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The Dynamic Programming approach allows to compute a feedback control for nonlinear 
problems, but suffers from the curse of dimensionality. The computation of the control relies 
on the resolution of a nonlinear PDE, the Hamilton-Jacobi-Bellman equation, with the same 
dimension of the original problem. Recently, a new numerical method to compute the value 
function on a tree structure has been introduced. The method allows to work without a 
structured grid and avoids any interpolation.
Here, we aim at testing the algorithm for nonlinear two dimensional PDEs. We apply 
model order reduction to decrease the computational complexity since the tree structure 
algorithm requires to solve many PDEs. Furthermore, we prove an error estimate which 
guarantees the convergence of the proposed method. Finally, we show efficiency of the 
method through numerical tests.

© 2019 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

The dynamic programming (DP) approach, introduced by Bellman in the late ’50, allows to obtain a feedback control 
by means of the knowledge of the value function. Thus, we solve a nonlinear Partial Differential Equation (PDE) known 
as Hamilton-Jacobi-Bellman (HJB) equation that has the same dimension of the optimal control problem. It is well-known 
that this problem suffers from the curse of dimensionality: typically this equation has to be solved on a space grid and this 
is the major bottleneck for numerical methods in high-dimension. We refer to [6] and [14] for a complete description of 
theoretical and numerical results, respectively.

The focus of this paper is to solve finite horizon optimal control problems for nonlinear PDEs. It is straightforward to 
understand the difficulty of the problem when dealing with a DP approach, since the discretization of PDEs leads to a very 
large system of ODEs, which makes the problem not feasible on a structured grid. In the literature several methods have 
been introduced to mitigate the curse of dimensionality. Although a complete description of numerical methods for HJB 
goes beyond the scopes of this work, we distinguish between numerical methods for the control of ODEs and PDEs via the 
HJB equation. In the former we mention, among others, domain decomposition methods and iterative schemes based on 
a semi-Lagrangian approach (see e.g. [10,1] and the references therein). On the other hand, to compute feedback control 
of PDEs, it is very common the use of model order reduction techniques to reduce the complexity of the system and, 
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therefore, the dimension of the corresponding HJB equation. In particular, we refer to the Proper Orthogonal Decomposition 
(POD, see e.g. [24]) which will constitute one of the building blocks for the current paper. The POD method allows to 
compute low-rank orthogonal projectors by means of Singular Value Decomposition (SVD) upon snapshots of the dynamical 
system at given time instances. This is a serious issue of this approach for optimal control problems since the control input 
is not known in advance and it is usually necessary to plug a forecast to compute the snapshots. However, on a structure 
grid, POD has been successfully coupled with the HJB approach for the control of PDEs. We refer to the pioneering work [21]
and to [4] for error estimates of the method. We note that this approach is only a mitigation of the curse of dimensionality 
because it is not possible to work with a reduced space with dimension larger than 5 and the aim of the POD method 
is to make the problem feasible even for very high dimensional equation such as PDEs. Other approaches to mitigate the 
curse of dimensionality are built upon the sparse grid method (see e.g. [15]), the spectral elements method (see [19]) and, 
more recently, a tensor decomposition (see [12]). For the sake of completeness, we mention that the control of PDEs can be 
solved with other methods such as, among others, open loop techniques (see e.g. [17]) and model predictive control (see 
e.g. [16]).

Recently, in [2] the authors proposed a new method based on a time discretization of the dynamics which allows to 
mimic the discrete dynamics in high-dimension via a tree structure, considering a discretized control space. The method 
deals with a finite horizon optimal control problem and, in the discretization, the tree structure replaces the space grid 
which allows to increase the dimension of the state space. However, the tree structure complexity increases exponentially 
due to the number of time steps and control inputs. To decrease the complexity of the tree a pruning technique has been 
implemented to reduce the number of branches in the tree obtaining rather accurate results. Error estimates for the method 
can be found in the recent work [22]. Therefore, it is clear that the method is expensive when we deal with PDEs since it 
requires to solve many equations for several control inputs.

It is then natural to couple the TSA with POD in order to speed up the method. With the approach studied in the current 
paper we have four major advantages:

1. we build the snapshots set upon all the trajectories that appear in the tree, avoiding the selection of a forecast for the 
control inputs which is always not trivial for model reduction,

2. the application of POD also allows an efficient pruning since it reduces the dimension of the problem and provides 
information on the most variable components,

3. the theory of DPP is valid on the whole state space Rd but, in general, for numerical reasons we need to restrict our 
equation to a bounded domain. Our method avoids to define the numerical domain for the projected problem, which is 
a difficult task since we lose the physical meaning of the reduced coordinates,

4. we are not restricted to consider a reduced space dimension smaller than 5 as in e.g. [21,4], which was a limitation of 
the method since many classes of PDEs require more basis functions to capture the essential features.

Finally, we remark that to obtain a low-dimensional problem completely independent from the dimension of the original 
system, we use the Discrete Empirical Interpolation Method as in [11]. To validate our approach we also provide a-priori 
error estimate for the coupling between TSA and model order reduction.

The paper is organized as follows: we define the optimal control problem and the DP approach in Section 2. We recall the 
tree structure algorithm in Section 2.1 and the POD method in Section 3. In Section 4 we present, step by step, the coupling 
between POD and the TSA, and in Section 5 we provide an error estimate for the coupled method. Finally, numerical tests 
for two-dimensional nonlinear PDEs are shown in Section 6. We give our conclusions and perspectives in Section 7.

