STAF 2015, L’Aquila,
Italy, July 20-24, 2015. Proceedings. (2015) 187–202

13. Daniel, G., Suny, G., Benelallam, A., Tisi, M., Vernageau, Y., Gmez, A., Cabot,
J.: Neoemf: A multi-database model persistence framework for very large models.
Science of Computer Programming 149 (2017) 9 – 14 Special Issue on MODELS’16.

14. OMG: About the XML Metadata Interchange Specification Version 2.5.1. http:
//www.omg.org/spec/XMI Accessed: 2018-02-21.

15. Eclipse: Epsilon. https://www.eclipse.org/epsilon/ Accessed: 2018-02-12.
16. Eclipse: Epsilon Git. http://git.eclipse.org/

c/epsilon/org.eclipse.epsilon.git/commit/?id=

ebd0991c279a1f0df1acb529367d2ace5254fe87 Accessed: 2018-02-19.
17. Eclipse: MDT/BPMN2. http://wiki.eclipse.org/MDT/BPMN2 Accessed:

2018-01-15.
18. Brunelière, H., Cabot, J., Dupé, G., Madiot, F.: Modisco: A model driven reverse

engineering framework. Information & Software Technology 56(8) (2014) 1012–
1032

19. Eclipse: MDT/UML2. http://wiki.eclipse.org/MDT/UML2 Accessed: 2018-
01-15.

20. Eclipse: XML Metamodel. http://help.eclipse.org/neon/index.

jsp?topic=%2Forg.eclipse.modisco.xml.doc%2Fmediawiki%2Fxml_

metamodel%2Fuser.html Accessed: 2018-02-19.
21. Wikipedia: United States. https://en.wikipedia.org/w/index.php?

title=United_States&oldid=45118452 Accessed: 2018-02-19.
22. McKnight, P.E., Najab, J. In: MannWhitney U Test. American Cancer Society

(2010) 1–1
23. Eclipse: Teneo. http://wiki.eclipse.org/Teneo Accessed: 2017-10-15.
24. Espinazo-Pagán, J., Cuadrado, J.S., Molina, J.G.: Morsa: A scalable approach for

persisting and accessing large models. In: Model Driven Engineering Languages and
Systems, 14th International Conference, MODELS 2011, Wellington, New Zealand,
October 16-21, 2011. Proceedings. (2011) 77–92

25. Eclipse: CDO The Model Repository. https://www.eclipse.org/cdo/ Ac-
cessed: 2017-10-15.

26. Barmpis, K., Kolovos, D.S.: Evaluation of contemporary graph databases for effi-
cient persistence of large-scale models. Journal of Object Technology 13(3) (2014)
3: 1–26


	Towards Hybrid Model Persistence

