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STRUCTURE PRESERVING MODEL REDUCTION OF
PARAMETRIC HAMILTONIAN SYSTEMS

BABAK MABOUDI AFKHAM* AND JAN S. HESTHAVENT

Abstract. While reduced-order models (ROMs) have been popular for efficiently solving large
systems of differential equations, the stability of reduced models over long-time integration is of
present challenges. We present a greedy approach for a ROM generation of parametric Hamiltonian
systems that captures the symplectic structure of Hamiltonian systems to ensure stability of the
reduced model. Through the greedy selection of basis vectors, two new vectors are added at each
iteration to the linear vector space to increase the accuracy of the reduced basis. We use the error
in the Hamiltonian due to model reduction as an error indicator to search the parameter space and
identify the next best basis vectors. Under natural assumptions on the set of all solutions of the
Hamiltonian system under variation of the parameters, we show that the greedy algorithm converges
with exponential rate. Moreover, we demonstrate that combining the greedy basis with the discrete
empirical interpolation method also preserves the symplectic structure. This enables the reduction
of the computational cost for nonlinear Hamiltonian systems. The efficiency, accuracy, and stability
of this model reduction technique is illustrated through simulations of the parametric wave equation
and the parametric Schrodinger equation.

Key words. Symplectic model reduction, Hamiltonian system, Greedy basis generation, Sym-
plectic Discrete Empirical Interpolation (SDEIM)

AMS subject classifications.

1. Introduction. Parameterized partial differential equations often arise as a
model in many problems in engineering and the applied sciences. While the need for
more accuracy has led to the development of exceedingly complex models, the limi-
tations in computational cost and storage often make direct approaches impractical.
Hence, we must seek alternative methods that allow us to approximate the desired
output under variation of the input parameters while keeping the computational costs
to a minimum.

Reduced basis methods have emerged as a powerful approach for the reduction of
the intrinsic complexity of such models [22, 23, 24, 38]. These methods contain two
stages: the offline stage and the online stage. In the offline stage, one explores the
parameter space to construct a low-dimensional basis that accurately represents the
parametrized solution to the partial differential equation. In this stage, the evaluation
of the solution of the original model for multiple parameter values is required. The
online stage comprises a Galerkin projection onto the span of the reduced basis, which
allows exploration of the parameter space at a significantly reduced complexity [2, 21].

Convectional reduced basis techniques, such as the Proper Orthogonal Decompo-
sition (POD) [27, 3, 43], require the exploration of the entire parameter space. This
leads to a very expensive and often impractical offline stage when dealing with multi-
dimensional parameter domains. On the other hand, sampling techniques, usually of
a greedy nature, search through the parameter space selectively, guided by an error
estimate to certify the accuracy of the basis. This approach, accompanied with an ef-
ficient sampling procedure, balances the cost of computation with the overall accuracy
of the reduced-basis [16, 44, 21].

Besides computational complexity, another aspect of reduced order modeling is
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2 B. MABOUDI AFKHAM, AND J. S. HESTHAVEN

the preservation of structure and, in particular, the stability of the original model.
In general, reduced order models do not guarantee that such properties are preserved
[41].

In the context of Hamiltonian and Lagrangian systems, recent work suggests
modifications of POD to preserve some geometric structures. Lall et al. [28] and
Carlberg et al. [12] suggests that the reduced-order system should be identified by
a Lagrangian function on a low-dimensional configuration space. In this way, the
geometric structure of the original system is inherited by the reduced system. Model
reduction for port-Hamiltonian systems can be found in the works of Beattie et al.
[14], Polyuga et al. [40] and references therein. These works construct a reduced
port-Hamiltonian system using Krylov or POD methods that inherit the passivity
and stability of the original system. For Hamiltonian systems, Peng et al. [37], using
a symplectic transformation, constructs a reduced Hamiltonian, as an approximation
to the Hamiltonian of the original system. As a result, the reduced system preserves
the symplectic structure. Although these methods preserve the geometric structure,
they use a POD-like approach for constructing the reduced basis. If the numerical
evaluation of the original model is computationally demanding, performing POD can
be excessively expensive [42].

In this paper, we present a greedy approach for the construction of a reduced
system that preserves the geometric structure of Hamiltonian systems. This tech-
nique results in a reduced Hamiltonian system that mimics the symplectic properties
of the original system and preserves the Hamiltonian structure and its stability over
the course of time. On the other hand, since time integration of the original system is
only required once per iteration, the proposed method saves substantial computational
cost during the offline stage when compared to alternative POD-like approaches. It is
well known that structured matrices, e.g. symplectic matrices, generally are not well-
conditioned [25]. The greedy update of the symplectic basis presented here, yields a
orthosymplectic basis and, therefore, a norm bounded basis. Moreover, we demon-
strate that assumptions, natural for the set of all solutions of the original Hamiltonian
system under variation of parameters, lead to exponentially fast convergence of the
greedy algorithm. For nonlinear Hamiltonian systems, we show how the basis can be
combined with the discrete empirical interpolation method (DEIM) [15, 4] to enable
a fast evaluation of nonlinear terms while maintaining the symplectic structure.