2. The optimal control problem

In this section we describe the optimal control problem and the essential features of the DP approach. Let us consider a 
large system of ordinary differential equations in the following form:{

ẏ(s) = Ay(s) + F (s, y(s)) + Bu(s), s ∈ (t, T ],
y(t) = x,

(1)

where x ∈ Rd is a given initial data, A ∈ Rd×d, B ∈ Rd×m are given matrices and F : [t, T ] × Rd → Rd is a continuous 
function in both arguments and locally Lipschitz-type with respect to the second variable. We will denote by y : [t, T ] →Rd

the solution, by u : [t, T ] →Rm the control and by

U = {u : [t, T ] → U ,measurable}
the set of admissible controls where U ⊂ Rm is a compact set. We will assume that there exists a unique solution for (1)
for each u ∈ U . Whenever we want to stress the dependence on the control u, we write y(s, u).

This wide class of problems arises in many applications, especially from the numerical approximation of PDEs. In such 
cases, the dimension of the problem is the number of spatial grid points used for the discretization and it can be very large.

To ease the notation we will denote the right hand side as follows:

f (y(s), u(s), s) := Ay(s) + F (s, y(s)) + Bu(s). (2)
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To select the optimal trajectory, we consider the following cost functional

J x,t(u) :=
T∫

t

L(y(s, u), u(s), s)e−λ(s−t) ds + g(y(T , u))e−λ(T −t), (3)

where L :Rd ×Rm × [t, T ] →R is the running cost, g :Rd →R is the final cost and λ ≥ 0 is the discount factor. We will 
suppose that the functions L(·, u, t) and g(·) are Lipschitz continuous. The optimal control problem then reads:

inf
u∈U J x,t(u) s.t. y(s) satisfies (1). (4)

The final goal is the computation of the control in feedback form u(s) = η(y(s), s), in terms of the state equation y(s), 
where η is the feedback map. To derive optimality conditions, we use the Dynamic Programming Principle (DPP). We first 
define the value function

v(x, t) := inf
u∈U J x,t(u). (5)

Given the above assumptions, the value function v is bounded and continuous in Rd × [t, T ] and it satisfies the DPP, i.e. for 
every τ ∈ [t, T ]:

v(x, t) = inf
u∈U

⎧⎨⎩
τ∫

t

L(y(s), u(s), s)e−λ(s−t)ds + v(y(τ ), τ )e−λ(τ−t)

⎫⎬⎭ . (6)

Due to (6), we can derive the HJB equation for every (x, s) ∈Rd × [t, T ):⎧⎨⎩
∂v

∂s
(x, s) − λv(x, s) + min

u∈U
{L(x, u, s) + ∇v(x, s) · f (x, u, s)} = 0,

v(x, T ) = g(x).
(7)

We refer to [6] for more details on the topic. Once the value function has been computed, it is possible to obtain the optimal 
feedback control as:

u∗(s) := arg min
u∈U

{L(x, u, s) + ∇v(x, s) · f (x, u, s)} . (8)

2.1. Dynamic programming on a tree structure

In this section we will recall the finite horizon control problem and its approximation by the tree structure algorithm (see 
[2] for a complete description of the method and [22] for theoretical results). The computation of analytical solutions of 
Equation (7) is a difficult task due to its nonlinearity and approximation techniques should take in consideration discon-
tinuities in the gradient (see [14] and the references therein). Here, we discretize equation (7), only partitioning the time 
interval [t, T ] with step size �t := (T − t)/N , where N is the total number of steps. Thus, for n = N − 1, . . . , 0 and every 
x ∈Rd , we have{

V n(x) = min
u∈U

[�t L(x, u, tn) + e−λ�t V n+1(x + �t f (x, u, tn))],
V N(x) = g(x),

(9)

where tn = t + n�t , tN = T and V n(x) := V (x, tn).
The term V n+1(x + �t f (x, u, tn)) is usually computed by interpolation on a grid, since x + �t f (x, u, tn) is in general not 

a grid point. To avoid the use of interpolation, we build a non-structured grid with a tree structure.
We first discretize the control domain into M discrete controls and to ease the notation, in what follows, we keep 

denoting U also the discrete set of controls. The tree will be denoted by T := ∪N
j=0T j , where each level T j contains all the 

nodes of the tree at time t j . We proceed as follows: first we start from the initial state x, which will form the first level 
T 0. Then, we follow the discrete dynamics, given e.g. by an explicit Euler scheme, inserting the discrete control u j ∈ U , 
obtaining

ζ 1
j = x + �t f (x, u j, t), j = 1, . . . , M.

Therefore, we have T 1 = {ζ 1
1 , . . . , ζ 1

M}. We can characterize the nodes by their n−th time level as follows

T n = {ζn−1 + �t f (ζn−1, u j, tn−1)}M , i = 1, . . . , Mn−1,
i i j=1
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and the tree can be shortly defined as

T := {ζn
j }Mn

j=1, n = 0, . . . N,

where the nodes ζn
i are obtained following the dynamics at time tn with the controls {u jk }n−1

k=0 :

ζn
in

= ζn−1
in−1

+ �t f (ζn−1
in−1

, u jn−1 , tn−1)

= x + �t
∑n−1

k=0 f (ζ k
ik
, u jk , tk),

with ζ 0 = x, ik =
⌈

ik+1

M

⌉
and jk ≡ ik+1mod M , where 
·� is the ceiling function.

The cardinality of tree increases exponentially, i.e. |T | = O (MN ), where M is the number of controls and N the number 
of time steps. To mitigate this problem, we consider the following pruning rule: given a threshold εT > 0, we can cut off a 
new node ζn

i , if it verifies the following condition with a certain ζn
j

‖ζn
i − ζn

j ‖ ≤ εT , for i �= j and n = 0, . . . , N. (10)

The pruning rule (10) helps to save a huge amount of memory. If we choose the tolerance properly, e.g. εT = O (�t2), 
we keep the same accuracy of the approach without pruning, as shown in [22]. To increase the order of convergence, one 
could use a higher order method for the discretization of the ODE (1). More details can be found in [3].

