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Abstract. While reduced-order models (ROMs) have been popular for efficiently solving large4
systems of differential equations, the stability of reduced models over long-time integration is of5
present challenges. We present a greedy approach for a ROM generation of parametric Hamiltonian6
systems that captures the symplectic structure of Hamiltonian systems to ensure stability of the7
reduced model. Through the greedy selection of basis vectors, two new vectors are added at each8
iteration to the linear vector space to increase the accuracy of the reduced basis. We use the error9
in the Hamiltonian due to model reduction as an error indicator to search the parameter space and10
identify the next best basis vectors. Under natural assumptions on the set of all solutions of the11
Hamiltonian system under variation of the parameters, we show that the greedy algorithm converges12
with exponential rate. Moreover, we demonstrate that combining the greedy basis with the discrete13
empirical interpolation method also preserves the symplectic structure. This enables the reduction14
of the computational cost for nonlinear Hamiltonian systems. The efficiency, accuracy, and stability15
of this model reduction technique is illustrated through simulations of the parametric wave equation16
and the parametric Schrödinger equation.17
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1. Introduction. Parameterized partial differential equations often arise as a21

model in many problems in engineering and the applied sciences. While the need for22

more accuracy has led to the development of exceedingly complex models, the limi-23

tations in computational cost and storage often make direct approaches impractical.24

Hence, we must seek alternative methods that allow us to approximate the desired25

output under variation of the input parameters while keeping the computational costs26

to a minimum.27

Reduced basis methods have emerged as a powerful approach for the reduction of28

the intrinsic complexity of such models [22, 23, 24, 38]. These methods contain two29

stages: the offline stage and the online stage. In the offline stage, one explores the30

parameter space to construct a low-dimensional basis that accurately represents the31

parametrized solution to the partial differential equation. In this stage, the evaluation32

of the solution of the original model for multiple parameter values is required. The33

online stage comprises a Galerkin projection onto the span of the reduced basis, which34

allows exploration of the parameter space at a significantly reduced complexity [2, 21].35

Convectional reduced basis techniques, such as the Proper Orthogonal Decompo-36

sition (POD) [27, 3, 43], require the exploration of the entire parameter space. This37

leads to a very expensive and often impractical offline stage when dealing with multi-38

dimensional parameter domains. On the other hand, sampling techniques, usually of39

a greedy nature, search through the parameter space selectively, guided by an error40

estimate to certify the accuracy of the basis. This approach, accompanied with an ef-41

ficient sampling procedure, balances the cost of computation with the overall accuracy42

of the reduced-basis [16, 44, 21].43

Besides computational complexity, another aspect of reduced order modeling is44
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2 B. MABOUDI AFKHAM, AND J. S. HESTHAVEN

the preservation of structure and, in particular, the stability of the original model.45

In general, reduced order models do not guarantee that such properties are preserved46

[41].47

In the context of Hamiltonian and Lagrangian systems, recent work suggests48

modifications of POD to preserve some geometric structures. Lall et al. [28] and49

Carlberg et al. [12] suggests that the reduced-order system should be identified by50

a Lagrangian function on a low-dimensional configuration space. In this way, the51

geometric structure of the original system is inherited by the reduced system. Model52

reduction for port-Hamiltonian systems can be found in the works of Beattie et al.53

[14], Polyuga et al. [40] and references therein. These works construct a reduced54

port-Hamiltonian system using Krylov or POD methods that inherit the passivity55

and stability of the original system. For Hamiltonian systems, Peng et al. [37], using56

a symplectic transformation, constructs a reduced Hamiltonian, as an approximation57

to the Hamiltonian of the original system. As a result, the reduced system preserves58

the symplectic structure. Although these methods preserve the geometric structure,59

they use a POD-like approach for constructing the reduced basis. If the numerical60

evaluation of the original model is computationally demanding, performing POD can61

be excessively expensive [42].62

In this paper, we present a greedy approach for the construction of a reduced63

system that preserves the geometric structure of Hamiltonian systems. This tech-64

nique results in a reduced Hamiltonian system that mimics the symplectic properties65

of the original system and preserves the Hamiltonian structure and its stability over66

the course of time. On the other hand, since time integration of the original system is67

only required once per iteration, the proposed method saves substantial computational68

cost during the offline stage when compared to alternative POD-like approaches. It is69

well known that structured matrices, e.g. symplectic matrices, generally are not well-70

conditioned [25]. The greedy update of the symplectic basis presented here, yields a71

orthosymplectic basis and, therefore, a norm bounded basis. Moreover, we demon-72

strate that assumptions, natural for the set of all solutions of the original Hamiltonian73

system under variation of parameters, lead to exponentially fast convergence of the74

greedy algorithm. For nonlinear Hamiltonian systems, we show how the basis can be75

combined with the discrete empirical interpolation method (DEIM) [15, 4] to enable76

a fast evaluation of nonlinear terms while maintaining the symplectic structure.77

This paper is organized as follows. Section 2 presents a brief overview of model78

order reduction, POD and DEIM. In Section 3 we cover the required topics from sym-79

plectic geometry and Hamiltonian systems. Section 4 discusses the greedy generation80

of a symplectic reduced basis as well as other SVD-based symplectic model reduc-81

tion techniques. Accuracy, stability, and efficiency of the greedy method compared to82

other SVD-based methods are discussed in Section 5. Finally we offer some conclusive83

remarks in Section 6.84

2. Model Order Reduction. Consider a parameterized, finite dimensional dy-85

namical system described by a set of first order ordinary differential equations86

(1)







d

dt
x(t, ω) = f(t,x, ω),

x(0, ω) = x0(ω).
87

Here x ∈ Rn is the state vector, ω ∈ Γ is a vector containing all the parameters of the88

system belonging to a compact set Γ (⊂ Rd) and f : R × Rn × Γ → Rn is a general89

vector valued function of the state variables and parameters.90
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SYMPLECTIC MODEL REDUCTION OF HAMILTONIAN SYSTEMS 3

We define the solution manifold as the set of all solutions to (1) under variation91

of the parameters in Γ92

(2) M = {x(t, ω)|ω ∈ Γ, t ≥ 0} ⊂ R
n.93

Note that the exact solution and solution manifold is often not available; we assume94

that we have a numerical integrator that can approximate the solution to (1) for any95

realization of ω with a given accuracy. By abuse of notation, we refer to x and M96

as the exact solution and the exact solution manifold, respectively, rather than the97

discrete solution and discrete solution manifold.98

Model order reduction is based on the assumption that M is of low dimension99

[21, 2] and that the span of appropriately chosen basis vectors {vi}ki=1 covers most100

of the solution manifold to within a small error. The set {vi}ki=1 is denoted as the101

reduced basis and its span as the reduced space. Assuming that a k-dimensional102

(k ≪ n) reduced basis is given, the approximated solution can be represented as103

(3) x ≈ V y,104

where V is a matrix containing the reduced basis vectors as its columns and y contains105

the coordinates of the approximation in this basis. By substituting (3) into (1) we106

obtain the overdetermined system107

(4) V
d

dt
y = f(t, V y, ω) + r(t, ω).108

Here we added the residual r to emphasize that (4) is an approximation of (1). Tak-109

ing the Petrov-Galerkin projection [2] we construct a basis W of size n − k that is110

orthogonal to the residual r and requires that WTV is invertible. This yields111

(5)
d

dt
y = (WTV )−1f(t, V y, ω).112

Equation (5) consists of k equations and is called the reduced system. Solving the113

reduced system instead of the original system can reduce the computational costs114

provided k is significantly smaller than n. For nonlinear systems, the evaluation of115

f may still have computational complexity that depends on n. We return to this116

question in detail in Section 2.2.117

2.1. Proper Orthogonal Decomposition. Let x(ti, ωj) with i = 1, . . . ,m and118

j = 1, . . . , n be a finite number of samples, referred to as snapshots, from the solution119

manifold (2). If we assume that a reduced basis V is provided, the projection operator120

from Rn onto the reduced space can be constructed as V V T . The proper orthogonal121

decomposition (POD) requires the total error of projecting all the snapshots onto the122

reduced space to be minimized. The POD basis of size k is thus the solution to the123

optimization problem124

(6)
minimize
V ∈Rn×k

‖S − V V TS‖F

subject to V TV = Ik
125

Here S is the snapshot matrix, containing snapshots x(ti, ωj) in its columns, ‖ · ‖F is126

the Frobenius norm and Ik is the identity matrix of size k. According to the Schmidt-127

Mirsky-Eckart-Young theorem [29], the solution to (6) is equivalent to the truncated128

singular value decomposition (SVD) of the snapshot matrix S given by129

(7) V = σ1u1v
T
1 + · · ·+ σkukv

T
k .130
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4 B. MABOUDI AFKHAM, AND J. S. HESTHAVEN