This paper is organized as follows. Section 2 presents a brief overview of model
order reduction, POD and DEIM. In Section 3 we cover the required topics from sym-
plectic geometry and Hamiltonian systems. Section 4 discusses the greedy generation
of a symplectic reduced basis as well as other SVD-based symplectic model reduc-
tion techniques. Accuracy, stability, and efficiency of the greedy method compared to
other SVD-based methods are discussed in Section 5. Finally we offer some conclusive
remarks in Section 6.

2. Model Order Reduction. Consider a parameterized, finite dimensional dy-
namical system described by a set of first order ordinary differential equations

) %x(t,w) = f(t,x,w),

x(0,w) = xo(w).

Here x € R" is the state vector, w € I' is a vector containing all the parameters of the
system belonging to a compact set I' (C R?) and f : R x R” x I' — R" is a general
vector valued function of the state variables and parameters.
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SYMPLECTIC MODEL REDUCTION OF HAMILTONIAN SYSTEMS 3

We define the solution manifold as the set of all solutions to (1) under variation
of the parameters in '

(2) M= {x(t,w)|lweT, t >0} CR"

Note that the exact solution and solution manifold is often not available; we assume
that we have a numerical integrator that can approximate the solution to (1) for any
realization of w with a given accuracy. By abuse of notation, we refer to x and M
as the exact solution and the exact solution manifold, respectively, rather than the
discrete solution and discrete solution manifold.

Model order reduction is based on the assumption that M is of low dimension
[21, 2] and that the span of appropriately chosen basis vectors {v;}X_; covers most
of the solution manifold to within a small error. The set {v;}¥_, is denoted as the
reduced basis and its span as the reduced space. Assuming that a k-dimensional
(k < n) reduced basis is given, the approximated solution can be represented as

(3) x~Vy,

where V' is a matrix containing the reduced basis vectors as its columns and y contains
the coordinates of the approximation in this basis. By substituting (3) into (1) we
obtain the overdetermined system

d
(4) vy =8, Vy @) ()
Here we added the residual r to emphasize that (4) is an approximation of (1). Tak-
ing the Petrov-Galerkin projection [2] we construct a basis W of size n — k that is
orthogonal to the residual r and requires that W7V is invertible. This yields

(5) %y = (WTV) 4, Vy,w).

Equation (5) consists of k equations and is called the reduced system. Solving the
reduced system instead of the original system can reduce the computational costs
provided k is significantly smaller than n. For nonlinear systems, the evaluation of
f may still have computational complexity that depends on n. We return to this
question in detail in Section 2.2.

2.1. Proper Orthogonal Decomposition. Let x(t;,w;) withi =1,...,m and

7 =1,...,n be a finite number of samples, referred to as snapshots, from the solution
manifold (2). If we assume that a reduced basis V' is provided, the projection operator
from R™ onto the reduced space can be constructed as VV7. The proper orthogonal
decomposition (POD) requires the total error of projecting all the snapshots onto the
reduced space to be minimized. The POD basis of size k is thus the solution to the
optimization problem

minimize  ||S — VVTS| g
(6) VeRnxk

subject to VTV = I,

Here S is the snapshot matrix, containing snapshots x(t;,w;) in its columns, || - || is
the Frobenius norm and [, is the identity matrix of size k. According to the Schmidt-
Mirsky-Eckart-Young theorem [29], the solution to (6) is equivalent to the truncated
singular value decomposition (SVD) of the snapshot matrix S given by

(7) V =ouvl + -+ opupvy .
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4 B. MABOUDI AFKHAM, AND J. S. HESTHAVEN

Here o;,u; and v; are the singular values, the left singular vectors, and the right
singular vectors of S, respectively [29] .

2.2. Discrete Empirical Interpolation Method (DEIM). In this section we
discuss the efficiency of evaluating nonlinearities in the context of projection based
reduced models. Suppose that the right hand side in (1) is of the form f(t,x,w) =
Lx+g(t,x,w), where L € R™"*" reflects the linear part, and g is a nonlinear function.
Now assume that a k-dimensional reduced basis V' is provided. The reduced system
takes the form

d _ —
(8) Y =WV IV y + WIV) 'g(t. Vy.w).

L N(y)

Here, L is a k x k matrix which can be computed before time integration of the reduced
system. However, the evaluation of N (y) has a complexity that depends on n, the
size of the original system. Suppose that the evaluation of g with n components has
the complexity a(n), for some function a. Then the complexity of evaluating N(y)
is O(a(n) + 4nk) which consists of 2 matrix-vector operations and the evaluation of
the nonlinear function, i.e. the evaluation of the nonlinear terms can be as expensive
as solving the original system.

To overcome this bottleneck we take an approach similar to that of Section 2.1
[15, 4]. Assume that the manifold Mg = {g(t,x,w)t € R,x € R,w € T'} is of a low
dimension and that g can be approximated by a linear subspace of dimension m < n,
spanned by the basis {u1,...,un}, i-e.