The computation of the numerical value function V (x, t) will be done on the tree nodes

V (x, tn) = V n(x), ∀x ∈ T n, (11)

and it follows directly from the DPP. The tree T will form the spatial grid and we can write a time discretization for (7) as 
follows:{

V n(ζn
i ) = min

u∈U
{e−λ�t V n+1(ζn

i + �t f (ζn
i , u, tn)) + �t L(ζn

i , u, tn)}, ζn
i ∈ T n ,n = N − 1, . . . ,0,

V N(ζ N
i ) = g(ζ N

i ), ζ N
i ∈ T N .

(12)

Since the control set U is discrete, the minimization is computed by comparison. We refer to [9,18] for other techniques 
to compute the minimization in (12). A detailed comparison and discussion about the classical method and tree structure 
algorithm can be found in [2], whereas the interested reader will find in [22] the error estimates for the proposed algorithm. 
The computation of the feedback on a tree structure takes advantage of the discrete control set and therefore during the 
computation of the value function, we can store the indices which provide the optimal trajectory. More details on the 
computation of the feedback control are given in Section 4.

3. Model order reduction and POD method

In this section we first recall the POD method for the state equation (1) and later how to apply it to reduce the dimension 
of the optimal control problem (4).

3.1. POD for the state equation

The solution of the system (1) may be very expensive and it is useful to deal with projection techniques to reduce the 
complexity of the problem. Although a complete description of model order reduction methods goes beyond the scopes of 
this work, here we recall the POD method. We refer the interested reader to e.g. [23,24] for more details on the topic and 
to [8] for a review of different projection techniques.

Let us assume we have computed a numerical (or analytical if possible) solution of (1) on the time grid points t j , 
j ∈ {0, . . . , N} for some given control inputs. Then, we collect the snapshots {y(ti)}N

i=0 into the matrix Y = [y(t0), . . . , y(tN)] ∈
Rd×(N+1) . The aim of the method is to determine a POD basis 	 = {ψ1, . . . , ψ�} of rank � � min{d, N + 1} to describe the 
set of data collected in time by solving the following minimization problem:

min
ψ1,...,ψ�∈Rd

N∑
j=0

∣∣∣∣∣y(t j) −
�∑

i=1

〈y(t j),ψi〉ψi

∣∣∣∣∣
2

such that 〈ψi,ψ j〉 = δi j. (13)

The associated norm is given by the Euclidean inner product | · |2 = 〈·, ·〉. The solution of (13) is obtained by the SVD of the 
snapshots matrix Y = 	
V T , where we consider the first �−columns {ψi}�i=1 of the orthogonal matrix 	. The selection of 
the rank of POD basis is based on the error computed in (13) which is related to the singular values neglected. We will 
choose � such that E(�) ≈ 0.999, with
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E(�) =
∑�

i=1 σ 2
i∑min{d,N+1}

i=1 σ 2
i

, (14)

where {σi}min{d,N+1}
i=1 are the singular values of Y .

However, the error strongly depends on the quality of the computed snapshots. This is clearly a limit when dealing with 
optimal control problems, since the control input is not known a-priori and it is necessary to have a reasonable forecast. In 
Section 4 we will explain how to select the control input u(t) to solve (4).

To ease the notation, in what follows, we will denote by 	 ∈Rd×� the POD basis of rank �. Let us assume that the POD 
basis 	 have been computed and make use of the following assumption to obtain a reduced dynamical system:

y(s) ≈ 	y�(s), (15)

where y�(s) is a function from [t, T ] to R� . If we plug (15) into the full model (1) and exploit the orthogonality of the POD 
basis, the reduced model reads:{

ẏ�(s) = A� y�(s) + 	T F (s,	y�(s)) + B�u(s),
y�(t) = x�,

(16)

where A� = 	T A	, B� = 	T B and x� = 	T x ∈ R� . We also note that A� ∈ R�×� and B� ∈ R�×m . Error estimates for the 
reduced system (16) can be found in [20]. In what follows we are going to define the reduced dynamics as:

f �(y�(s), u(s), s) := A� y�(s) + 	T F (s,	y�(s)) + B�u(s). (17)

Discrete Empirical Interpolation Method. The solution of (16) is still computationally expensive, since the nonlinear term 
F (s, 	y�(s)) depends on the dimension of the original problem, i.e. the variable 	y�(s) ∈Rd . To avoid this issue the Empir-
ical Interpolation Method (EIM, [7]) and Discrete Empirical Interpolation Method (DEIM, [11]) were introduced.

The computation of the POD basis functions for the nonlinear part is related to the set of the snapshots F (t j, y(t j)), 
where y(t j) are already computed from (1). We denote by � ∈Rd×k the POD basis functions of rank k � min{d, N + 1} of 
the nonlinear part. The DEIM approximation of F (t, y(t)) is given in the following form:

F DEIM(s, yDEIM(s)) := �(S T �)−1 F (s, yDEIM(s)), (18)

where S ∈Rd×k and yDEIM(s) := S T 	y�(s). Here, we assume that each component of the nonlinearity is independent from 
each other, i.e. we assume that F (s, y) := [ F̄ (s, y1(s)), . . . , F̄ (s, yd(s))], with F̄ : [t, T ] × R → R, then the matrix S can be 
moved into the nonlinearity. Again, we refer to [11] for a complete description of the method and extensions to more 
general nonlinear functions. The role of the matrix S is to select interpolation points to evaluate the nonlinearity. The 
selection is made according to the LU decomposition algorithm with pivoting [11], or following the QR decomposition with 
pivoting [13]. We finally note that all the quantities in (18) are independent of the full dimension d, since the quantity 
	T �(S T �)−1 ∈R�×k can be precomputed. Typically the dimension k is much smaller than the full dimension. This allows 
the reduced order model to be completely independent of the full dimension as follows:{

ẏ�(s) = A� y�(s) + 	T F DEIM(s, yDEIM(s)) + B�u(s),
y�(t) = x�.