Here σi, ui and vi are the singular values, the left singular vectors, and the right131

singular vectors of S, respectively [29] .132

2.2. Discrete Empirical Interpolation Method (DEIM). In this section we133

discuss the efficiency of evaluating nonlinearities in the context of projection based134

reduced models. Suppose that the right hand side in (1) is of the form f(t,x, ω) =135

Lx+g(t,x, ω), where L ∈ Rn×n reflects the linear part, and g is a nonlinear function.136

Now assume that a k-dimensional reduced basis V is provided. The reduced system137

takes the form138

(8)
d

dt
y = (WTV )−1LV

︸ ︷︷ ︸

L̃

y + (WTV )−1g(t, V y, ω)
︸ ︷︷ ︸

Ñ(y)

.139

Here, L̃ is a k×k matrix which can be computed before time integration of the reduced140

system. However, the evaluation of Ñ(y) has a complexity that depends on n, the141

size of the original system. Suppose that the evaluation of g with n components has142

the complexity α(n), for some function α. Then the complexity of evaluating Ñ(y)143

is O(α(n) + 4nk) which consists of 2 matrix-vector operations and the evaluation of144

the nonlinear function, i.e. the evaluation of the nonlinear terms can be as expensive145

as solving the original system.146

To overcome this bottleneck we take an approach similar to that of Section 2.1147

[15, 4]. Assume that the manifold Mg = {g(t,x, ω)|t ∈ R,x ∈ R, ω ∈ Γ} is of a low148

dimension and that g can be approximated by a linear subspace of dimension m≪ n,149

spanned by the basis {u1, . . . , um}, i.e.150

(9) g(t,x, ω) ≈ Uc(t,x, ω).151

Here U contains basis vectors ui and c is the vector of coefficients. Now suppose152

p1, . . . , pm are m indices from {1, . . . , n} and define an n×m matrix153

(10) P = [ep1
, . . . , epm

],154

where epi
is the pi-th column of the identity matrix In. Multiplying P with g selects155

components p1, . . . , pm of g. If we assume that PTU is non-singular, the coefficient156

vector c can be uniquely determined from157

(11) PTg = (PTU)c.158

Finally the approximation of g is determined by159

(12) g(t,x, ω) ≈ Uc(t,x, ω) = U(PTU)−1PTg(t,x, ω),160

which is referred to as the Discrete Empirical Interpolation (DEIM) approximation161

[15]. Applying DEIM to the reduced system (5) yields162

(13)
d

dt
y = L̃y + (WTV )−1U(PTU)−1PTg(t, V y, ω).163

Note that the matrix (WV )−1U(PTU)−1 can be computed offline and since g is164

evaluated only at m of its components, the evaluation of the nonlinear term in (13)165

does not depend on n.166

To obtain the projection basis U , the POD can be applied to the ensemble of167

samples of the nonlinear term g(ti,x, ωj) with i = 1, . . . ,m and j = 1, . . . , n. There168
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is no additional cost associated with computing the nonlinear snapshots, since they169

are generated when computing the trajectory snapshot matrix S. The interpolating170

indices p1, . . . , pm can be constructed as follows. Given the projection basis U =171

{u1, . . . , um}, the first interpolation index p1 is chosen according to the component172

of u1 with the largest magnitude. The rest of the interpolation indices, p2, . . . , pm173

correspond to the component of the largest magnitude of the residual vector r =174

ul − Uc. It is shown in [15] that if the residual vector is a nonzero vector in each175

iteration then PTU is non-singular and (12) is well defined.176

Algorithm 1 Discrete Empirical Interpolation Method

Input: Basis vectors {u1, . . . , um} ⊂ Rn

1. pick p1 to be the index of the largest component of u1.
2. U ← [u1]
3. P ← [p1]
4. for i← 2 to m
5. solve (PTU)c = PTui for c
6. r← ui − Uc
7. pick pi to be the index of the largest component of r
8. U ← [u1, . . . , ui]
9. P ← [p1, . . . , pi]

10. end for

Output: Interpolating indices {p1, . . . , pm}

The numerical solution of (8) may involve the computation of the Jacobian of the177

nonlinear function g(t,x, ω) with respect to the reduced state variable y178

(14) Jy(g) = (WTV )−1Jx(g)V,179

where Jα(g) is the Jacobian matrix of g with respect to the variable α. The com-180

plexity of (14) is O(α(n) + 2n2k + 2nk2 + 2nk), comprising several matrix-vector181

multiplications and an evaluation of the Jacobian which depends on the size of the182

original system. Approximating the Jacobian in (14) is usually both problem and dis-183

cretization dependent. Often the nonlinear function g is evaluated component-wise184

i.e.185

(15) g(x) =








g1(x1, . . . , xn)
g2(x1, . . . , xn)

...
gn(x1, . . . , xn)








=








g1(x1)
g2(x2)

...
gn(xn)







.186

In such cases the interpolating index matrix P and the nonlinear function g commute,187

i.e.,188

(16) Ñ(y) ≈ (WTV )−1U(PTU)−1PTg(V y) = (WTV )−1U(PTU)−1g(PTV y)189

If we now take the Jacobian of the approximate function we recover190

(17) Jy(g) = (WTV )−1U(PTU)−1

︸ ︷︷ ︸

k×m

Jx(g(P
TV y))

︸ ︷︷ ︸

m×m

PTV
︸ ︷︷ ︸

m×k

.191

This manuscript is for review purposes only.



6 B. MABOUDI AFKHAM, AND J. S. HESTHAVEN

The matrix (WV )−1U(PTU)−1 can be computed offline and the Jacobian is evaluated192

only for m×m components. Hence the overall complexity of computing the Jacobian193

is now independent of n. We refer the reader to [4, 15] for more detail.194

3. Hamiltonian Systems and Symplectic Geometry. LetM be a manifold195

and Ω :M×M→ R be a closed, nondegenerate and skew-symmetric 2-form onM.196

The pair (M,Ω) is called a symplectic manifold [30].197

Let (M,Ω) be a symplectic manifold and suppose that H :M→ R is a smooth198

scalar function. The differential of H , denoted by dH , defines a 1-form on M. The199

nondegeneracy of Ω implies that there is a unique vector field XH , the Hamiltonian200

vector field [17, 30], onM such that201

(18) iXH
Ω = dH.202

Here iXH
Ω is the interior product of XH with Ω, i.e.,203

(19) Ω(XH , Y ) = dH(Y ),204

for any vector field Y onM. Note that when M belongs to a Euclidean space then205

dH = ∇zH . The equations of evolution are then defined by206

(20) ż = XH(z)207

and known asHamilton’s equation [30]. A fundamental feature of Hamiltonian systems208

is the conservation of the Hamiltonian along integral curves onM. To emphasize the209

importance of this property we recall [30]210

Theorem 1. Suppose that XH is a Hamiltonian vector field with the flow φt on211

a symplectic manifold M. Then H ◦ φt = H.212

Proof. H is constant along integral curves since213

(21)

d

dt
(H ◦ φt)(z) = dH(φt(z)) · (

d

dt
φt(z))

= dH(φt(z)) ·XH(φt(z))

= Ωz(XH(φt(z)), XH(φt(z))) = 0,

214

by using the chain rule and bilinearity of Ω in the argument.215

For the case where the symplectic manifold is also a linear vector space, the216

pair (M,Ω) is also referred to as a symplectic vector space. We need the following217

theorems regarding symplectic vector spaces and refer the reader to [18, 30, 11] for218

detailed proofs.219

Theorem 2. [30] If (V,Ω) is a symplectic vector space then Ω is a constant form,220

that is Ωz is independent of z ∈ V .221

Theorem 3. [30] If (V,Ω) is a finite-dimensional symplectic manifold then V is222

even dimensional.223

Theorem 4. [18] (The Symplectic Gram-Schmidt) If (V,Ω) is a 2n-dimensional224

symplectic vector space, then there is a basis e1, . . . en, f1, . . . , fn of V such that225

(22)
Ω(ei, ej) = 0 = Ω(fi, fj), i 6= j,

Ω(ei, fj) = δij , i ≤ i, j ≤ n.226
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where δ is the Kronecker’s delta function. Moreover, if V = R2n then we can choose227

basis vectors {ei, fi}ni=1 such that228

(23) Ω(v1, v2) = vT1 J2nv2, v1, v2 ∈ R
n,229

with J2n being the standard symplectic matrix, defined as230

(24) J2n =

(
0n In
−In 0n

)

.231

Here In and 0n is the identity matrix and the zero square matrix of size n, respectively.232

