
Semantic Deltas for Live DSL Environments
Tijs van der Storm

Centrum Wiskunde & Informatica (CWI)
Science Park 123, Amsterdam, The Netherlands

storm@cwi.nl

Abstract—Domain-specific languages (DSLs) require IDE sup-
port, just like ordinary programming languages. This paper
introduces semantic deltas as a foundation for building live DSL
environments to bridge the “gulf of evaluation” between DSL code
and the running application. Semantic deltas are distinguished
from textual or structural deltas in two ways. First, they have
meaning in the application domain captured by the DSL. Second,
they can be interpreted at runtime so that the behavior of
the running system adapts to the evolved DSL code. Semantic
deltas have the potential to support back-in-time debugging,
application state persistence, version control, retroactive updates
and exploring what-if scenarios. I present early experiences in
building a live DSL environment and identify areas for future
research.

I. INTRODUCTION

The goal of live programming is to bridge the “gulf of
evaluation” [11],—the cognitive impedance mismatch between
the source code of a program and its dynamic manifestation
at runtime. Concretely, live programming aims to provide
continuous semantic feedback on the state of running pro-
grams. The program can be stopped, restarted, its state can be
inspected. Changes to the program are immediately reflected
in the running instance.

Programming can be seen as a complex process of turning
problem space requirements into solution space artifacts. The
original problem specification is often “lost in translation”.
As a result, evolving software systems is time-consuming
and error-prone. An important goal of DSLs is to bridge
this “gulf of encoding” by providing high-level notations,
tailored to specific problem domains [17]. They can be seen as
specification languages to directly express requirements from
which the actual code is automatically generated. Problem-
oriented notations improve communication with stakeholders
and domain experts. A live DSL environment may amplify
this benefit: the DSL code is not only easier to understand
and maintain, but can also be inspected, tested and explored
during development.

Turning DSL implementations into live DSL environments
requires reasoning about changes to DSL code. This is where
semantic deltas come in. The essential idea is to represent
changes to the source code of a DSL program as explicit,
semantically meaningful change packages. Such deltas are
then interpreted on the runtime state of the running applica-
tion. Moreover, the user may simultaneously use the running
application, for instance through interacting with a GUI. Such
application-level events can be represented in the same way.
As a result, both kinds of interactions (source code and running

application) can be treated and recorded uniformly. The result
is that the evolution history and application state history are
unified.

Semantic deltas as a foundation for live DSL enviroments
have many potential advantages:
• Liveness Changes to the program are immediately applied

to the running application. As a result, the user of such
a system can enjoy immediate feedback on the effect of
changes to the program.

• Persistence Recording the sequence of deltas and storing
it on disk allows a session to be restarted at any later
moment in time and facilitates post-mortem analyses.

• Version control Storing source-code semantic deltas pro-
vides a basis for domain-specific version control.

• End-user programming Effacing the distinction between
source changes and runtime state changes has the po-
tential to enable end-users to modify their applications.
Meta-level and object-level can be modified using the
same mechanism.

• Backtracking If deltas maintain enough information to
be inverted, this enables going back in time. In essence,
application-level undo/redo and reverting to a previous
version become one and the same thing.

• Retroactive updates If dependencies between deltas are
known, states (or program versions) in the past can be
updated, after which deltas that are still valid are replayed.

• Time branching To explore what-if scenarios, an applica-
tion (program + running instance) can be forked, so that
the resulting two instances follow different branches in
time.

• Merging Given an operation-based merge algorithm,
forked applications can be merged again. As with all
merging, this might require interactive conflict resolution.

In the rest of this paper I present a simple example of a
live DSL environment and discuss related work, open research
questions and opportunities to push forward the development
of live DSLs.

II. EXAMPLE: LIVEQL

A. A Live DSL Environment

LIVEQL is a live version of a simple domain-specific
language (DSL) for modeling questionnaires1. Figure 1 shows
an interactive session with LIVEQL, the demo environment

1The code for LIVEQL is available at https://github.com/cwi-swat/LiveQL.