(19)

In what follows, we are going to define the reduced POD-DEIM dynamics as:

f �,DEIM(y�(s), u(s), s) := A� y�(s) + 	T F DEIM(s, S T 	y�(s)) + B�u(s). (20)

The DEIM error is given by:

‖ F̃ − F̃ DEIM‖2 ≤ c‖(I − ��T ) F̃‖2, with c = ‖(S T �)−1‖2, (21)

for a given snapshots set F̃ = {F (t j, y(t j))}N
j=0 and its DEIM approximation F̃ DEIM = �(S T �)−1 S T F̃ as shown in [11,13]. 

A further reduction might also be performed by using the dynamic mode decomposition as in [5].

3.2. POD for the optimal control problem

The key ingredient to compute feedback control is the knowledge of the value function expressed in (9), which is a 
nonlinear PDE whose dimension is given by the dimension of (1). It is clear that its approximation is very expensive. 
Therefore, we are going to apply the POD method to reduce the dimension of the dynamics and then solve the corresponding 
(reduced) discrete DPP which is now feasible and defined below. Let us first define the reduced running cost and the reduced 
final cost as
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L�(x�, u, s) = L(	x�, u, s), g�(x�) = g(	x�).

Next, we introduce the reduced optimal control problem for (4). For a given control u, we denote by y�(s, u) the unique 
solution to (19) at time s. Then, the reduced cost is given by

J �
x�,t(u) =

T∫
t

L�
(

y�(s, u), u(s), s
)
e−λ(s−t) ds + g�(y�(T ))e−λ(T −t), (22)

and, the POD approximation for (4) reads as follows:

min
u∈U

J �
x�,t(u) such that y�(t) solves (16). (23)

Finally, we define the reduced value function v�(x�, t) as

v�(x�, t) := inf
u∈U J �

x�,t(u) (24)

and the reduced HJB equation:⎧⎨⎩
∂v�

∂s
(x�, s) − λv�(x�, s) + min

u∈U

{
L�(x�, u, s) + ∇v�(x�, s) · f �(x�, u, s)

}= 0,

v�(x�, T ) = g�(x�), (x�, s) ∈ R� × [t, T ).

(25)

Alternatively, one could further approximate the nonlinear term using DEIM and replace the dynamics (16) with (19) in 
(23), providing an impressive acceleration of the algorithm as shown in Section 6.

4. HJB-POD method on a tree structure

In this section we explain, step by step, how to use model reduction techniques on a tree structure in order to obtain an 
efficient approximation of the value function and to deal with complex problems such as PDEs.

Computation of the snapshots. When applying POD for optimal control problems there is a major bottleneck: the choice of 
the control inputs to compute the snapshots. Thus, we store the tree T = ∪N

n=0T n for a chosen �t and discrete control set 
U . This set turns out to be a very good candidate for the snapshots matrix since it delivers all the possible trajectories we 
want to consider. To summarize the snapshots set is Y = T = ∪N

n=0T n . In the numerical tests, we will use �t = 0.1 and 2
controls to compute the snapshots that, as shown in Section 6, will be sufficient to catch the main features of the controlled 
problem.

Computation of the basis functions. The computation of the basis 	 has been described in Section 3. We are going to solve 
the following optimization problem:

min
ψ1,...,ψ�∈Rd

N∑
j=1

∑
u j⊂U j

∣∣∣∣∣y(t j, u j) −
�∑

i=1

〈y(t j, u j),ψi〉ψi

∣∣∣∣∣
2

such that 〈ψi,ψ j〉 = δi j, (26)

where u j = (u1, . . . , u j) ⊂ U j = U × . . . × U and

y(t j, u j) = y0 + �t
j−1∑
k=0

f (yk, uk+1, tk).

In this context we have no restrictions on the choice of the number of basis �, since we will solve the HJB equation on 
a tree structure. In former works, e.g. [21,4], the authors were restricted to choose � ≈ 4 to have a feasible reduction of the 
HJB equation. Here, the dimension of the state variable is not a major issue. On the other hand, the pruning strategy will 
turn out to be crucial for the feasibility of the problem.

It is well-known that the error in (13) is given by the sum of the singular values neglected. We recall that we will choose
� such that E(�) ≈ 0.999, with E(�) defined in (14).

Construction of the reduced tree. Having computed the POD basis, we build a new tree which might consider a different 
�t and/or a finer control space with respect to the snapshots set. We will denote the projected tree as T � with its generic 
n−th level given by:

T n,� = {ζn−1,� + �t f �(ζ
n−1,�

, u j, tn−1), j = 1, . . . , M, i = 1, . . . , Mn−1},
i i
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where the reduction of the nonlinear term f � can be done via POD or POD-DEIM as in (18). The first level of the tree is 
clearly given by the projection of the initial condition, i.e. T 0,� = 	T x. Then, the procedure follows the full dimensional 
case, but with the projected dynamics. We will show how this approach speeds up the method keeping high accuracy. Even 
if we have reduced the dimension of the problem, the cardinality of the tree T n,� depends on the number of the discrete 
controls and the time step chosen as in the high-dimensional case. It is clear that each resolution of the PDE will be faster, 
but it is still necessary to apply a pruning rule which reads:

‖ζn,�
i − ζ

n,�
j ‖ ≤ εT , for i �= j and n = 0, . . . , N. (27)