Theorem 5. [30] The classical inner product 〈·, ·〉 : R2n×R2n → R can be written233

in terms of the 2-form as234

(25) 〈v, u〉 = Ω(J2nv, u), ∀u, v ∈ R
2n.235

Definition 6. [18] Suppose (V,Ω) is a finite dimensional symplectic vector space236

and E ⊂ V is a subspace. Then the symplectic complement of E inside V is defined237

as238

E⊥ := {v ∈ V | Ω(v, e) = 0, ∀e ∈ E}239

Note that E ∩ E⊥ is not empty in general.240

Definition 7. [18] Suppose (V,Ω) is a finite dimensional symplectic vector space.241

A subspace E ⊂ V is called a Lagrangian subspace inside V if E = E⊥.242

Theorem 8. [1] Suppose (V,Ω) is a finite dimensional symplectic vector space.243

If E ⊂ V is a Lagrangian subspace then dim(E) = 1
2dim(V ). Here dim denotes the244

dimension of the subspace.245

Definition 9. A basis of (V,Ω) is called orthosymplectic if it is both a symplectic246

basis and an orthogonal basis with respect to the classical scalar product.247

Theorem 10. [32, 17] Suppose (V,Ω) is a 2n dimensional symplectic vector space248

and E ⊂ V is a Lagrangian subspace. Then there is an orthosymplectic basis for V .249

Proof. We are going to summarize the proof given in [32]. Starting from a La-250

grangain subspace in E ⊂ V an orthosymplectic basis can be easily constructed. By251

Theorem 8 E is n dimensional. Suppose that {e′1, . . . , e′n} is a basis for E, using the252

classical Gram-Schmidt orthogonalization process we can construct an orthonormal253

basis {e1, . . . , en}. Define a new set of vectors f1 = JT2ne1, f2 = JT2ne2, . . . , fn = JT2nen.254

We have255

(26) 〈fi, fj〉 = eTi J2nJ2n
T ej = δij , 〈fi, ej〉 = eTi J2nej = 0, i, j = 1, . . . , n,256

where we used the fact that J2nJ2n
T = I2n in the first identity and the second identity257

is due to the fact that the basis {e1, . . . , en} forms a Lagrangian subspace. This shows258

that the set {e1, . . . , en} ∪ {f1, . . . , fn} forms an orthonormal basis. Also, it can be259

easily verified that this is a symplectic basis. Thus {e1, . . . , en} ∪ {f1, . . . , fn} is an260

orthosymplectic basis.261

Theorem 11. [30] On a finite-dimensional symplectic vector space the relation-262

ship (18) becomes263

(27)

{

ż = J2n∇zH(z),

z(0) = z0.
264
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8 B. MABOUDI AFKHAM, AND J. S. HESTHAVEN

or, by introducing the canonical coordinates z = (qT ,pT )T ,265

(28)

{

q̇ = ∇pH(q,p),

ṗ = −∇qH(q,p).
266

Let us now introduce symplectic transformations, i.e., mappings between sym-267

plectic manifolds which preserve the 2-form Ω. The accurate numerical treatment of268

Hamiltonian systems often requires preservation of the symmetry expressed in Theo-269

rem 1. Symplectic transformations can be used to construct such symmetry preserving270

numerical methods.271

Definition 12. Let (V,Ω) and (W,Π) be two linear symplectic vector spaces of272

dimensions 2n and 2k, respectively. A linear mapping φ : V →W is called symplectic273

or canonical if274

(29) Ω = φ∗Π275

where φ∗Π is the pullback of Π by φ, i.e. for all z1, z2 ∈ V276

(30) Ω(z1, z2) = Π(φ(z1), φ(z2)).277

Note that if we represent the transformation φ as a matrix A ∈ R2n×2k condition278

(29) is equivalent to [30]279

(31) AT
J2nA = J2k.280

A matrix of size 2n× 2k satisfying (31) is called a symplectic matrix. We emphasize281

that a symplectic matrix is conventionally referred to a square matrix, however, here282

we may allow symplectic matrices to be also rectangular.283

Definition 13. The symplectic inverse of a matrix A ∈ R2n×2k is denoted by284

A+ and defined by [37]285

(32) A+ := J
T
2kA

T
J2n.286

We point out the properties of the symplectic inverse and refer the reader to [37] for287

detailed proof.288

Lemma 14. Let A ∈ R2n×2k be a symplectic matrix and A+ its symplectic inverse289

as defined in (32). Then (A+)
T
is a symplectic matrix and A+A = I2k.290

A straight-forward calculation verifies that AA+ is idempotent, i.e., a symplectic291

projection onto the column span of A.292

It is natural to expect a numerical integrator that solves (27) to also satisfy the293

conservation law in Theorem 1. Common numerical integrators e.g., Runge-Kutta294

methods, do not generally preserve the Hamiltonian which results in a qualitative295

wrong behavior of the solution [20]. Symplectic integrators are a class of numerical296

integrators for Hamiltonian systems that preserve the symplectic structure and ensure297

stability in long-time integration. The Störmer-Verlet time stepping scheme is an298

example of symplectic integrators and is given by299

(33)

qn+1/2 = qn +
∆t

2
∇pH(qn+1/2, pn),

pn+1 = pn −
∆t

2

(
∇qH(qn+1/2, pn) +∇qH(qn+1/2, pn+1)

)
,

qn+1 = qn+1/2 +
∆t

2
∇pH(qn+1/2, pn+1),

300
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and301

(34)

pn+1/2 = pn −
∆t

2
∇qH(qn, pn+1/2),

qn+1 = qn +
∆t

2

(
∇pH(qn, pn+1/2) +∇pH(qn+1, pn+1/2)

)
,

pn+1 = pn+1/2 −
∆t

2
∇qH(qn+1, pn+1/2).

302

For a general Hamiltonian system, the Störmer-Verlet scheme is implicit. However, for303

separable Hamiltonians, i.e. H(q, p) = K(p)+U(q), this scheme becomes explicit. We304

refer the reader to [20] for more information about the construction and applications305

of symplectic and geometric numerical integrators.306

4. Symplectic Model Reduction. We now discuss how to modify reduced307

order modeling to ensure that the resulting scheme preserves the symplectic structure308

of the Hamiltonian system.309

Consider a Hamiltonian system (27) on a 2n-dimensional symplectic vector space310

(V,Ω). Suppose that the solution manifoldMH is well approximated by a low dimen-311

sional symplectic subspace (W,Ω) of dimension 2k (k ≪ n). We can then construct a312

symplectic basis A for W and approximate the solution to (27) as313

(35) z ≈ Ay.314

Substituting this into (27) we obtain315

(36) Ay = J2n∇zH(Ay).316

Multiplying both sides with the symplectic inverse of A and using the chain rule we317

have318

(37) y = A+
J2n(A

+)T∇yH(Ay).319

Since A is a symplectic basis, Lemma 14 ensures that (A+)T is a symplectic matrix320

i.e., A+J2n(A
+)T = J2k. By defining the reduced Hamiltonian H̃ : R2k → R as321

H̃(y) = H(Ay) we obtain the reduced system322

(38)







d

dt
y = J2k∇yH̃(y),

y0 = A+z0.
323

The system obtained from the Petrov-Galerkin projection in (5) is not a Hamiltonian324

system and does not guarantee conservation of the symplectic structure. On the325

other hand, we observe that the reduced system in (38) is of the form (27) and,326

hence, is a Hamiltonian system, i.e. the symplectic structure will be conserved along327

integral curves of (38). Note that the original and the reduced systems are endowed328

with different Hamiltonians. In the next proposition we show that the error in the329

Hamiltonian is constant in time.330

Proposition 15. Let z(t) be the solution of (27) at time t. Further suppose that331

z̃(t) is the approximate solution of the reduced system (38) in the original coordinate332

system. Then the error in the Hamiltonian defined by333

(39) ∆H(t) = |H(z(t)) −H(z̃(t))|,334

is constant for all t ∈ R.335
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10 B. MABOUDI AFKHAM, AND J. S. HESTHAVEN

Proof. Let φt and ψt be the Hamiltonian flow of the original and the reduced sys-336

tem respectively. By definition z(t) = φt(z0) and y(t) = ψt(y0). Using the definition337

of the reduced Hamiltonian and Theorem 1 we have338

(40)
H(z̃(t)) = H(Ay(t)) = H̃(y(t)) = H̃(ψt(y0)) = H̃(y0) = H̃(A+z0) = H(AA+z0).339