(9) g(t,x,w) = Uc(t,x,w).

Here U contains basis vectors u; and c is the vector of coefficients. Now suppose
Pl,-..,Pm are m indices from {1,...,n} and define an n X m matrix

(10) P = [eplv"'vepm]v

where e, is the p;-th column of the identity matrix I,,. Multiplying P with g selects
components pi,...,pm of g. If we assume that PTU is non-singular, the coefficient
vector ¢ can be uniquely determined from

(11) PTg = (PTU)c.

Finally the approximation of g is determined by

(12) g(t,x,w) = Uc(t,x,w) = U(PTU) ' PTg(t,x,w),

which is referred to as the Discrete Empirical Interpolation (DEIM) approximation

[15]. Applying DEIM to the reduced system (5) yields

(13) %y =Ly +W'V)"'U(PTU) ' PTg(t, Vy,w).
Note that the matrix (WV)"'U(PTU)~! can be computed offline and since g is
evaluated only at m of its components, the evaluation of the nonlinear term in (13)
does not depend on n.

To obtain the projection basis U, the POD can be applied to the ensemble of
samples of the nonlinear term g(t;,x,w;) with ¢ =1,...,m and j = 1,...,n. There
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SYMPLECTIC MODEL REDUCTION OF HAMILTONIAN SYSTEMS )

is no additional cost associated with computing the nonlinear snapshots, since they
are generated when computing the trajectory snapshot matrix S. The interpolating
indices p1,...,pm can be constructed as follows. Given the projection basis U =
{u1,...,un}, the first interpolation index p; is chosen according to the component
of u; with the largest magnitude. The rest of the interpolation indices, ps,...,Dm
correspond to the component of the largest magnitude of the residual vector r =
u; — Uc. Tt is shown in [15] that if the residual vector is a nonzero vector in each
iteration then PTU is non-singular and (12) is well defined.

Algorithm 1 Discrete Empirical Interpolation Method

Input: Basis vectors {u1, ..., u,} CR®
1. pick p; to be the index of the largest component of u;.
4. for i+ 2tom

5. solve (PTU)c = PTu; for c

6. r<u; —Uc

7 pick p; to be the index of the largest component of r
8 U<—[u1,...,ui]

9. P(—[pl,...,pi]

0. end for

Output: Interpolating indices {p1,...,pm}

The numerical solution of (8) may involve the computation of the Jacobian of the
nonlinear function g(¢,x,w) with respect to the reduced state variable y

(14) Jy(g) = (WTV) " Ix(g)V,

where J,(g) is the Jacobian matrix of g with respect to the variable a. The com-
plexity of (14) is O(a(n) + 2n%k + 2nk? + 2nk), comprising several matrix-vector
multiplications and an evaluation of the Jacobian which depends on the size of the
original system. Approximating the Jacobian in (14) is usually both problem and dis-
cretization dependent. Often the nonlinear function g is evaluated component-wise
ie.

g1(x1,.. ., 2p) g1(x1)
(15) R e I R
gn(Z1,. ., Tn) In(Zn)

In such cases the interpolating index matrix P and the nonlinear function g commute,
ie.,

(16)  N(y)~ (WTV)"'U(PTU) ' PTg(Vy) = (WTV)'UPTU) 'g(P"Vy)

If we now take the Jacobian of the approximate function we recover

(17) Jy(g) = (WIV)UPTU) " Iu(g(PTVY) PV,
kxm mxm mxk

This manuscript is for review purposes only.
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6 B. MABOUDI AFKHAM, AND J. S. HESTHAVEN

The matrix (WV)~tU(PTU)~! can be computed offline and the Jacobian is evaluated
only for m x m components. Hence the overall complexity of computing the Jacobian
is now independent of n. We refer the reader to [4, 15] for more detail.

3. Hamiltonian Systems and Symplectic Geometry. Let M be a manifold
and  : M x M — R be a closed, nondegenerate and skew-symmetric 2-form on M.
The pair (M, Q) is called a symplectic manifold [30].

Let (M, Q) be a symplectic manifold and suppose that H : M — R is a smooth
scalar function. The differential of H, denoted by dH, defines a 1-form on M. The
nondegeneracy of € implies that there is a unique vector field Xy, the Hamiltonian
vector field [17, 30], on M such that

(18) ix, 2 =dH.
Here ix, € is the interior product of Xy with Q, i.e.,
(19) Q(Xn,Y) = dH(Y),

for any vector field Y on M. Note that when M belongs to a Euclidean space then
dH = V_H. The equations of evolution are then defined by

(20) i = Xu(2)

and known as Hamilton’s equation [30]. A fundamental feature of Hamiltonian systems
is the conservation of the Hamiltonian along integral curves on M. To emphasize the
importance of this property we recall [30]

THEOREM 1. Suppose that Xy is a Hamiltonian vector field with the flow ¢y on
a symplectic manifold M. Then H o ¢y = H

Proof. H is constant along integral curves since

jt (H o ¢:)(2) = dH(¢4(2)) - < 4(2))
(21) = dH (¢¢(2)) - XH(¢t(Z))
= Q. (Xu(9e(2)), Xu(9(2))) =0,

by using the chain rule and bilinearity of €2 in the argument. d

For the case where the symplectic manifold is also a linear vector space, the
pair (M, Q) is also referred to as a symplectic vector space. We need the following
theorems regarding symplectic vector spaces and refer the reader to [18, 30, 11] for
detailed proofs.