978-1-4673-6265-8/13 c© 2013 IEEE LIVE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

35

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301639587?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Fig. 1. Screenshot of the LIVEQL demo-environment

TABLE I
CLASSIFICATION OF SEMANTIC DELTAS FOR LIVEQL

AddElse : IfThen×Stat→ IfThenElse

RemoveElse : IfThenElse→ IfThen

InsertStati : Block×Stat→ Block

RemoveStati : Block→ Block

SetCondition : Conditional×Expr→ Conditional

SetExpression : Computed×Expr→ Computed

SetType : Question×Type→ Question

SetLabel : Question×String→ Question

Rename : Question×String→ Question

ToAnswerable : Computed→ Answerable

ToComputed : Answerable×Expr→ Computed

SetValue : State×Question×Value→ State

to develop QL programs. The left-hand side shows a simple
editor showing an example QL program.

Questionnaires consist of simple declarations of questions
and conditional flow. Each question has a label, a variable
name, and a type. There are two kinds of questions: answerable
(to be answered by the user, e.g., age) or computed. Com-
puted questions have an associated expression that determines
its value. Running a QL program results in a graphical
user interface with labels and widgets representing questions.
Parts of the GUI become (in)visible depending on the value
of conditions. An example is the condition age >= 18 in
Figure 1. In turn, conditions may depend on the data entered
by users and how computed questions are evaluated.

The QL program in the editor (left of Figure 1) can be edited
during the same session. After every edit of the program, the
program is parsed and checked for semantic errors, and, if
successful, the GUI and runtime state instantly adapt to the
new situation.

B. Classifying Semantic Deltas

The signatures of the relevant semantic delta types for QL
are shown in Table I. Source-level deltas take the target entity
(i.e. AST node) as its first parameter. Additional parameters
represent required information to perform the change. For
instance, the delta type AddElse is used if an else-branch
is added to an if-statement that did not have one before
(represented by the IfThen AST type). Such deltas contain
the added statement. For blocks – lists of statements enclosed
in curly braces – there are InsertStat and RemoveStat deltas,

TABLE II
A POSSIBLE SCENARIO INVOLVING EDITING A QL DESCRIPTION (∆i) AND

USING THE GENERATED QUESTIONNAIRE (δ j ) AT THE SAME TIME.

Delta Semantics Runtime effect
∆1 SetCondition(Q1, Q0 > 0) Q1 becomes invisible
δ1 Enter 10 in field Q0 Q0 7→ 10, Q1 becomes visible
δ2 Enter 2 in field Q1 Q1 7→ 2
∆2 ToComputed(Q2, Q0×Q1) Q2 7→ 20, Q2 is rendered

which additionally take an index in the list. Note that there are
no deltas defined on expressions, since for QL this level of
granularity is not required. The last function is special: this is
the delta type representing changes that result from interacting
with the running application. The SetValue delta updates the
state after the user has entered some data.

An essential characteristic of semantic deltas is that they
represent change in terms of the application domain. Each
source code delta essentially represents a change in the re-
quirements. At the same time they carry enough information
to be automatically applied to obtain a new version of the DSL
program and synchronize the running application.

C. Recording Semantic Deltas

Interactions with a LIVEQL editor or questionnaire can
be recorded as sequences of semantic deltas. An example of
such a user interaction is shown in Table II. Editing the QL
program produces semantic deltas ∆i, – interaction with the
generated questionnaire produces semantic deltas δi. The end
result, however, is a single stream (or change script) modeling
the evolution of the QL program and the runtime state of this
particular instance. As long as the static semantic constraints
of the QL language, and the dynamic constraints of the GUI
are not violated, both kinds of changes can be arbitrarily
interleaved.

The sequence of deltas can be rewinded to inspect previous
states. It can be stored on disk and restarted later. Changes
in the past can be retroactively updated, or retracted. It could
even be possible to fork a running application into two parallel
versions to explore what-if scenarios.

D. Interpreting Deltas

The LIVEQL interpreter renders the GUI corresponding to
the structure of the questionnaire and installs the necessary
event handlers to respond to user input, and observers to prop-
agate changes to computed expressions and conditions. The
current value of questions (as entered by the user or computed
by an expression) is stored in a state object (essentially a
map from variable names to values). The interpreter thus has
the following signature: run : QL→ GUI× State. To make a
running QL program adapt to changes to the source, another
interpreter is needed, this time with the following signature:
run∆ : QL∆ → GUI∆ × State∆. The function run∆ is a delta
interpreter, which maps the domain-specific, semantic deltas
to updates to the GUI and the runtime state.