The error in the Hamiltonian can then be written in terms of z0 and the symplectic340

basis A as341

(41) ∆H(t) = |H(z0)−H(AA+z0)|342

The following theorems provide a strong indication of the stability of the reduced343

system.344

Definition 16. [7] Consider a dynamical system of the form ż = f(z) and sup-345

pose that ze is an equilibrium point for the system so that f(ze) = 0. ze is called346

nonlinearly stable or Lyapunov stable if, for any ǫ > 0, we can find δ > 0 such that347

for any trajectory φt, if ‖φ0−ze‖2 ≤ δ, then for all 0 ≤ t <∞, we have ‖φt−ze‖2 < ǫ,348

where ‖ · ‖2 is the Euclidean norm.349

The following proposition, also known as Dirichlet’s theorem [7], states the sufficient350

condition for an equilibrium point to be Lyapunov stable. We refer the reader to [7]351

for the proof.352

Proposition 17. [7] An equilibrium point ze is Lyapunov stable if there exists a353

scalar function W : Rn → R such that ∇W (ze) = 0, ∇2W (ze) is positive definite, and354

that for any trajectory φt defined in the neighborhood of ze, we have d
dtW (φt) ≤ 0.355

Here ∇2W is the Hessian matrix of W .356

The scalar function W is referred to as the Lyapunov function. In the context of the357

Hamiltonian systems, a suitable candidate for the Lyapunov function is the Hamilto-358

nian function H . The following theorem shows that when H (or −H) is a Lyapunov359

function, then the equilibrium points of the original and the reduced system are Lya-360

punov stable [1].361

Theorem 18. Consider a Hamiltonian system of the form (27) together with the362

reduced system (38). Suppose ze is an equilibrium point for (27) and that ye = A+ze.363

If H (or −H) is a Lyapunov function satisfying Proposition 17, then ze and ye are364

Lyapunov stable equilibrium points for (27) and (38), respectively.365

Proof. It is a direct consequence of Proposition 17 that ze is a local minimum or366

maximum of (27) and also a Lyapunov stable point. It can be easily checked that if367

ze is a local minimum of H then ye is a local minimum for H̃ and an equilibrium368

point for (38). Also from the chain rule we have369

∇2
y
H̃ = AT∇2

z
HA.370

So for any ξ ∈ R2k371

ξT∇2
y
H̃ξ = (Aξ)T∇2

z
H(Aξ) ≥ 0.372

Here the last inequality is due to the positive definiteness of H . Therefore H̃ is also373

positive definite. By Proposition 17 we conclude that ye is a Lyapunov stable point.374

While the symplectic structure is not guaranteed to be preserved in the reduced375

systems obtained by the Petrov-Galerkin projection, the reduced system obtained by376

the symplectic projection guarantees the preservation of the energy up to the error in377

the Hamiltonian (39). In the next section we discuss different methods for obtaining378

a symplectic basis.379
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4.1. Proper Symplectic Decomposition (PSD). Similar to Section 2.1 we380

gather snapshots zi = [qTi , p
T
i ]

T in the snapshot matrix S. Suppose that a symplectic381

basis A of size 2n× 2k and its symplectic inverse A+ is provided. The Proper Sym-382

plectic Decomposition requires that the error of the symplectic projection onto the383

symplectic subspace be minimized. Hence, the PSD symplectic basis of size 2k is the384

solution to the optimization problem385

(42)
minimize
V ∈R2n×2k

‖S − AA+S‖F

subject to AT
J2nA = J2k

386

Compared to POD, in (42) the orthogonal projection is replaced with a symplectic387

projection AA+. At first, the minimization looks similar to the one obtained by POD.388

However, it is well known that symplectic bases are not generally orthogonal, and389

therefore not norm bounded. This means that numerical errors may become dominant390

in the symplectic projection [25] which makes the minimization (42) a harder problem391

than (6).392

As the optimization problem (42) is nonlinear, the direct solution is usually ex-393

pensive. A simplified version of the optimization (42) can be found in [37], but there394

is no guarantee that the method provides a near optimal basis.395

Finding eigen-spaces of Hamiltonian and symplectic matrices is studied in the396

context of optimal control problems [5, 6, 46, 10] and model reduction of Riccati397

equations [6], where also an SVD-like decomposition for Hamiltonian and symplectic398

matrices has been proposed [47]. Specially computation of Lagrangian subspaces of399

a large scale Hamiltonian matrices using a CS-decomposition is presented in [34, 33].400

However, the computation of a large snapshot matrix and use of the mentioned meth-401

ods to compute its eigen-spaces, is usually computationally demanding. Also, these402

methods generally do not guarantee the construction of a well-conditioned symplectic403

basis.404

The greedy approach presented in Section 4.1.2 is an iterative method for con-405

struction of a symplectic basis. It avoids the evaluation of the full snapshot matrix,406

hence substantially reduces the computational cost in the offline stage of the sym-407

plectic model reduction. Also, by construction, it yields an orthosymplectic basis and408

therefore a well-conditioned basis.409

In Section 4.1.1 we briefly outline non-direct methods for finding solutions to410

(42), proposed by [37], and assuming a specific structure for A. In Section 4.1.2 we411

introduce a greedy approach for the symplectic basis generation.412

4.1.1. SVD Based Methods for Symplectic Basis Generation.413

Cotangent lift. Suppose that A is of the form414

(43) A =

(
Φ 0
0 Φ

)

,415

where Φ ∈ Rn×k is an orthonormal matrix. It is easy to check that A is a symplectic416

matrix, i.e., AT J2nA = J2k. The construction of A suggests that the range of Φ should417

cover both the potential and the momentum spaces. Hence, we can construct A by418

forming the combined snapshot matrix419

(44) Scombined = [q1, . . . , qn, p1, . . . , pn], zi = (qTi , p
T
i )

T ,420
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12 B. MABOUDI AFKHAM, AND J. S. HESTHAVEN

and define Φ = [u1, . . . , uk], where ui is the i-th left singular vector of Scombined. It is421

shown in [37] that among all symplectic bases of the form (43) cotangent lift minimizes422

the projection error.423

Complex SVD. Suppose instead that A takes the form [37]424

(45) A =

(
Φ −Ψ
Ψ Φ

)

,425

while Φ and Ψ are real matrices of size n× k satisfying conditions426

(46) ΦTΦ +ΨTΨ = Ik, ΦTΨ = ΨTΦ.427

It can be checked that A forms a symplectic matrix. To construct A we first define428

the complex snapshot matrix429

(47) Scomplex = [q1 + ip1, . . . , qN + ipN ].430

Each left singular vector of Scomplex now takes the form um = rm + ism. We define431

(48) Φ = [r1, . . . , rk], Ψ = [s1, . . . , sk].432

One can easily check that (46) is satisfied since the matrix of singular vectors is433

unitary. It is shown in [37] that among all symplectic bases of the form (45) the434

complex SVD minimizes the projection error.435

4.1.2. The Greedy Approach to Symplectic Basis Generation. Greedy436

generation of the reduced basis is an iterative procedure which, in each iteration,437

adds the two best possible basis vectors to the symplectic basis to enhance overall438

accuracy. In contrast to the cotangent lift and the complex SVD methods, the greedy439

approach does not require the symplectic basis to have a specific structure. This440

typically results in a more compact basis and/or more accurate reduced systems. For441

parametric problems, the greedy approach only requires one numerical solution to442

be computed per iteration hence saving substantial computational cost in the offline443

stage.444

The orthonormalization step is an essential step in most greedy approaches for445

basis generation in the context of model reduction [21, 42]. However common or-446

thonormalization processes, e.g. the QR method, destroy the symplectic structure of447

the original system [10]. Here we use a variation of the QR method known as the448

SR [45] method which is based on the symplectic Gram-Schmidt method and yields449

a symplectic basis.450

As discussed in Section 3, any finite dimensional symplectic linear vector space451

has a symplectic basis that satisfies conditions (22). Further, Theorem 10 provides an452

iterative process for constructing an orthosymplectic basis [31, 45]. To briefly describe453

the SR method, suppose that an orthosymplectic basis454

(49) A2k = {e1, . . . , ek} ∪ {JT2ne1, . . . , JT2nek},455

and a vector z 6∈ span(A2k) is provided. We aim to symplectically orthogonalize456

(J2n-orthogonalize) z with respect to A2k and seek α1, . . . , αk, β1, . . . , βk ∈ R such457

that458

(50) Ω

(

z +

k∑

i=1

αiei +

k∑

i=1

βiJ
T
2nei,

k∑

i=1

ᾱiei +

k∑

i=1

β̄iJ
T
2nei

)

= 0,459
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for all possible ᾱ1, . . . , ᾱk, β̄1, . . . , β̄k ∈ R. It is easily seen that the unique solution is460

