392 research outputs found

    A HJB-POD approach for the control of nonlinear PDEs on a tree structure

    Get PDF
    The Dynamic Programming approach allows to compute a feedback control for nonlinear problems, but suffers from the curse of dimensionality. The computation of the control relies on the resolution of a nonlinear PDE, the Hamilton-Jacobi-Bellman equation, with the same dimension of the original problem. Recently, a new numerical method to compute the value function on a tree structure has been introduced. The method allows to work without a structured grid and avoids any interpolation. Here, we aim to test the algorithm for nonlinear two dimensional PDEs. We apply model order reduction to decrease the computational complexity since the tree structure algorithm requires to solve many PDEs. Furthermore, we prove an error estimate which guarantees the convergence of the proposed method. Finally, we show efficiency of the method through numerical tests

    Comparison of POD reduced order strategies for the nonlinear 2D Shallow Water Equations

    Full text link
    This paper introduces tensorial calculus techniques in the framework of Proper Orthogonal Decomposition (POD) to reduce the computational complexity of the reduced nonlinear terms. The resulting method, named tensorial POD, can be applied to polynomial nonlinearities of any degree pp. Such nonlinear terms have an on-line complexity of O(kp+1)\mathcal{O}(k^{p+1}), where kk is the dimension of POD basis, and therefore is independent of full space dimension. However it is efficient only for quadratic nonlinear terms since for higher nonlinearities standard POD proves to be less time consuming once the POD basis dimension kk is increased. Numerical experiments are carried out with a two dimensional shallow water equation (SWE) test problem to compare the performance of tensorial POD, standard POD, and POD/Discrete Empirical Interpolation Method (DEIM). Numerical results show that tensorial POD decreases by 76×76\times times the computational cost of the on-line stage of standard POD for configurations using more than 300,000300,000 model variables. The tensorial POD SWE model was only 2−8×2-8\times slower than the POD/DEIM SWE model but the implementation effort is considerably increased. Tensorial calculus was again employed to construct a new algorithm allowing POD/DEIM shallow water equation model to compute its off-line stage faster than the standard and tensorial POD approaches.Comment: 23 pages, 8 figures, 5 table

    Structure Preserving Model Reduction of Parametric Hamiltonian Systems

    Get PDF
    While reduced-order models (ROMs) have been popular for efficiently solving large systems of differential equations, the stability of reduced models over long-time integration is of present challenges. We present a greedy approach for ROM generation of parametric Hamiltonian systems that captures the symplectic structure of Hamiltonian systems to ensure stability of the reduced model. Through the greedy selection of basis vectors, two new vectors are added at each iteration to the linear vector space to increase the accuracy of the reduced basis. We use the error in the Hamiltonian due to model reduction as an error indicator to search the parameter space and identify the next best basis vectors. Under natural assumptions on the set of all solutions of the Hamiltonian system under variation of the parameters, we show that the greedy algorithm converges with exponential rate. Moreover, we demonstrate that combining the greedy basis with the discrete empirical interpolation method also preserves the symplectic structure. This enables the reduction of the computational cost for nonlinear Hamiltonian systems. The efficiency, accuracy, and stability of this model reduction technique is illustrated through simulations of the parametric wave equation and the parametric Schrodinger equation
    • …
    corecore