As proposed in [2], the evaluation of (27) can be computed in a more efficient way, considering the most variable 
components by the principal component analysis. This technique is incorporated in our algorithm, since we have already 
computed the POD basis and the most variable component turns out to be the first one y�

1. It will be sufficient to reorder 
the nodes according to their first components to accelerate the pruning criteria.

Approximation of the reduced value function. The numerical reduced value function V �(x�, t) will be computed on the tree 
nodes in space as

V �(x�, tn) = V n,�(x�), ∀x� ∈ T n,�. (28)

Then, the computation of the reduced value function follows directly from the DPP. Defined the grid T n,� = {ζn,�
j }Mn

j=1 for 
n = 0, . . . , N , we can write a time discretization for (7) as follows:⎧⎪⎪⎨⎪⎪⎩

V n,�(ζ
n,�
i ) = min

u∈U
{e−λ�t V n+1,�(ζ

n,�
i + �t f �(ζ

n,�
i , u, tn)) + �t L�(ζ

n,�
i , u, tn)},

ζ
n,�
i ∈ T n,� ,n = N − 1, . . . ,0,

V N,�(ζ
N,�
i ) = g�(ζ

N,�
i ), ζ

N,�
i ∈ T N,�.

(29)

Computation of the feedback control. The computation of the feedback control strongly relies on the fact we deal with a 
discrete control set U . Indeed, when we compute the reduced value function, we store the control indices corresponding to 
the arg min in (29). The optimal trajectory is then obtained by following the path of the tree with the controls chosen such 
that

un,�∗ := arg min
u∈U

{
e−λ�t V n+1,�(ζn,�∗ + �t f �(ζn,�∗ , u, tn)) + �t L�(ζn,�∗ , u, tn)

}
, (30)

ζn+1,�∗ ∈ T n+1,� s.t. ζn,�∗ →u∗
n ζn+1,�∗ ,

for n = 0, . . . , N − 1, where the symbol →u stands for the connection of two nodes by the dynamics corresponding to the 
control u.

Once the control un,�∗ has been computed, we plug it into the high dimensional problem (1) and compute the optimal 
trajectory.

5. Error estimates for the HJB-POD method on a TSA

In this section we derive an error estimate for the HJB-POD approximation (29) on a tree structure. In what follows, we 
assume that the functions f , L, g are bounded:

| f (x, u, s)| ≤ M f , |L(x, u, s)| ≤ ML, |g(x)| ≤ Mg,

∀ x ∈Rd, u ∈ U ⊂ Rm, s ∈ [t, T ], (31)

the functions f and L are Lipschitz-continuous with respect to the first variable

| f (x, u, s) − f (y, u, s)| ≤ L f |x − y|, |L(x, u, s) − L(y, u, s)| ≤ LL |x − y|,
∀ x, y ∈Rd, u ∈ U ⊂ Rm, s ∈ [t, T ], (32)

and the cost g is also Lipschitz-continuous:

|g(x) − g(y)| ≤ Lg |x − y|, ∀x, y ∈Rd. (33)

Furthermore, let us assume that the functions L and g are semiconcave

L(x + z, u, t + τ ) − 2L(x, u, t) + L(x − z, u, t − τ ) ≤ CL(|z|2 + τ 2),

g(x + z) − 2g(x) + g(x − z) ≤ C g |z|2, ∀x, z ∈Rd, u ∈ U , t, τ ≥ 0,
(34)
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and assume that f verifies the following inequality:

| f (x + z, u, t + τ ) − 2 f (x, u, t) + f (x − z, u, t − τ )| ≤ C f (|z|2 + τ 2),

∀u ∈ U , ∀x, z ∈Rd, ∀t, τ ≥ 0.
(35)

We also introduce the continuous-time extension of the DDP

V (x, s) = min
u∈U

{e−λ(tn+1−s)V (x + (tn+1 − s) f (x, u, s), tn+1) + (tn+1 − s) L(x, u, s)},
V (x, T ) = g(x), x ∈Rd, s ∈ [tn, tn+1),

(36)

and the POD version for the continuous-time extension (36) which reads:

V �(x�, s) = min
u∈U

{e−λ(tn+1−s)V �(x� + (tn+1 − s) f �(x�, u, s), tn+1) + (tn+1 − s) L�(x�, u, s)},
V �(x�, T ) = g�(x�), x� ∈R�, s ∈ [tn, tn+1).

(37)

Given the exact solution v(x, s) and its POD discrete approximation V �(x�, s), we prove the following theorem which 
provides an error estimate for the proposed method.

Theorem 5.1. Let us assume (31)-(35) hold true, then there exists a constant C(T ) such that

sup
s∈[t,T ]

|v(x, s) − V �(x�, s)| ≤ C(T )

⎛⎜⎝
⎛⎝ ∑

i≥�+1

σ 2
i

⎞⎠1/2

+ �t

⎞⎟⎠ (38)

where the {σi}min{N+1,d}
i=1 are the singular values of the snapshots matrix.

Proof. We observe that, by triangular inequality, the approximation error can be decomposed in two parts:

|v(x, s) − V �(x�, s)| ≤ |v(x, s) − V (x, s)| + |V (x, s) − V �(x�, s)|. (39)

An error estimate for the first term has been already obtained in [22]:

sup
(x,s)∈Rd×[0,T ]

|V (x, s) − v(x, s)| ≤ Ĉ(T )�t. (40)

Let us focus on the second term of the right hand side of (39). Without loss of generality, we consider λ = 0. For s = T , the 
estimate follows directly by the assumptions on g . Considering x ∈Rd and s ∈ [tn, tn+1), we can write

V (x, s) − V �(x�, s) ≤
V (xn+1, tn+1) − V �(x�

n+1, tn+1) + (tn+1 − s)
(

L(x, un∗, s) − L�(x�, un∗, s)
)

≤
V (xn+1, tn+1) − V �(x�

n+1, tn+1) + (tn+1 − s) LL |x − 	x�|, (41)

where un∗, xn+1 and x�
n+1 are defined as

un∗ = arg min
u∈U

{
V �(x� + (tn+1 − s) f �(x�, u, s), tn+1) + (tn+1 − s) L�(x�, u, s)

}
,

xn+1 = x + (tn+1 − s) f (x, un∗, s), x�
n+1 = x� + (tn+1 − s) f �(x�, un∗, s).