THEOREM 2. [30] If (V,9) is a symplectic vector space then Q is a constant form,
that is €1, is independent of z € V.

THEOREM 3. [30] If (V,Q) is a finite-dimensional symplectic manifold then V is
even dimensional.

THEOREM 4. [18] (The Symplectic Gram-Schmidt) If (V,Q) is a 2n-dimensional

symplectic vector space, then there is a basis e1,...€n, f1,..., fn of V such that
(22) Q(ei7ej) 0= (fzaf]) Z#]a
Q(eiafj)zéiju ZSZ,]ﬁn

This manuscript is for review purposes only.
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SYMPLECTIC MODEL REDUCTION OF HAMILTONIAN SYSTEMS 7

where § is the Kronecker’s delta function. Moreover, if V.= R?" then we can choose
basis vectors {e;, fi}'_y such that

(23) Q(Ul, ’UQ) = U’{‘JQn'U27 V1,02 € Rn,
with Jop, being the standard symplectic matriz, defined as

0, Ip
(24) = (%0

Here I, and 0,, is the identity matriz and the zero square matriz of size n, respectively.

THEOREM 5. [30] The classical inner product (-,-) : R*" xR** — R can be written
in terms of the 2-form as

(25) (v,u) = QJanv,u), Yu,v € R?™,

DEFINITION 6. [18] Suppose (V, ) is a finite dimensional symplectic vector space
and E CV is a subspace. Then the symplectic complement of E inside V is defined
as

Et:={veV|Qw,e) =0, Ve € E}

Note that £ N E* is not empty in general.

DEFINITION 7. [18] Suppose (V, Q) is a finite dimensional symplectic vector space.
A subspace E C 'V is called a Lagrangian subspace inside V if E = E+.

THEOREM 8. [1] Suppose (V,Q) is a finite dimensional symplectic vector space.
If E C V is a Lagrangian subspace then dim(E) = Sdim(V'). Here dim denotes the
dimension of the subspace.

DEFINITION 9. A basis of (V,Q) is called orthosymplectic if it is both a symplectic
basis and an orthogonal basis with respect to the classical scalar product.

THEOREM 10. [32, 17] Suppose (V,Q) is a 2n dimensional symplectic vector space
and E C 'V is a Lagrangian subspace. Then there is an orthosymplectic basis for V.

Proof. We are going to summarize the proof given in [32]. Starting from a La-
grangain subspace in F C V' an orthosymplectic basis can be easily constructed. By

Theorem 8 F is n dimensional. Suppose that {e},..., el } is a basis for E, using the

e n
classical Gram-Schmidt orthogonalization process we can construct an orthonormal
basis {e1, ..., e, }. Define a new set of vectors f; = J1 e1, fo = J% ea, ..., fn = J% en.

We have
(26)  (fi. f5) = el Jondan" € = 0i5,  (five;) =€l Jane; =0, i,j=1,....n,

where we used the fact that ngﬂgnT = I, in the first identity and the second identity
is due to the fact that the basis {eq, ..., e, } forms a Lagrangian subspace. This shows
that the set {e1,...,e,} U{f1,..., fn} forms an orthonormal basis. Also, it can be
easily verified that this is a symplectic basis. Thus {e1,...,en} U{f1,..., fn} is an
orthosymplectic basis. d

THEOREM 11. [30] On a finite-dimensional symplectic vector space the relation-
ship (18) becomes

2 { 7= JonV,H(z),

z(0) = zo.
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8 B. MABOUDI AFKHAM, AND J. S. HESTHAVEN

or, by introducing the canonical coordinates z = (q*,p™)7,

{ q = VPH(qv p)7

(28) p=—-VqH(a,p)

Let us now introduce symplectic transformations, i.e., mappings between sym-
plectic manifolds which preserve the 2-form 2. The accurate numerical treatment of
Hamiltonian systems often requires preservation of the symmetry expressed in Theo-
rem 1. Symplectic transformations can be used to construct such symmetry preserving
numerical methods.

DEFINITION 12. Let (V,Q) and (W,II) be two linear symplectic vector spaces of
dimensions 2n and 2k, respectively. A linear mapping ¢ : V. — W is called symplectic
or canonical if

(29) O =¢*Il
where ¢*1I1 is the pullback of 11 by ¢, i.e. for all z1,2z2 € V
(30) Q(z1,22) = ($(21), ¢(22)).

Note that if we represent the transformation ¢ as a matrix A € R?"*2¥ condition
(29) is equivalent to [30]

(31) ATJon A = Jop.