(51) αi = −Ω(z, JT2nei), βi = Ω(z, ei),461

for i = 1, . . . , k. Now define the modified vectors as462

(52) z̃ = z −
k∑

i=1

Ω(z, JT2nei)ei +

k∑

i=1

Ω(z, ei)J
T
2nei.463

If we introduce ek+1 = z̃/‖z̃‖2, it is easily checked that ek+1 is also orthogonal464

to A2k with respect to the classical inner product. Therefore span{e1, . . . , ek+1}465

forms a Lagrangian subspace and according to Theorem 10 the basis A2k+2 = A2k ∪466

{ek+1, J
T
2nek+1} forms an orthosymplectic basis.467

Note that the SR method is chosen due to its simplicity and it can be replaced468

with backward stable routines such as the isotropic Arnoldi or the isotropic Lanczos469

methods [35].470

The key element of the greedy algorithm is the availability of an error function471

which evaluates the error associated with the model reduction [21]. In the framework472

of symplectic model reduction, one possible candidate is the error in the Hamiltonian473

(39). Correctly approximating symplectic systems relies on preservation of the Hamil-474

tonian, hence the error in the Hamiltonian arises as a a natural choice. Moreover,475

since the error in the Hamiltonian depends on the initial condition and the reduced476

symplectic basis, evaluation of the error does not require the time integration of the477

full system.478

Suppose that a 2k-dimensional orthosymplectic basis (49) is generated at the k-th479

step of the greedy method and we seek to enrich it by two additional vectors. Using480

the error in the Hamiltonian (41) we search the parameter space to identify the value481

that maximizes the error in the Hamiltonian482

(53) ωk+1 := argmax
ω∈Γ

∆H(ω).483

The goal is to approximate the Hamiltonian function as well as possible.484

We then propagate (27) in time to produce trajectory snapshots485

(54) S = {z(ti, ωk+1)|i = 1, . . . ,M}.486

The next basis vector is the snapshot that maximises the projection error (42)487

(55) z := argmax
s∈S

‖s−A2kA2k
+s‖.488

Finally, we update the basis as489

(56) ek+1 = z̃, A2k+1 = A2k ∪ {ek+1, J
T
2nek+1},490

where z̃ is the vector obtained after applying the symplectic Gram-Schmidt process491

to z.492

Since the maximization over the entire parameter space Γ is impossible, we dis-493

cretize the parameter set into a grid with N points: ΓN = {ω1, . . . , ωN}. However,494

since the selection of parameters only require the evaluation of the error in the Hamil-495

tonian and not time integration of the original system, then ΓN can be chosen to be496

very rich.497

We summarize the greedy algorithm for the generation of a symplectic basis in498

Algorithm 2.499
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14 B. MABOUDI AFKHAM, AND J. S. HESTHAVEN

Algorithm 2 The greedy algorithm for generation of a symplectic basis

Input: Tolerated loss in the Hamiltonian δ, parameter set ΓN = {ω1, . . . , ωN}, initial
condition z0(ω)

1. ω∗ ← ω1

2. e1 ← z0(ω
∗)

3. A← [e1, J
T
2ne1]

4. k ← 1
5. while ∆H(ω) > δ for all ω ∈ ΓN

6. ω∗ ← argmax
ω∈ΓN

∆H(ω)

7. Compute trajectory snapshots S = {z(ti, ω∗)|i = 1, . . . ,M}
8. z∗ ← argmax

s∈S
‖s−AA+s‖

9. Apply symplectic Gram-Schmidt on z∗

10. ek+1 ← z∗/‖z∗‖
11. A← [e1, . . . , ek+1, J

T
2ne1, . . . , J

T
2nek+1]

12. k ← k + 1
13. end while

Output: Symplectic basis A.

4.1.3. Convergence of the Greedy Method. To show convergence of the500

greedy method we consider a slightly different version based on the projection error.501

The error in the Hamiltonian is then introduced as a cheap surrogate to the projection502

error to accelerate the parameter selection.503

Suppose that we are given a compact subset S of R2n. Our intention is to find a set504

of vectors A = {e1, . . . , ek, f1, . . . , fk} such that A forms an orthosymplectic basis and505

any s ∈ S is well approximated by elements of the subspace span(A). The modified506

greedy method for generating basis vectors ei and fi is as follows. In the initial step we507

pick e1 such that ‖e1‖2 = maxs∈S ‖s‖2. Then define f1 = JT2ne1. It is easy to check508

that the span of A2 = {e1, f1} is orthosymplectic, so A2 is the first subspace that509

approximates elements of S. In the k-th step of the greedy method, suppose we have510

a basis A2k = {e1, . . . , ek, f1, . . . , fk}. We define P2k to be a symplectic projection511

operator that projects elements of S onto span(A2k) and define512

(57) σ2k(s) := ‖s− P2k(s)‖2,513

as the projection error. Moreover we denote by σ2k the maximum approximation514

error of S using elements in span(A2k) as515

(58) σ2k := max
s∈S

σ2k(s).516

The next set of basis vectors in the greedy selection are517

(59) ek+1 := argmax
s∈S

σ2k(s), fk+1 := J
T
2nek+1.518

We emphasisze that the sequence of basis vectors generated by the greedy is generally519

not unique [42, 21].520

To estimate the quality of the reduced subspace, it is natural to compare it with521

the best possible 2k-dimensional subspace in the sense of the minimum projection (not522

necessary symplectic) error. For this we introduce the Kolmogorov n-width [26, 39].523
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Definition 19. Let S be a subset of Rm and Yn, n ≤ m, be a general n-524

dimensional subspace of Rm. The angle between S and Yn is given by525

(60) E(S, Yn) := sup
s∈S

inf
y∈Yn

‖s− y‖2.526

The Kolmogorov n-width of S in Rm is given by527

(61) dn(S,R
m) := inf

Yn

E(S, Yn) = inf
Yn

sup
s∈S

inf
y∈Yn

‖s− y‖2528

For a given subspace Yn, the angle between S and Yn measures the worst possible529

projection error of elements in S onto Yn. Hence the Kolmogorov n-width quantifies530

how well S can be approximated by an n-dimensional subspace.531

We seek to show that the decay of σ2k, obtained by the greedy algorithm, has the532

same rate as of d2k(S), i.e., the greedy method provides the best possible accuracy533

attained by a 2k-dimensional subspace.534

We start by J2n-orthogonalizing the vectors provided by the greedy algorithm as535

(62)
ξ1 = ei, ξ̄1 = J

T
2nξ1,

ξi = ei − P2(i−1)(ei), ξ̄i = J
T
2n, ξi i = 2, 3, . . .

536

The projection of a vector s ∈ S onto span(A2k) can be written using the symplectic537

basis as538

(63) P2k(s) =

k∑

i=1

(
αi(s)ξi + ᾱi(s)ξ̄i

)
,539

where αi(s) and ᾱi(s) for i = 1, . . . , k are the expansion coefficients540

(64) αi(s) = −
Ω(ξ̄i, s)

Ω(ξi, ξ̄i)
, ᾱi(s) =

Ω(ξi, s)

Ω(ξi, ξ̄i)
,541

for any s ∈ S. Since ξ̄i is J2n-orthogonal to the span(A2(k−1)) we have542

(65)

|αi(s)| =
|Ω(ξ̄i, s)|
|Ω(ξi, ξ̄i)|

=
|Ω(ξ̄i, s− P2(k−1)(s))|

|Ω(ξi, ξ̄i)|
≤ ‖ξ̄i‖2‖s− P2(k−1)(s)‖2

‖ξi‖2‖ξ̄i‖2

=
‖s− P2(k−1)(s)‖2
‖ei − P2(k−1)(ei)‖2

≤ 1.