We define the trajectory path and its POD approximation respectively as

xm := x +
m−1∑
k=n

αk f (xk, uk∗, t̄k), x�
m := x� +

m−1∑
k=n

αk f �(x�
k, uk∗, t̄k),

where

αk =
{

tn+1 − s k = n

�t k ≥ n + 1
, t̄k =

{
s k = n

tk k ≥ n + 1
,

uk∗ = arg min
{

V �
(

x�
k + αk f �(x�

k, u, t̄k), tk+1

)
+ αk L�(x�

k, u, t̄k)
}

,k ≥ n,

u∈U
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with xn = x and x�
n = x� . Then, iterating (41) we obtain

V (x, s) − V �(x�, s) ≤ LL

N−1∑
m=n

αm|xm − 	x�
m| + Lg |xN − 	x�

N
|. (42)

Defining

ηm =
{

LLαm m ∈ {n, . . . N − 1}
Lg m = N

,

we can write

V (x, s) − V �(x�, s) ≤
N∑

m=n

ηm|xm − 	x�
m|.

By triangular inequality and Cauchy-Schwarz inequality, we can write

V (x, s) − V �(x�, s) ≤
N∑

m=n

ηm

(
|xm −P�xm| + |P�xm − 	x�

m|
)

≤
⎛⎝ N∑

m=n

η2
m

⎞⎠1/2
⎛⎜⎝
⎛⎝ N∑

m=n

|xm −P�xm|2
⎞⎠1/2

+
⎛⎝ N∑

m=n

|P�xm − 	x�
m|2

⎞⎠1/2
⎞⎟⎠ , (43)

where P� = 	T 	 is a projection operator. Since {xm}m ⊂ T , by the definition of POD basis we get⎛⎝ N∑
m=n

|xm −P�xm|2
⎞⎠1/2

≤
⎛⎝ ∑

i≥�+1

σ 2
i

⎞⎠1/2

. (44)

Let us denote by Err(�) = (∑
i≥�+1 σ 2

i

)1/2
the error related to the orthogonal projection onto V � .

Let us focus now on the generic term |P�xm − 	x�
m|:

|P�xm − 	x�
m| ≤

m−1∑
k=n

αk‖P�‖2| f (xk, uk∗, t̄k) − f (	x�
k, uk∗, t̄k)| ≤

L f ‖P�‖2

m−1∑
k=n

αk|xk − 	x�
k| ≤ L f ‖P�‖2

m−1∑
k=n

αk

(
|xk −P�xk| + |P�xk − 	x�

k|
)

.

By the discrete Grönwall’s lemma and noticing that ‖P�‖2 = 1, we get

|P�xm − 	x�
m| ≤ L f

m−1∑
k=n

αk|xk −P�xk|eL f (tm−s),

and since αk ≤ �t ∀k, we obtain⎛⎝ N∑
m=n

|P�xm − 	x�
m|2

⎞⎠1/2

≤ √
T − sL f eL f (T −s)Err(�). (45)

Plugging (44) and (45) into (43) we get

V (x, s) − V �(x�, s) ≤ Err(�)

⎛⎝ N∑
m=n

η2
m

⎞⎠1/2 (√
T L f eL f T + 1

)
.

Finally, noticing that

N∑
η2

m ≤ (T LL)
2 + L2

g,
m=n
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Fig. 1. Test 1: Uncontrolled solution for equation (46) for time t = {0,0.5,1} (from left to right).

we obtain

V (x, s) − V �(x�, s) ≤ C1(T )Err(�),

where

C1(T ) =
(
(T LL)

2 + L2
g

)1/2 (√
T L f eL f T + 1

)
.

Analogously, it is possible to obtain the same estimate for V �(x�, s) − V (x, s) and, defining C(T ) = max{Ĉ(T ), C1(T )}, we get 
the desired result. �
Remark 5.1. The error estimate presented in Theorem 5.1 depends strongly on the initial condition, since the POD reduction 
is based on the tree generated by the starting point x. We can extend the error estimate to other initial conditions if we 
enlarge the snapshots set with these new data and their evolutions up to the final time T .

6. Numerical tests

In this section we apply our proposed algorithm to show the effectiveness of the method with two test cases. In the first 
we deal with a parabolic PDE with a polynomial nonlinear term, which is usually not a trivial task when applying open-loop 
control tools. The second test concerns the bilinear control of the viscous Burgers’ equation.

In order to obtain the PDEs in the form (1), we use a Finite Difference scheme and we integrate in time using an implicit 
Euler scheme coupled with the Newton’s method with tolerance equal to 10−4. We will denote by Un the discretized set of 
U with n equi-distributed controls.

The numerical simulations reported in this paper are performed on a MacBook Pro with 1CPU Intel Core i7, 2.6 GHz and 
16 GB RAM. The codes are written in Matlab R2018b.