A matrix of size 2n x 2k satisfying (31) is called a symplectic matriz. We emphasize
that a symplectic matrix is conventionally referred to a square matrix, however, here
we may allow symplectic matrices to be also rectangular.

DEFINITION 13. The symplectic inverse of a matric A € R?>"*?F is denoted by
AT and defined by [37]

(32) At =TT AT Ty,

We point out the properties of the symplectic inverse and refer the reader to [37] for
detailed proof.

LEMMA 14. Let A € R2"*2F be g symplectic matriz and A% its symplectic inverse
as defined in (52). Then (AY)" is a symplectic matriz and At A = L.

A straight-forward calculation verifies that AA™ is idempotent, i.e., a symplectic
projection onto the column span of A.

It is natural to expect a numerical integrator that solves (27) to also satisfy the
conservation law in Theorem 1. Common numerical integrators e.g., Runge-Kutta
methods, do not generally preserve the Hamiltonian which results in a qualitative
wrong behavior of the solution [20]. Symplectic integrators are a class of numerical
integrators for Hamiltonian systems that preserve the symplectic structure and ensure
stability in long-time integration. The Stormer-Verlet time stepping scheme is an
example of symplectic integrators and is given by

At
Gnt1/2 = qn + 7va(qn+1/27pn)v
At
(33) Pot1 = Pn = = (VaH (qnt1/2,Pn) + VaH (qns1/2, Pnt1)) 5

At
Gn+1 = Qny1y2 + TV;DH(qn-l-l/%pnnLl)a
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SYMPLECTIC MODEL REDUCTION OF HAMILTONIAN SYSTEMS 9
and
At
Pn+1/2 = Pn — 7qu(Qnapn+1/2)7
At
(34) Gn+1 = Gn + > (VoH (0, Pns1/2) + VoH (Gni1, Prsiy2)) »

At
Pn+l = Pnyi1/2 — TVqH(Qn-Haanrl/Z)'

For a general Hamiltonian system, the Stormer-Verlet scheme is implicit. However, for
separable Hamiltonians, i.e. H(q,p) = K(p)+U(q), this scheme becomes explicit. We
refer the reader to [20] for more information about the construction and applications
of symplectic and geometric numerical integrators.

4. Symplectic Model Reduction. We now discuss how to modify reduced
order modeling to ensure that the resulting scheme preserves the symplectic structure
of the Hamiltonian system.

Consider a Hamiltonian system (27) on a 2n-dimensional symplectic vector space
(V,Q). Suppose that the solution manifold My is well approximated by a low dimen-
sional symplectic subspace (W, ) of dimension 2k (k < n). We can then construct a
symplectic basis A for W and approximate the solution to (27) as

(35) z ~ Ay.
Substituting this into (27) we obtain
(36) Ay = J2,V,H(Ay).

Multiplying both sides with the symplectic inverse of A and using the chain rule we
have

(37) y = At ]2, (AT V, H(Ay).

Since A is a symplectic basis, Lemma 14 ensures that (A1)T is a symplectic matrix
ie., AT ]2, (AN)T = Jo. By defining the reduced Hamiltonian H : R?* — R as
H(y) = H(Ay) we obtain the reduced system

d 5
(38) Pl JoxVyH(y),

Yo = A+Z0.

The system obtained from the Petrov-Galerkin projection in (5) is not a Hamiltonian
system and does not guarantee conservation of the symplectic structure. On the
other hand, we observe that the reduced system in (38) is of the form (27) and,
hence, is a Hamiltonian system, i.e. the symplectic structure will be conserved along
integral curves of (38). Note that the original and the reduced systems are endowed
with different Hamiltonians. In the next proposition we show that the error in the
Hamiltonian is constant in time.

PROPOSITION 15. Let z(t) be the solution of (27) at time t. Further suppose that
z(t) is the approximate solution of the reduced system (38) in the original coordinate
system. Then the error in the Hamiltonian defined by

(39) AH(t) = |H(=z(t)) — H(z(1))],

is constant for all t € R.

This manuscript is for review purposes only.
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10 B. MABOUDI AFKHAM, AND J. S. HESTHAVEN

Proof. Let ¢; and i/, be the Hamiltonian flow of the original and the reduced sys-
tem respectively. By definition z(t) = ¢+(z¢) and y(t) = :(yo). Using the definition
of the reduced Hamiltonian and Theorem 1 we have
(40) } } } 3

H(z(t)) = H(Ay(t)) = H(y(t)) = H(4:(yo)) = H(yo) = H(A"20) = H(AA ).

The error in the Hamiltonian can then be written in terms of zy and the symplectic
basis A as

(41) AH(t) = |H(zo) — H(AA 2] O

The following theorems provide a strong indication of the stability of the reduced
system.

DEFINITION 16. [7] Consider a dynamical system of the form z = f(z) and sup-
pose that z. is an equilibrium point for the system so that f(z.) = 0. 2z, is called
nonlinearly stable or Lyapunov stable if, for any € > 0, we can find 6 > 0 such that
for any trajectory ¢u, if ||do—2e||2 < 9, then for all 0 < t < oo, we have ||t —2z.||2 < €,
where || - ||2 is the Euclidean norm.