543

Here, we use the fact that |Ω(ξi, ξ̄i)| = ‖ξi‖22 = ‖ξ̄i‖22 with the last inequality following544

from the greedy algorithm which maximizes ei. Similarly we deduce that |ᾱi(s)| ≤ 1.545

We write546

(66) ξj =

j
∑

i=1

(

µj
iei + γji fi

)

, ξ̄j =

j
∑

i=1

(

λji ei + ηji fi,
)

, j = 1, 2, . . .547

with548

(67)

µj
j = 1, γjj = 0,

µj
i =

j−1
∑

l=i

(
−αl(fj)µ

l
i + ᾱl(fj)γ

l
i

)
, γji =

j−1
∑

l=i

(
−αl(fj)γ

l
i + ᾱl(fj)µ

l
i

)
,

λji = −γ
j
i , ηji = µj

i ,

549
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16 B. MABOUDI AFKHAM, AND J. S. HESTHAVEN

for j = 2, 3, . . . . By induction and using the bound in (65) we deduce that550

(68) µj
i , γ

j
i , λ

j
i , η

j
i ≤ 3j−i, for j ≥ i.551

Now let 2k be the dimension of the desired reduced space. Looking at the definition552

of Kolmogorov n-width we observe that for any θ > 1 we can find a subspace Y2k such553

that E(S, Y2k) ≤ θd2k(S,R
n). Hence we can find vectors v1, . . . , vk, u1, . . . , uk ∈ Y2k554

such that555

(69)
‖ei − vi‖2 ≤ θd2k(S,Rn),

‖fi − ui‖2 ≤ θd2k(S,Rn).
556

Now we construct a set of 2(k + 1) new vectors557

(70) ζj =

k+1∑

i=1

µj
ivi + γji ui, ζ̄j =

k+1∑

i=1

λji vi + ηji ui.558

for j = 1, . . . , k + 1. Note that since ui and vi belong to Y2k so does their linear559

combination including all ζj and ζ̄j . We can use the inequality (68) to write560

(71) ‖ξi − ζi‖2 ≤ 3iθd2k(S,R
n), ‖ξ̄i − ζ̄i‖2 ≤ 3iθd2k(S,R

n).561

Moreover since Y2k is of dimension 2k we find κi, i = 1, . . . , 2(k + 1) such that562

(72)

2(k+1)
∑

i=1

κ2i = 1,

k+1∑

i=1

κiζi +

k+1∑

i=1

κi+k+1ζ̄i = 0.563

We have564

(73)

∥
∥
∥
∥
∥

k+1∑

i=1

κiξi +

k+1∑

i=1

κi+k+1 ξ̄i

∥
∥
∥
∥
∥
2

=

∥
∥
∥
∥
∥

k+1∑

i=1

κi(ξi − ζi) +
k+1∑

i=1

κi+k+1(ξ̄i − ζ̄i)
∥
∥
∥
∥
∥
2

≤ 2 · 3k+1
√

2(k + 1)θd2k(S,R
n).

565

We know there exists 1 ≤ j ≤ 2k + 2 such that κj > 1/
√

2(k + 1). Without loss of566

generality let us assume that j ≤ k + 1. This yields567

(74)

∥
∥
∥
∥
∥
∥

ξj + κ−1
j

k+1∑

i=1,i6=j

κiξi + κ−1
j

k+1∑

i=1

κi+k+1ξ̄i

∥
∥
∥
∥
∥
∥
2

≤ 4 · 3k+1(k + 1)θd2k(S,R
n).568

Define c = κ−1
j

∑k+1
i=1,i6=j κiξi+ κ−1

j

∑k+1
i=1 κi+k+1ξ̄i. Using that JT2nc is J2n-orthogonal569

to ξj we recover570

(75)

‖ξj‖2 ≤ ‖ξj‖2 + ‖c‖2 = Ω(ξj , J
T
2nξj) + Ω(c, JT2nc)

= Ω(ξj , J
T
2nξj) + Ω(c, JT2nc) + Ω(ξj , J

T
2nc) + Ω(c, JT2nξj)

= Ω(ξj + c, JT2n(ξj + c)) = ‖ξj + c‖2
571

Combining this with (74) yields572

(76) ‖ξj‖2 ≤ 4 · 3k+1(k + 1)θd2k(S,R
n).573
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Finally using the definition of ξj for all s ∈ S we have574

(77) ‖s− P2(j−1)(s)‖2 ≤ ‖fj − P2(j−1)(fj)‖2 = ‖ξj‖2 ≤ 4 · 3k+1(k + 1)θd2k(S,R
n)575

Hence, for any given λ > 1576

(78) ‖s− P2k(s)‖2 ≤ ‖s− P2(j−1)(s)‖2 ≤ 4 · 3k+1(k + 1)θd2k(S,R
n).577

This establishes the following theorem.578

Theorem 20. Let S be a compact subset of R2n with exponentially small Kol-579

mogorov n-width dk ≤ c exp(−αk) with α > log 3. Then there exists β > 0 such that580

the symplectic subspaces A2k generated by the greedy algorithm provide exponential581

approximation properties such that582

(79) ‖s− P2k(s)‖2 ≤ C exp(−βk)583

for all s ∈ S and some C > 0.584

4.2. Symplectic Discrete Empirical Interpolation Method (SDEIM).585

Consider the Hamiltonian system (27) and its reduced system (38) equipped with a586

symplectic transformation A. One can split the Hamiltonian function H = H1 +H2587

such that ∇H1 = Lz and ∇H2 = g(z), where L is a constant matrix in R2n×2n and588

g is a nonlinear function. The reduced system takes the form589

(80)
d

dt
y = A+

J2nLA
︸ ︷︷ ︸

L̃

y +A+
J2ng(Ay)590

As discussed in Section 2.2, the complexity of evaluating the nonlinear term still de-591

pends on n, the size of the original system. To overcome this computational bottleneck592

we use the DEIM approximation for evaluating the nonlinear function g as593

(81)
d

dt
y = L̃y +A+

J2nV (PTV )−1PTg(Ay)
︸ ︷︷ ︸

Ñ(y)

594

For a general choice of V the system (81) is not guaranteed to be a Hamiltonian595

system, impacting long time accuracy and stability. However, we can guarantee that596

(81) is a Hamiltonian system by choosing V = (A+)T . To see this, we note that the597

system (81) is a Hamiltonian system if and only if Ñ(y) = J2k∇yg(y). Also we have598

(82) g(Ay) = ∇zH2(z) = (A+)T∇yH2(Ay),599

where the chain rule is used for the second equality. Substituting this into Ñ we600

obtain601

(83) Ñ(y) = A+
J2nV (PTV )−1PT (A+)T∇yH2(Ay).602

Taking V = (A+)T yields603

(84) Ñ(y) = A+
J2n(A

+)T∇yH2(Ay) = J2k∇yH2(Ay),604

since (A+)T is a symplectic matrix. Hence, V = (A+)T is a sufficient condition for605

(81) to be Hamiltonian.606
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Regarding the construction of the projection space, suppose that we have already607

constructed a symplectic basis A = {e1, . . . , ek, f1, . . . fk} using the greedy algorithm.608

Note that (A+)T is a symplectic basis and (A+)+ = A. Thus, we can move between609

these two symplectic bases by simply using the transpose operator and the symplectic610

inverse operator. Let Sg = {g(x(ti, ωj))} with i = 1, . . . ,M and j = 1, . . . , N be611

the nonlinear snapshots that were gathered in the greedy algorithm. We then form612

(A+)T = {e′1, . . . , e′k, f ′
1, . . . , f

′
k} and use a greedy approach to add new basis vectors613

to (A+)T . At the i-th iteration of the symplectic DEIM, we use (A+)T to approximate614

elements in Sg and choose the vector that maximizes the error as the next basis vector615

(85) s∗ := argmax
s∈Sg

‖s− (A+)TA+s‖2.616

After applying the symplectic Gram-Schmidt on s∗, we update (A+)T as617

(86) e′k+i+1 =
s∗

‖s∗‖2
, f ′

k+i+1 = J
T
2ne

′
k+i+1.618

Finally when (A+)T approximates elements Sg with the desired accuracy, we trans-619

pose and symplectically invert (A+)T to obtain A. We summarize the symplectic620

DEIM algorithm in Algorithm 3.621

Algorithm 3 Symplectic Discrete Empirical Interpolation Method

Input: Symplectic basis A = {e1, . . . , ek, f1, . . . , fk}, nonlinear snapshots Sg =
{g(x(ti, ωj))} and tolerance δ

1. Compute (A+)T = {e′1, . . . , e′k, f ′
1, . . . , f

′
k}

2. i← 1
3. while max‖s− (A+)TA+s‖ > δ for all s ∈ Sg

4. s∗ ← argmax
s∈Sg

‖s− (A+)TA+s‖

5. Apply symplectic Gram-Schmidt on s∗

6. e′k+i = s∗/‖s∗‖
7. f ′

k+i = J2ne
′
k+i

8. (A+)T ← [e′1, . . . , e
′
k+i, f

′
1, . . . , f

′
k+i]

9. i← i+ 1
10. end while
11. take transpose and symplectic inverse of (A+)T

Output: Symplectic basis A that guarantees a Hamiltonian reduced system.