6.1. Test 1: nonlinear reaction diffusion equation

In the first example we consider the following bidimensional PDE with polynomial nonlinearity and homogeneous Neu-
mann boundary conditions⎧⎪⎨⎪⎩

∂s y = σ�y + μ
(

y2 − y3
)+ y0(x)u(s) (x, s) ∈ � × [0, T ],

∂n y(x, s) = 0 (x, s) ∈ ∂� × [0, T ],
y(x,0) = y0(x) x ∈ �,

(46)

where y : � × [0, T ] →R, the control u(t) is taken in the admissible set U = {u : [0, T ] → [−2, 0]} and � = [0, 1]2. In (46)
we consider: T = 1, σ = 0.1, μ = 5 and y0(x1, x2) = sin(πx1)sin(πx2). We discretize the space domain � in 31 points 
in each direction, obtaining a discrete domain with d = 961 points. As shown in Fig. 1, the solution of the uncontrolled 
equation (46) (i.e. u(t) ≡ 0) converges asymptotically to the stable equilibrium y1(x) = 1.

Our aim is to steer the solution to the unstable equilibrium y2(x) = 0. For this reason, we introduce the following cost 
functional

J y0,t(u) =
T∫

t

⎛⎝∫
�

|y(x, s)|2dx + 1

100
|u(s)|2

⎞⎠ds +
∫
�

|y(x, T )|2dx. (47)
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Fig. 2. Test 1: Controlled solution with TSA for equation (46) with full tree for time t = {0,0.5,1} (from left to right) with U2.

Fig. 3. Test 1: Control policy (left) and cost functional (right) for U2, U3 and U4. (For interpretation of the colours in the figures, the reader is referred to 
the web version of this article.)

Case 1: full TSA. We first consider the results using the TSA without model order reduction. In Fig. 2 we report the optimal 
trajectory obtained using the full tree structure algorithm with 2 controls and �t = 0.1. As one can see, we steer the 
solution to the unstable equilibrium using U2 = {−2, 0} as discrete control set. For the given tolerance εT = �t2 = 0.01, the 
cardinality of the pruned tree with 3 controls is 84354, whereas without is 88573. In the left panel of Fig. 3, we show the 
control policy obtained with 2, 3 and 4 discrete controls. In the right panel we show the behaviour of the cost functional, 
and it is easy to check that the optimal trajectories are very similar. An analysis of the CPU time is provided in Table 1 and 
discussed below.

Case 2: TSA with POD. The computation of the full TSA is already expensive with only 3 controls. For this reason, we replace 
the dynamics with its reduced order modelling. Then, we set the number of POD basis � = 6 such that E(�) = 0.999. 
Similarly, we consider 6 DEIM basis for the nonlinear term. In what follows, whenever we will talk about POD, we will refer 
to POD-DEIM approach.

The snapshots matrix Y is computed with a full TSA using the discrete control space U2 and �t = 0.1. In the online 
stage we considered again �t = 0.1, a pruning criteria with εT = �t2 and different discrete controls.

In Fig. 4, we present the relative error with the Euclidean norm between the model order reduction approximation and 
the full tree for �t = 0.1 and 3 controls. The snapshots in this example were computed with �t = 0.1 and 2 controls. We 
can observe that the approximation of the tree is rather accurate as the number of the POD basis � increases.

In the left panel of Fig. 5 we show the optimal policy with a number of controls varying from two to five. As one can 
see comparing the left panels of Fig. 3 and Fig. 5, there is no difference in terms of optimal control between the high 
dimensional case discretized with Finite Difference and the low dimensional case obtained via POD. We remind that the 
optimal trajectory is obtained plugging the suboptimal control u�∗ into the high dimensional model. Finally, in the right 
panel of Fig. 5 we show a zoom of the cost functional J y0,0 and it is possible to see the improvement obtained using more 
controls.

The CPU time, expressed in seconds, is shown in Table 1. The online phase of the TSA-POD is always faster than the full 
TSA. We tried to compute the full TSA with 5 controls and we stopped the computation after 4 days. If we also consider the 
amount of time to compute the snapshots, the offline phase, using the TSA with 2 controls and then running online, e.g. the 
TSA-POD with 3 controls, we get a speed up of factor 10 with respect to the full problem, having the same approximation.
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Fig. 4. Relative Euclidean error for the POD and POD-DEIM approximation of the tree. The snapshots are computed with �t = 0.1 and 2 controls, whereas 
the online stage refers to �t = 0.1 and 3 controls. The x-axis refers to the number of POD (POD-DEIM) basis.

Fig. 5. Test 1: Optimal policy (left) and J y0,0 (right) for Un with n = {2,3,4,5}.

Table 1
CPU time of the TSA and the TSA-POD with a different number of controls 
and pruning criteria εT = 0.01.

U2 U3 U4 U5

TSA 5.8312 s 241.5773 s 3845.77 s > 4 days
TSA-POD 0.5157 s 19.7969 s 432.0990 s 1.0871e + 04 s

Remark 6.1. The offline stage of the proposed method is clearly expensive due to the cardinality of the tree. We have also 
tried to compute snapshots for some given control input setting, e.g. u(t) ≡ u, with u ∈ {−2, −1, 0}. In this setting we are 
able to achieve the same results shown in the section, improving the computational performances of the method in the 
offline phase.

Remark 6.2. Using the same set of snapshots, we can perform the online simulation with �t = 0.05 and U2. The results for 
the optimal control and cost functional can be found in Fig. 6.

6.2. Test 2: viscous Burgers’ equation

In the second example we consider the well-known viscous Burgers’ equation with homogeneous Dirichlet boundary 
conditions:⎧⎪⎨⎪⎩

∂s y(x, s) = σ�y(x, s) + y(x, s) · ∇ y(x, s) + y(x, s)u(s) (x, s) ∈ � × [0, T ],
y(x, s) = 0 (x, s) ∈ ∂� × [0, T ],
y(x,0) = y (x) x ∈ �,

(48)
0
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Fig. 6. Test 1: Optimal policy (left) and cost functional (right) with �t = 0.05 and U2.