The following proposition, also known as Dirichlet’s theorem [7], states the sufficient
condition for an equilibrium point to be Lyapunov stable. We refer the reader to [7]
for the proof.

PROPOSITION 17. [7] An equilibrium point z. is Lyapunov stable if there exists a
scalar function W : R™ — R such that VW (z.) = 0, V2W (z.) is positive definite, and
that for any trajectory ¢+ defined in the neighborhood of z., we have %W(@) < 0.
Here V2W is the Hessian matriz of W.

The scalar function W is referred to as the Lyapunov function. In the context of the
Hamiltonian systems, a suitable candidate for the Lyapunov function is the Hamilto-
nian function H. The following theorem shows that when H (or —H) is a Lyapunov
function, then the equilibrium points of the original and the reduced system are Lya-
punov stable [1].

THEOREM 18. Consider a Hamiltonian system of the form (27) together with the
reduced system (38). Suppose z. is an equilibrium point for (27) and that y. = A% z.
If H (or —H) is a Lyapunov function satisfying Proposition 17, then z. and y. are
Lyapunov stable equilibrium points for (27) and (38), respectively.

Proof. Tt is a direct consequence of Proposition 17 that z. is a local minimum or
maximum of (27) and also a Lyapunov stable point. It can be easily checked that if
z. is a local minimum of H then y, is a local minimum for H and an equilibrium
point for (38). Also from the chain rule we have

ViH = ATV.HA.
So for any ¢ € R?* R
§TVIHE = (AT VIH (AS) > 0.
Here the last inequality is due to the positive definiteness of H. Therefore H is also
positive definite. By Proposition 17 we conclude that y. is a Lyapunov stable point.O

While the symplectic structure is not guaranteed to be preserved in the reduced
systems obtained by the Petrov-Galerkin projection, the reduced system obtained by
the symplectic projection guarantees the preservation of the energy up to the error in
the Hamiltonian (39). In the next section we discuss different methods for obtaining
a symplectic basis.

This manuscript is for review purposes only.
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4.1. Proper Symplectic Decomposition (PSD). Similar to Section 2.1 we
gather snapshots z; = [¢7, p7]T in the snapshot matrix S. Suppose that a symplectic
basis A of size 2n x 2k and its symplectic inverse AT is provided. The Proper Sym-
plectic Decomposition requires that the error of the symplectic projection onto the
symplectic subspace be minimized. Hence, the PSD symplectic basis of size 2k is the
solution to the optimization problem

minimize  [|S — AATS||F
(42) VER2"X2k
subject to  ATJop A = Jo

Compared to POD, in (42) the orthogonal projection is replaced with a symplectic
projection AAY. At first, the minimization looks similar to the one obtained by POD.
However, it is well known that symplectic bases are not generally orthogonal, and
therefore not norm bounded. This means that numerical errors may become dominant
in the symplectic projection [25] which makes the minimization (42) a harder problem
than (6).

As the optimization problem (42) is nonlinear, the direct solution is usually ex-
pensive. A simplified version of the optimization (42) can be found in [37], but there
is no guarantee that the method provides a near optimal basis.

Finding eigen-spaces of Hamiltonian and symplectic matrices is studied in the
context of optimal control problems [5, 6, 46, 10] and model reduction of Riccati
equations [6], where also an SVD-like decomposition for Hamiltonian and symplectic
matrices has been proposed [47]. Specially computation of Lagrangian subspaces of
a large scale Hamiltonian matrices using a CS-decomposition is presented in [34, 33].
However, the computation of a large snapshot matrix and use of the mentioned meth-
ods to compute its eigen-spaces, is usually computationally demanding. Also, these
methods generally do not guarantee the construction of a well-conditioned symplectic
basis.

The greedy approach presented in Section 4.1.2 is an iterative method for con-
struction of a symplectic basis. It avoids the evaluation of the full snapshot matrix,
hence substantially reduces the computational cost in the offline stage of the sym-
plectic model reduction. Also, by construction, it yields an orthosymplectic basis and
therefore a well-conditioned basis.

In Section 4.1.1 we briefly outline non-direct methods for finding solutions to
(42), proposed by [37], and assuming a specific structure for A. In Section 4.1.2 we
introduce a greedy approach for the symplectic basis generation.

4.1.1. SVD Based Methods for Symplectic Basis Generation.
Cotangent lift. Suppose that A is of the form

(13) A= (‘§ g) |

where ® € R"** is an orthonormal matrix. It is easy to check that A is a symplectic
matrix, i.e., AT Jy, A = Jor. The construction of A suggests that the range of ® should
cover both the potential and the momentum spaces. Hence, we can construct A by
forming the combined snapshot matrix

(44) Scombincd - [qla ey qn,P1y .- apn]v Z; = (qfvp?)T

)

This manuscript is for review purposes only.
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and define ® = [uq, ..., ux|, where u; is the i-th left singular vector of Scombined- It is
shown in [37] that among all symplectic bases of the form (43) cotangent lift minimizes
the projection error.