When using an implicit time integration scheme we face inefficiencies when eval-622

uating the Jacobian of nonlinear terms, as discussed in Section 2.2. We recall that623

the key to fast approximation of the Jacobian is that the interpolating index ma-624

trix P , obtained in the DEIM approximation, commutes with the nonlinear function.625

Nonlinear terms in Hamiltonian systems often take the from626

(87) g(z) = g(q,p) =








g1(q1, p1)
g2(q2, p2)

...
g2n(qn, pn)







.627
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Thus, the interpolating index matrix, obtained by Algorithm 1 does not necessarily628

commute with the function g. To overcome this, when index pi with pi ≤ n or629

pi > n is chosen in Algorithm 1 we also include pi + n or pi − n, respectively. Simple630

calculations verifies that g and P then commute.631

In case g is not of the form (87) one can use MDEIM [13, 36] to accelerate the632

assembling of the Jacobian matrix.633

5. Numerical Results. In this section, we illustrate the performance of the634

greedy generation of a symplectic basis. The parametric linear wave equation is635

considered to compare SVD based methods with the greedy method. The symplectic636

model reduction of nonlinear systems is then illustrated by considering the parametric637

nonlinear Schrödinger equation. Finally we discuss the numerical convergence of the638

greedy method introduced in Algorithm 2.639

5.1. Parametric Linear Wave equation. Consider the parametric linear wave640

equation641

(88)

{

utt(x, t, ω) = κ(ω)uxx(x, t, ω),

u(x, 0) = u0(x),
642

where x belongs to a one-dimensional torus of length L, ω = (ω1, . . . , ω4) and643

(89) κ(ω) = c2

(
4∑

l=1

1

l2
ωl

)

.644

Here ωl ∈ [0, 1] for l = 1, . . . , 4 and c ∈ R is a constant number. By rewriting (88)645

in canonical form, using the change of variable q = u and ∂q/∂t = p, we obtain the646

symplectic form647

(90)

{

qt(x, t, ω) = p(x, t, ω),

pt(x, t, ω) = κ(ω)qxx(x, t, ω),
648

with the associated Hamiltonian649

(91) H(q, p, ω) =
1

2

∫ L

0

p2 + κ(ω)q2x dx.650

We discretize the torus into N equidistant points and define ∆x = L/N , xi = i∆x,651

qi = q(t, xi, ω) and pi = p(t, xi, ω) for i = 1, . . . , N . Furthermore, we discretize (90)652

using a standard central finite differences scheme to obtain653

(92)
d

dt
z = J2NLz,654

where z = (q, . . . , qN , pq, . . . , pn)
T and655

(93) L =

(
In 0N
0N κ(ω)Dxx

)

,656

with Dxx the central finite differences matrix operator. The discrete Hamiltonian can657

finally be written as658

(94) H∆x(z) =
∆x

2

N∑

i=1

(

p2i + κ(ω)
(qi+1 − qi)2

2∆x2
+ κ(ω)

(qi − qi−1)
2

2∆x2

)

.659
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The initial condition is given by660

(95) qi(0) = h(10× |xi −
1

2
|), pi = 0, i = 1, . . . , N661

where h(s) is the cubic spline function662

(96) h(s) =







1− 3

2
s2 +

3

4
s3, 0 ≤ s ≤ 1,

1

4
(2− s)3, 1 < s ≤ 2,

0, s > 2.

663

This will result in waves propagating in both directions on the torus.664

For numerical time integration we use the Störmer-Verlet (33) scheme, which is665

explicit since the Hamiltonian is separable for the linear wave-equation. The full666

model uses the following parameter set667

Domain length L = 1
No. grid points N = 500
Space discretization size ∆x = 0.002
Time discretization size ∆t = 0.01
Wave speed c2 = 0.1

668

We compare the reduced system obtained by the greedy algorithm with the methods669

based on SVD. To generate snapshots, we discretize the parameter space [0, 1]4 into in670

total of 54 equidistant grid points. For the SVD based methods and POD, snapshots671

are gathered in the snapshot matrices S, Scombined and Scomplex, respectively, and672

the SVD is performed to construct the reduced basis. The greedy method is applied673

following Algorithm 2; as input, the tolerance for the error in the Hamiltonian is set674

to δ = 5 × 10−3. All reduced systems are taken to have an identical size (k = 80 for675

POD and k = 40 for the symplectic methods). We use the Störmer-Verlet scheme676

for symplectic methods and a second order Runge-Kutta method for the POD. The677

choice of different time integration routines is due to the fact that the POD destroys678

the canonical form of the original equations and a symplectic integrator cannot be679

applied. One can alternatively use separate reduced subspaces for the potential and680

the momentum spaces, which however is not a standard model reduction approach and681

requires further analysis. Finally we use transformation (35) to transfer the solution682

of the reduced systems into the high-dimensional space for illustration purposes.683

We reduced the cost by 50% in the offline stage when using the greedy method684

as compared to SVD-based methods (cotangent lift and complex SVD method). This685

happens because the SVD-based methods require time integration of the full system686

for all discrete parameter points, while the greedy method picks a number of param-687

eters from the parameter space.688

Figure 1a shows the solution of the linear wave equation for parameter values689

(ω1, ω2, ω3, ω4) = (0.8456, 0.1320, 0.9328, 0.5809) or κ(ω) = 0.1019, chosen to be dif-690

ferent from training parameters, at t = 0, t = 1 and t = 2. While we see instability691

and divergence from the exact solution for the POD reduced system, the symplectic692

methods provide a good approximation of the full model.693

The decay of the singular values for the POD are shown in Figure 5a. The decay694

of the singular values suggests that a low dimensional solution manifold indeed exists.695

This manuscript is for review purposes only.



SYMPLECTIC MODEL REDUCTION OF HAMILTONIAN SYSTEMS 21

0.0 0.2 0.4 0.6 0.8 1.0
x

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

u

exact

POD

cotangent lift

greedy

(a) t = 0

0.0 0.2 0.4 0.6 0.8 1.0
x

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

u

exact

POD

cotangent lift

greedy

(b) t = 1

0.0 0.2 0.4 0.6 0.8 1.0
x

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

u

exact

POD

cotangent lift

greedy

(c) t = 2

Fig. 1: The solution q at t = 0, t = 1 and t = 2 of the linear wave equation for
parameter value c = 0.1019 different from training parameters. Here, the solution of
the full system together with the solution of the POD, cotangent lift, complex SVD
and the greedy reduced system is shown.
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Fig. 2: (a) The L2-error between the solution of the full system and the reduced system
for different model reduction methods for t ∈ [0, 30]. (b) Plot of the Hamiltonian
function for t ∈ [0, 30].
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However, since the linear subspace, constructed by the POD, is not symplectic, we696

observe blow up of the Hamiltonian function in Figure 2b and the instability of the697

solution in Figure 1. The symplectic methods (using a reduced basis of the same size698

as POD) preserve the Hamiltonian function as shown in Figure 2b.699

Figure 2a shows the L2-error between the solution of the full model and the700

reduced systems constructed by different methods. We note that the error for the POD701

reduced system rapidly increases, confirming that the projection based reduced system702

does not yield a stable solution. Furthermore, the symplectic methods provide a703

better approximation since the geometric structure of the original system is preserved.704

Although the greedy method is almost twice faster than the SVD-based methods in705

the offline stage, its accuracy is comparable. The cotangent lift method provides a706

more accurate solution, on the other hand the cotangent lift basis (43) takes a less707

general form and usually computationally more demanding than the greedy method.708

For complex systems were the solution of the full system is expensive and for high709

dimensional parameter domains, POD-based methods become impractical [21, 42].710

However, the greedy method requires substantially fewer (proportional to the size of711

the reduced basis) evaluation of the time integration of the original system.712

5.2. Nonlinear Schrödinger equation. Let us consider the one-dimensional713

parametric Schrödinger equation714

(97)

{

iut(t, x, ǫ) = −uxx(t, x, ǫ)− ǫ|u(t, x, ǫ)|2u(t, x, ǫ),
u(0, x) = u0(x),

715

where u is a complex valued wave function, i is the imaginary unit, | · | is the modulus716

operator and ǫ is a parameter that belongs to the interval Γ = [0.9, 1.1]. We consider717

periodic boundary conditions, i.e., x belongs to a one-dimensional torus of length L.718

We consider the initial condition719

(98) u0(x) =

√
2

cosh(x− x0)
exp(i

c(x− x0)
2

),720

for a positive constant c. In quantum mechanics, the quantity |u(t, x)|2 represents the721

probability of finding the system in state x at time t. For the choice of ǫ = 1, |u(x, t)|722

becomes a solitary wave, and the initial condition will be transported in the positive723

x direction with a constant speed. For other choices of ǫ, the solution comprises an724

ensemble of solitary waves, moving in either direction [19].725

By introducing the real and imaginary variables u = p + iq, we can rewrite (97)726

in canonical form as727

(99)

{

qt = pxx + ǫ(q2 + p2)p,

pt = −qxx − ǫ(q2 + p2)q,
728

with the Hamiltonian function729

(100) H(q, p) =

∫ L

0

(q2x + p2x) +
ǫ

2
(q2 + p2)2 dx.730

We discretize the torus into N equidistant points and take ∆x = L/N , xi = i∆x,731

qi = q(t, xi, ǫ) and pi = p(t, xi, ω) for i = 1, . . . , N . A central finite differences scheme732

is used to discretize (99) as733

(101)
d

dt
z = J2NLz+ J2Ng(z).734
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Here z = (q1, . . . , qN , p1, . . . , pn)
T and735

(102) L =

(
Dxx 0N
0N Dxx

)

.736

Here g is a vector valued nonlinear function defined as737

(103) g(z) =













(q21 + p21)q1
...