The delta interpreter updates the running application as
follows:

36



• Widgets corresponding to added (or removed) questions
are rendered (or removed). Values are converted accord-
ing to changed types. Expressions of conditions and com-
puted questions are updated. Question labels are updated
where needed.

• Changes to the conditional structure of the program
are reflected by updating the visibility condition for all
current widgets.

• The observer dependency graph is updated to reflect
any changes (additions, removals, or substitutions) to
expressions in computed questions and conditions.

• All questions that have been marked as dirty in the
previous three steps are triggered as being changed to
update the rendering on screen. Questions are triggered
in the order of occurrence in the QL program.

A SetValue(s, Q, x) delta updates the state so that Q is now
bound to x. After that, all observers subscribed to Q are
notified of the change.

This initial experiment with LIVEQL is far from finished.
However the current state of the prototype shows that there is
potential in using semantic deltas for building live DSL envi-
ronments. Furthermore, the QL language provides a suitable
test-case to build more advanced live features based on the
foundation of semantic deltas.

III. DISCUSSION

The application of semantic deltas for building live DSL en-
vironments raises several important questions. Below I review
these questions in the context of related areas of research.

A. What Can We Learn from Version Control?

Semantic deltas can be obtained in two ways: by compar-
ing two consecutive versions of the program, or by letting
programmers edit the program by applying the deltas directly.
There are many ways to compare two versions of a program:
textual (the well-known diff algorithm [18]), syntactic [29],
and tree-based [1], [2]. Although such algorithms can be used
to compare program code, the resulting deltas are generic and
not semantic. Consequently, such deltas are hard to interpret
in the context of a running application.

So-called “semantic diff” algorithms take the semantics of
the compared entities into consideration. Examples are seman-
tic differencing for a procedural programming language [7]
and the comparison of object-oriented class models [15],
[28]. These algorithms compute deltas in terms of the source
language, and consequently cannot be reused outside their
domain. Note that, although structural and semantic diffs may
be easier to obtain if programs are maintained using a structure
editor [3], [20], this is primarily an engineering decision.

The other approach to obtain semantic deltas is to force
programmers to edit their programs by directly applying deltas
as transformations or “refactorings”2. Since semantic deltas
are assumed to be complete, it is possible to perform any

2Note that refactorings are in a sense complementary to semantic deltas:
they are assumed to be semantics preserving instead of semantics changing.

desired edit this way. The area of evolution-by-transformation
could provide inspiration for this model [8], [10]. It is however
an open question whether such an approach would scale, and
if so, for what kind of languages.

It is well-known that program changes often are not in-
dependent. An example in the context of QL would be the
deletion of a question. If the corresponding variable is used
in an expression, the use of this variable should be removed
from the expression. At the source level, consistency of sets
of deltas is ensured by static checking of the QL program:
no deltas are produced for semantically invalid QL programs.
However, applying deltas to the state of the running application
might induce more dependencies. Such dependencies have to
be respected by the delta interpreter.

Modeling semantic delta dependencies is important for three
reasons. First, semantic deltas have to be applied in the right
order. If not, the computational effect of a delta might be
based on out-of-date data. Second, it is required for retroactive
updates: going back in time, changing something, and reap-
plying the deltas after this change. The change in the past,
might (transitively) invalidate subsequent deltas that depend
on that state. Similar issues emerge when (semi-)automatically
merging two parallel delta histories.

Independence of changes is studied in the area of soft-
ware merging [16]. Especially relevant for semantic deltas is
operation-based merging [13]: merging two streams of change
operations. For instance, the algorithms of [13] require an or-
acle whether two change operations commute. More recently,
similar properties have received attention in the context of the
version control system DARCS [24].

B. How Well Do Semantic Deltas Scale?

QL is an arguably simplistic DSL. A question is thus
whether the semantic delta approach can be applied to other,
bigger, more real-life DSLs. A key characteristic of QL is that
all changes can be expressed as deltas by referring to domain
entities by name (i.e., questions). For DSLs that do not depend
as much on names, different identification mechanisms should
be used. In any case the “semantic content” of deltas will be
less. How would one, for instance, express semantic changes
to regular expressions or SQL queries?