Complex SVD. Suppose instead that A takes the form [37]

(45) A= @ _;) ,

while ® and ¥ are real matrices of size n x k satisfying conditions
(46) ’o+ 9w =1, TV =0"0.

It can be checked that A forms a symplectic matrix. To construct A we first define
the complex snapshot matrix

(47) Scomplcx = [ih + iplv - gN + ZPN]
Each left singular vector of Scomplex now takes the form w,, = r, + is,,. We define
(48) D =1[r,...,r), ¥=][s1,...,8k]

One can easily check that (46) is satisfied since the matrix of singular vectors is
unitary. It is shown in [37] that among all symplectic bases of the form (45) the
complex SVD minimizes the projection error.

4.1.2. The Greedy Approach to Symplectic Basis Generation. Greedy
generation of the reduced basis is an iterative procedure which, in each iteration,
adds the two best possible basis vectors to the symplectic basis to enhance overall
accuracy. In contrast to the cotangent lift and the complex SVD methods, the greedy
approach does not require the symplectic basis to have a specific structure. This
typically results in a more compact basis and/or more accurate reduced systems. For
parametric problems, the greedy approach only requires one numerical solution to
be computed per iteration hence saving substantial computational cost in the offline
stage.

The orthonormalization step is an essential step in most greedy approaches for
basis generation in the context of model reduction [21, 42]. However common or-
thonormalization processes, e.g. the QR method, destroy the symplectic structure of
the original system [10]. Here we use a variation of the QR method known as the
SR [45] method which is based on the symplectic Gram-Schmidt method and yields
a symplectic basis.

As discussed in Section 3, any finite dimensional symplectic linear vector space
has a symplectic basis that satisfies conditions (22). Further, Theorem 10 provides an
iterative process for constructing an orthosymplectic basis [31, 45]. To briefly describe
the SR method, suppose that an orthosymplectic basis

(49) AQk = {ela-'-aek}u{Jgnelv'-'ngnek}v

and a vector z ¢ span(Asg) is provided. We aim to symplectically orthogonalize
(Jon-orthogonalize) z with respect to Agx and seek aq,...,ax,B1,..., 8k € R such
that

k k k k
(50) Q (Z + Z e + Z ﬂijgnei, Z a;e; + Z B“]Ignez> =0,
i=1 i=1 i=1 i=1
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for all possible @y, ..., &, B1, ...,k € R. It is easily seen that the unique solution is
(51) O = _Q(Zvvﬂgnei)v Bi = Q(z, ),
fori=1,..., k. Now define the modified vectors as
k k

(52) Z=2z— Z 2, IT ei)e; + Z Uz, e)IL e;.

i=1 i=1
If we introduce eg11 = Z/||Z||2, it is easily checked that ejy; is also orthogonal
to Ag with respect to the classical inner product. Therefore span{es,...,erq1}

forms a Lagrangian subspace and according to Theorem 10 the basis Aggyo = Agg U
{er+1,J% exr1} forms an orthosymplectic basis.

Note that the SR method is chosen due to its simplicity and it can be replaced
with backward stable routines such as the isotropic Arnoldi or the isotropic Lanczos
methods [35].

The key element of the greedy algorithm is the availability of an error function
which evaluates the error associated with the model reduction [21]. In the framework
of symplectic model reduction, one possible candidate is the error in the Hamiltonian
(39). Correctly approximating symplectic systems relies on preservation of the Hamil-
tonian, hence the error in the Hamiltonian arises as a a natural choice. Moreover,
since the error in the Hamiltonian depends on the initial condition and the reduced
symplectic basis, evaluation of the error does not require the time integration of the
full system.

Suppose that a 2k-dimensional orthosymplectic basis (49) is generated at the k-th
step of the greedy method and we seek to enrich it by two additional vectors. Using
the error in the Hamiltonian (41) we search the parameter space to identify the value
that maximizes the error in the Hamiltonian

(53) wWit1 = argmax AH (w).
wel

The goal is to approximate the Hamiltonian function as well as possible.
We then propagate (27) in time to produce trajectory snapshots

(54) S:{z(ti,wk+1)|i:1,...,M}.
The next basis vector is the snapshot that maximises the projection error (42)
(55) z 1= argmax ||s — Agy, Aoi, T s||.

seS

Finally, we update the basis as
(56) i1 =%, Aggqr = Aok U {ers1, I3, 0041},

where Z is the vector obtained after applying the symplectic Gram-Schmidt process
to z.

Since the maximization over the entire parameter space I' is impossible, we dis-
cretize the parameter set into a grid with N points: 'y = {w1,...,wn}. However,
since the selection of parameters only require the evaluation of the error in the Hamil-
tonian and not time integration of the original system, then I'y can be chosen to be
very rich.

We summarize the greedy algorithm for the generation of a symplectic basis in
Algorithm 2.