Fig. 7. Test 2: Uncontrolled solution for equation (48) for time instances t = {0,0.5,1} (from left to right).

Fig. 8. Test 2: Controlled solution with 3 controls for equation (48) with full tree for time t = {0,0.5,1} (from left to right).

where the control u(t) is taken in the admissible set U = {u : [0, T ] → [−2, 0]} and � = [0, 1]2. In (48) we consider: T = 1, 
σ = 0.01 and y0(x1, x2) = sin(πx1)sin(πx2). We discretize the space domain in 41 points in each direction, obtaining a 
problem of dimension d = 1681 points. In Fig. 7 we show the solution of the uncontrolled equation (48) for different time 
instances. Our aim is to steer the solution to the steady state ỹ(x) = 0, using the cost functional (47), as in Test 1, using a 
bilinear control, e.g. controlling the system through a reaction term.

Case 1: full TSA. Let us first consider the results of the full TSA. In Fig. 8 we show the results of the controlled problem. As 
we can see, the solution gets close to ỹ(x) as expected. We also note that for this example the viscosity term σ is rather 
low, making the problem hard to be controlled.

In the left panel of Fig. 9, we show the optimal control computed to obtain the controlled solution. When the control set 
is only given by 2 controls, the algorithm uses the control u∗(t) = −2 for 0 ≤ t ≤ 0.7 and u(t) = 0 for 0.7 < t ≤ 1, whereas 
with 3 controls we use the control −2 for 0 ≤ t ≤ 0.5 and −1 for 0.5 < t ≤ 1.

We can see that passing from 2 to 3 controls, we obtain a slightly better result in terms of cost functional (see the right 
panel of Fig. 9).

Finally, the cardinality of the full tree is reported in Table 2. We can observe that the tree is considerably pruned 
compared to the previous example. This happens when we deal with a bilinear control for both Test 1 and Test 2.
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Fig. 9. Test 2: Optimal policy (left) and cost functional for U2 and U3 (right).

Table 2
Test 2: Cardinality of the tree for the full TSA and for the pruned 
TSA and pruned TSA-POD with εT = 0.01, varying the control sets.

U2 U3 U4 U5

TSA with εT = 0 2047 88573
TSA with εT = 0.01 1681 17680
TSA-POD with εT = 0.01 1717 17627 48372 83201

Case 2: TSA with POD. To accelerate and use a finer control set, we use model order reduction. The snapshots are computed 
with �t = 0.1, U2 and a pruning criteria with εT = �t2. For this problem, we only project the dynamics with POD since 
the nonlinear term can be written as a tensor and can be projected offline. We took � = 8 POD basis to have E(�) = 0.999. 
Thanks to the reduced problem, we are able to solve the problem with more controls, keeping �t = 0.1. In the top-left 
panel of Fig. 10 we show the behaviour of the optimal policy. We note that the cases with 2 and 3 controls are equivalent 
to the full case (compare with Fig. 9). The computed controls show a chattering behaviour which is then reflected in the 
plot of J y0,0 in the top-right panel of Fig. 10, considering the control space Un for n = {2, 3, . . . , 11}. We can see a rather 
similar behaviour when increasing the number of controls.

The CPU time is reported in the bottom panel of Fig. 10 and it is possible to capture visually the big advantage of using 
model order reduction.

With the same set of snapshots, we can also decrease the temporal step size, e.g. �t = 0.05, and compute the online 
stage with Un with n = 2, 3. We see in Fig. 11 that the behaviour of the control policy is similar when dealing with 2
controls, whereas the switch from u = −2 to u = −1 happens for t = 0.45.

We can also observe that the cost functional is slightly lower when dealing with �t = 0.05 as summarized in Table 3.
The cardinality of the pruned TSA-POD approach is reported in the last line of Table 2, whereas the first line is still valid 

for the full TSA-POD method. As expected, even when we apply model reduction, we can observe an impressive pruning if 
we compare with the unpruned method.

7. Conclusions and future works

In this work we have presented a new method that couples model order reduction with a recent technique to solve DP 
approach on a tree structure, proposed in [2,22]. The tree structure needs to solve many PDEs for a given control input 
and, therefore, model order reduction helps to speed up its construction and also to work with a finer control set. We have 
also provided an error estimate to guarantee the convergence of the method which depends, as expected, on the projection 
error of the POD method and on the temporal discretization of the differential equations considered. We showed through 
numerical tests the efficiency of the method and we would like to emphasize that the tree structure algorithm combined 
with model order reduction allows to solve numerical optimal control problems for nonlinear PDEs.

Some limitations of the method will be addressed in future works. Here, we strongly rely on a finite discretization of 
the control set. We would like to improve the feedback reconstruction by means of more sophisticated methods which 
do not need a finite number of controls. That will also avoid the use of a comparison method in the computation of 
the minimum of the hamiltonian. Clearly, the pruning rule help to reduce the dimension of the tree and to keep its 
cardinality feasible. Another interesting future application is the extension of the tree structure to stochastic control prob-
lems.
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Fig. 10. Test 2: Optimal policy (top-left), zoom of the cost (top-right) for Un with n = 2, 3, 4, . . . , 11, and CPU time increasing the number of controls 
(bottom).

Fig. 11. Test 2: Optimal policy (left) and cost functional for Un with n = 2,3 and �t = 0.05 (right).

Table 3
Test 2: Cost functional J �

y0,0
with �t ∈ {0.1, 0.05}, U2 and 
U3.

�t U2 U3

0.1 0.1106 0.1065
0.05 0.0995 0.0956
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