Another characteristic of QL is that the resulting system
is stateful and interactive. For DSLs that operate in batch-
mode the approach could be applied to (possibly interactive)
visualizations of the computed end result. An example would
be a DSL for syntax definition (e.g., EBNF) where the role of
“running system” could be played by an interactive parse tree
visualization.

Further research should show whether semantic deltas can
be applied to more complex DSLs, such as, for instance,
WebDSL [5], – a language for interactive web applications.
A first challenge here is that WebDSL implementation is
based on code generation. It is completely unclear whether
semantic deltas could be used fruitfully without an interpreter.
Furthermore, WebDSL’s entity modeling language hints at
another challenge: how to migrate complex, persistent data?

37



Research on coupled evolution might provide concepts and
techniques to tackle this problem [6], [9], [22]. Finally,
WebDSL – and many other DSLs – are implemented via
complex transformation chains involving multiple intermediate
representations of the source model. Relating source level
semantic deltas to elements of the running system is hard,
if not impossible, unless advanced origin tracking techniques
are used [21].

Research in omniscient debugging [12], [19] has shown
that maintaining execution histories can be made practical.
These techniques, however, deal with debugging of arbitrary
programs in which the amount of data that has to be stored
can be truly staggering. The vision of semantic deltas, how-
ever, is not to maintain full execution traces, but only the
changes that are relevant at the level of the domain. In other
words, semantic deltas represent changes that have meaning
to users of the system. They are much coarser grained than
the assignment of a variable. Furthermore, delta-based object
persistence frameworks, such as Object Prevalence [26], [27]
and EventSourcing [4], have been shown to scale very well.

Finally, it is interesting to investigate how semantic deltas
could be used for multi-user systems. In this case, there are
multiple streams of semantic deltas that have to be merged
in a consistent way. In other words, multi-user applications
would require a form of concurrency control. Luckily, there
is extensive research in the area of groupware editors, which
are also based on concurrent streams of operations that have
to be synchronized [25].

C. Towards Live Language Workbenches?

Language workbenches [23] present a significant produc-
tivity boost in developing DSLs. Present-day language work-
benches provide tools and services for creating integrated
development environments (IDEs) for languages. However, to
the author’s knowledge, none of the currently available lan-
guage workbenches provide support for developing live DSLs
environment. Initial steps towards a fundamentally interpretive
style of DSL implementation are being made in the context of
the ENSŌ project. A core aspect of ENSŌ is managed data [14]
which allows users of the system to customize ENSŌ’s data
definition and manipulation facilities. This could represent a
first step towards reusable support for representing semantic
deltas, persistence, origin tracking and coupled evolution.

IV. CONCLUSION

Live programming aims to bridge the cognitive gap between
program code and the running system. In this position paper
I have presented the concept of semantic deltas as a foun-
dation for live DSL environments. Semantic deltas capture
both changes to the source code and changes to application
state. This uniform representation may enable powerful live
programming features, such as going back and forth in time,
retroactive updating, exploring parallel futures, etc. Further
experimentation will have to show how well semantic deltas
scale, and what tools and techniques from related research
areas can be reused.

REFERENCES

[1] Philip Bille. A survey on tree edit distance and related problems. Theor.
Comput. Sci., 337(1-3):217–239, June 2005.

[2] Sudarshan S. Chawathe, Anand Rajaraman, Hector Garcia-Molina, and
Jennifer Widom. Change detection in hierarchically structured informa-
tion. SIGMOD Rec., 25(2):493–504, 1996.

[3] Veronique Donzeau-Gouge, Gerard Huet, Gilles Kahn, and Bernard
Lang. Programming environments based on structured editors: The
MENTOR experience. Technical Report 26, INRIA, July 1980.

[4] Martin Fowler. Event sourcing. Online, December 2005. http:
//martinfowler.com/eaaDev/EventSourcing.html Accessed February 7th,
2013.