(q2N + p2N )qN
(q21 + p21)p1

...
(q2N + p2N )pN













.738

We discretize the Hamiltonian to obtain739

(104) H∆x(z) = ∆x
N∑

i=1

(
qiqi−1 − q2i

∆x2
+
pipi−1 − p2i

∆x2
+
ǫ

4
(p2i + q2i )

2

)

,740

and use a Störmer-Verlet (33) scheme for time integration. Since the Hamiltonian741

function (104) is non-separable, this scheme becomes implicit so in each time iteration,742

a system of nonlinear equations is solved using Newton’s iteration. We summarize743

the physical and numerical parameters for the full model in the following table744

Domain length L = 2π/l
Domain scaling factor l = 0.11
wave speed c = 1
No. grid points N = 256
Space discretization size ∆x = 0.2231
Time discretization size ∆t = 0.01

745

Regarding computation of the nonlinear terms of reduced systems, we compare the746

DEIM with the symplectic DEIM. For generation of the DEIM reduced basis we apply747

Algorithm 1 to the set of nonlinear snapshots. Algorithm 3 is used to construct a re-748

duced basis appropriate for the symplectic DEIM. As input, we provide the symplectic749

basis generated by Algorithm 2 with the set of nonlinear snapshots and a tolerance750

for the error δ = 10−4.751

We compare the reduced system obtained using the greedy algorithm with the752

cotangent lift, the complex SVD, DEIM, the symplectic DEIM and also the POD. For753

the SVD-based methods, we discretize the parameter space [0.9, 1.1] into M = 500754

equidistant grid points across the discrete parameter space ΓM = {ǫ1, . . . , ǫM}, and755

gather trajectory snapshots for each ǫi for i = 1, . . . ,M in the snapshots matrix S. All756

reduced systems are taken to have identical sizes (k = 90 for the symplectic methods757

and k = 180 for the POD method). Following Algorithm 2 we construct the reduced758

system using the same discrete parameter space ΓM . The tolerance for the error in759

the Hamiltonian is set to δ = 10−3. Moreover, for DEIM and symplectic DEIM,760

we construct bases of size k′ = 80. Note that the reduced system, generated in the761

symplectic DEIM, will be of size k + k′ = 170.762

The cost of the offline stage is reduced to 20% when using the greedy method763

for constructing a symplectic basis of size k = 90, as compared to the SVD-based764
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Fig. 3: The solution |u(t, x)| =
√

q2 + p2 at t = 0, t = 10 and t = 20 of the Nonlinear
Schrödinger equation for parameter value ǫ = 1.0932. Here the solution of the full
system, together with the solution of the POD, cotangent lift, complex SVD and the
greedy reduced system, is shown.

methods. The online stage, i.e., time integration for a new parameter in Γ, is generally765

more than 3 times faster than for the original system. We point out that the efficiency766

of reduced systems are implementation and platform dependent and we expect further767

reduction as the size of the problem increases.768

Figure 3 shows the solution of the Schrödinger equation for parameter value ǫ =769

1.0932 at t = 0, t = 10 and t = 20. We first compare the reduced system obtained770

by the greedy algorithm with the POD, the cotangent lift, and the complex SVD771

method. The size of the reduced systems are taken identical for all methods (k = 180772

for POD and k = 90 for the rest). Although the decay of the singular values in Figure773

5b suggests that the accuracy of the POD reduced system should be comparable to774

that of the other methods, we observe instabilities in the solution at t = 10. The775

greedy, the cotangent lift and the complex SVD method, on the other hand, generate776

a stable reduced system that accurately approximates the solution of the full model.777

In Figure 4b we observe that the symplectic methods preserve the Hamiltonian778

function, unlike the POD and the DEIM methods. We emphasise that using the779
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Fig. 4: (a) Plot of the Hamiltonian function for t ∈ [0, 30]. (b) The L2 error between
the solution of the full system and the reduced system for different model reduction
methods for t ∈ [0, 30].

reduced basis, obtained by the greedy, together with the DEIM (purple line) does not780

preserve the symplectic structure as suggested in this figure.781

Figure 4a illustrates the L2-error between the solution of the full model with the782

reduced systems, generated by different methods. We first observe that symplectic783

methods yield a lower computational error when compared to non-symplectic meth-784

ods. Secondly, we observe that although the reduced systems from the cotangent lift785

and the complex SVD are of the same size, their accuracy is different by an order786

of magnitude. We notice that the greedy algorithm is slightly less accurate than the787

cotangent lift method while its offline computational cost is reduced to 20% when788

compared to the cotangent lift. Lastly we notice that the combination of the greedy789

reduced basis and DEIM yields large errors in the solution while the solution using the790

symplectic DEIM is very accurate. We note that the symplectic DEIM is even more791

accurate than the greedy itself since it has been enriched by the nonlinear snapshots.792

5.3. Numerical Convergence. In this section we discuss the numerical con-793

vergence of the symplectic greedy method introduced in Section 4. The exponential794

convergence properties of the conventional greedy [42] is presented in [9, 8]. Theorem795

20 suggests that the symplectic greedy method has similar properties. To illustrate796

this we compare the convergence of the conventional greedy with the convergence of797

the symplectic greedy method through the numerical simulations in Sections 5.1 and798

5.2.799

The decay of the singular values of the snapshot matrix for the parametric wave800

equation and the nonlinear Schrödinger equation are given in Figure 5. The decay801

rate of the singular values is a strong indicator for the decay rate of the Kolmogorov802

n-width of the solution manifold. We expect that the conventional greedy method803

and the symplectic greedy method provide a similar rate in the decay of the error.804

Figure 5 shows the maximum L2 error between the original system and the re-805

duced system at each iteration of different greedy methods. In this figure we find806

the conventional greedy with orthogonal projection error as a basis selection criterion807

(orange), the symplectic greedy method with a symplectic projection error as a basis808

selection criterion (green), and the symplectic greedy method with energy loss ∆H809

as a basis selection criterion (red).810

It is observed that the decay rate of the error for greedy with the orthogonal811
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Fig. 5: (a) Convergence of the greedy method for the wave equation. (b) Convergence
of the greedy method for the nonlinear Schrödinger equation equation.

projection and the greedy with the symplectic projection is similar to the decay of812

the singular values. This matches our expectation from Theorem 20. We also notice813

that the greedy method with the loss in Hamiltonian provides an excellent error814

indication as a basis selection criterion.815

6. Conclusion. In this paper, we present a greedy approach for the construction816

of a reduced system that preserves the geometric structure of Hamiltonian systems.817

An iteration of the greedy method comprises searching the parameter space using818

the error in the Hamiltonian, to find the best basis vectors that increase the overall819

accuracy of the reduced basis. We argue that for a compact subset with exponentially820

small Kolmogorov n-width we recover exponentially fast convergence of the greedy821

algorithm. For fast approximation of nonlinear terms, the basis obtained by the822

greedy was combined with a symplectic DEIM to construct a reduced system with a823

Hamiltonian that is arbitrary close to the Hamiltonian of the original system.824

The numerical results demonstrate that the greedy method can save substantial825

computational cost in the offline stage as compared to alternative SVD-based tech-826

niques. Also since the reduced system obtained by the greedy method is Hamiltonian,827

the greedy method yields a stable reduced system. Symplectic DEIM effectively re-828

duces computational cost of approximating nonlinear terms while preserving stability829

and symplectic structure. Hence, the greedy method is an efficient model reduction830

technique that provides an accurate and stable reduced system for large-scale para-831

metric Hamiltonian systems.832
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vances and Applications, Birkhäuser Basel, 2006, https://books.google.ch/books?881
id=q9SHRvay75IC.882

[19] E. Faou, Geometric Numerical Integration and Schrödinger Equations, European Mathemat-883
ical Society, 2012.884

[20] E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration: Structure-885
Preserving Algorithms for Ordinary Differential Equations; 2nd ed., Springer, Dordrecht,886
2006.887

[21] J. Hesthaven, G. Rozza, and B. Stamm, Certified Reduced Basis Methods for Parametrized888
Partial Differential Equations, SpringerBriefs in Mathematics, Springer International Pub-889
lishing, 2015, https://books.google.ch/books?id=KqtnCgAAQBAJ.890

[22] K. Ito and S. S. Ravindran, A reduced basis method for control problems governed by PDEs,891
in Control and estimation of distributed parameter systems (Vorau, 1996), Birkhäuser,892
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