[5] Danny M. Groenewegen, Zef Hemel, Lennart C. L. Kats, and Eelco
Visser. WebDSL: a domain-specific language for dynamic web applica-
tions. In OOPSLA’08 Companion, pages 779–780. ACM, 2008.

[6] Markus Herrmannsdoerfer, Sander D. Vermolen, and Guido Wachsmuth.
An extensive catalog of operators for the coupled evolution of metamod-
els and models. In SLE’10 (Revised Selected Papers), volume 6563 of
LNCS, pages 163–182. Springer, 2011.

[7] Susan Horwitz. Identifying the semantic and textual differences between
two versions of a program. In PLDI’90, pages 234–245. ACM, 1990.

[8] Ralf Lämmel. Grammar Adaptation. In Proc. Formal Methods Europe
(FME) 2001, volume 2021 of LNCS, pages 550–570. Springer-Verlag,
2001.

[9] Ralf Lämmel. Coupled Software Transformations (Extended Abstract).
In First International Workshop on Software Evolution Transformations,
2004.

[10] Ralf Lämmel. Evolution of rule-based programs. The Journal of Logic
and Algebraic Programming, 60–61(0):141–193, 2004.

[11] Henry Lieberman and Christopher Fry. Bridging the gulf between
code and behavior in programming. In CHI’95, pages 480–486.
ACM/Addison Wesley, 1995.

[12] Adrian Lienhard, Tudor Gı̂rba, and Oscar Nierstrasz. Practical object-
oriented back-in-time debugging. In Proceedings of the 22nd European
conference on Object-Oriented Programming, ECOOP’08, pages 592–
615, 2008.

[13] Ernst Lippe and Norbert van Oosterom. Operation-based merging.
SIGSOFT Softw. Eng. Notes, 17(5):78–87, 1992.

[14] Alex Loh, Tijs van der Storm, and William R. Cook. Managed data:
modular strategies for data abstraction. In SPLASH Onward! ’12, pages
179–194. ACM, 2012. Research Track.

[15] Shahar Maoz, JanOliver Ringert, and Bernhard Rumpe. CDDiff:
Semantic differencing for class diagrams. In ECOOP’11, volume 6813
of LNCS, pages 230–254. Springer, 2011.

[16] T. Mens. A state-of-the-art survey on software merging. IEEE Trans.
Softw. Eng., 28(5):449–462, May 2002.

[17] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how
to develop domain-specific languages. ACM Comput. Surv., 37(4):316–
344, 2005.

[18] Eugene W. Myers. An O(ND) difference algorithm and its variations.
Algorithmica, 1(2):251–266, 1986.

[19] Guillaume Pothier, Éric Tanter, and José Piquer. Scalable omniscient
debugging. SIGPLAN Not., 42(10):535–552, October 2007.

[20] Charles Simonyi, Magnus Christerson, and Shane Clifford. Intentional
software. In OOPSLA’06, pages 451–464. ACM, 2006.

[21] A. van Deursen, P. Klint, and F. Tip. Origin tracking. J. Symb. Comput.,
15(5-6):523–545, May 1993.

[22] Joost Visser. Coupled transformation of schemas, documents, queries,
and constraints. Electron. Notes Theor. Comput. Sci., 200(3):3–23, 2008.

[23] Markus Völter. DSL Engineering - Designing, Implementing and Using
Domain-Specific Languages. 2013. http://dslbook.org/.

[24] Darcs Wiki. Everything you ever wanted to know about patch theory and
conflictors. Online. http://repos.mornfall.net/public/darcs/DarcsWiki/
PatchTheory.page.

[25] Wikipedia. Operational transformation — wikipedia, the free encyclo-
pedia, 2013. [Online; accessed 7-February-2013].

[26] Klaus Wuestefeld. Prevayler. Online. http://prevayler.org/.
[27] Klaus Wuestefeld. Do you still use a database? In Companion of

OOPSLA’03, pages 101–101. ACM, 2003.
[28] Zhenchang Xing and Eleni Stroulia. UMLDiff: an algorithm for object-

oriented design differencing. In ASE’05, pages 54–65. ACM, 2005.
[29] Wuu Yang. Identifying syntactic differences between two programs.

Softw. Pract. Exper., 21(7):739–755, 1991.

38