R
= O ©

N

v Ov Ot Ot Ot
NN

w

14 B. MABOUDI AFKHAM, AND J. S. HESTHAVEN

Algorithm 2 The greedy algorithm for generation of a symplectic basis

Input: Tolerated loss in the Hamiltonian 8, parameter set 'y = {w1, ..., wn}, initial
condition zg(w)
1. w* <~ wq
. e1 + zo(w®)
A+ [el,JQTnel]
k1
. while AH(w) > 6 forall w € I'y
w* + argmax AH(w)
wel'n

Compute trajectory snapshots S = {z(t;,w*)[i =1,..., M}
z* < argmax ||s — AATs]|

€s

0N O U WY

9. Apply symplectic Gram-Schmidt on z*
10. ept1 < 2 /||z*]]

11. A(—[61,...,6k+1,Jgn61,...,Jgnek+1]
12. k+—k+1

13. end while

Output: Symplectic basis A.

4.1.3. Convergence of the Greedy Method. To show convergence of the
greedy method we consider a slightly different version based on the projection error.
The error in the Hamiltonian is then introduced as a cheap surrogate to the projection
error to accelerate the parameter selection.

Suppose that we are given a compact subset S of R?”. Our intention is to find a set
of vectors A = {es, ..., ek, f1,-.., [} such that A forms an orthosymplectic basis and
any s € S is well approximated by elements of the subspace span(A4). The modified
greedy method for generating basis vectors e; and f; is as follows. In the initial step we
pick e such that |le1]|2 = maxses ||s||2. Then define f; = J% e;. It is easy to check
that the span of Ay = {ey, f1} is orthosymplectic, so As is the first subspace that
approximates elements of S. In the k-th step of the greedy method, suppose we have
a basis Ao = {e1,..., €k, f1,--., fx}. We define Py to be a symplectic projection
operator that projects elements of S onto span(Asgx) and define

(57) o2k (8) = [|s — Par(s)]|2,

as the projection error. Moreover we denote by o2; the maximum approximation
error of S using elements in span(Asy) as

58 = .
(58) 02k 1= Max ook (s)
The next set of basis vectors in the greedy selection are

(59) eyl 1= argrensax ooi(8),  frr1 =I5, €ns1
S
We emphasisze that the sequence of basis vectors generated by the greedy is generally
not unique [42, 21].
To estimate the quality of the reduced subspace, it is natural to compare it with
the best possible 2k-dimensional subspace in the sense of the minimum projection (not
necessary symplectic) error. For this we introduce the Kolmogorov n-width [26, 39].

This manuscript is for review purposes only.
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DEFINITION 19. Let S be a subset of R™ and Y,, n < m, be a general n-
dimensional subspace of R™. The angle between S and Y, is given by

(60) E(S,Y,) :=sup inf |s —yl|a.
sES YEYn

The Kolmogorov n-width of S in R™ is given by

(61) dn(S,R™) := i}r}nf E(S,Y,) = i}I/lnf igg ylenén IIs — yll2

For a given subspace Y, the angle between S and Y,, measures the worst possible
projection error of elements in S onto Y,,. Hence the Kolmogorov n-width quantifies
how well S can be approximated by an n-dimensional subspace.

We seek to show that the decay of oo, obtained by the greedy algorithm, has the
same rate as of dag(S), i.e., the greedy method provides the best possible accuracy
attained by a 2k-dimensional subspace.

We start by Ja,-orthogonalizing the vectors provided by the greedy algorithm as

51 = €4, 51 = Jgnglv

(62) " .
CGi=ei—Py_n(e), &=13,& i=2,3,...

The projection of a vector s € S onto span(Asgy) can be written using the symplectic
basis as

k
(63) Por(s) = Z (ci(8)& + @i(s)&)

i=1
where a;(s) and &;(s) for i = 1,...,k are the expansion coefficients
Q(gﬂ S) ~ Q(é-iu S)
64 ailS) = ——F7—5-, ai(s) = ——=,
(64 (s) Q& &) ) (&, &)

for any s € S. Since & is Jo,-orthogonal to the span(Ag,—1)) we have

Q& 8) _ 195 = Py ()] _ [Eallalls = Poge-1y (5)l]2

li(s)| = 1Q(6:,6)| - &, )] N 1€ill211€:l2
s = Poge—1y(9) |2

les = Py (e)]l2 —

(65)

Here, we use the fact that [Q(&;,&)| = ||& |3 = ||& |2 with the last inequality following
from the greedy algorithm which maximizes e;. Similarly we deduce that |&;(s)| < 1.
We write
J ) ) B J ) )
i=1

i=1

IUJ; =1, 75 =0,
j—1 j—1

(67) pl =" (—alfui+a(f), o =Y (—a(f)h +af;)u),

=1 =i

This manuscript is for review purposes only.



ot ot
ot t
- [en}

(S0, TG, B |
ot Ot ot Ut

wt

564

568
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for j =2,3,.... By induction and using the bound in (65) we deduce that
(68) plAd Ml <3770 for j >

Now let 2k be the dimension of the desired reduced space. Looking at the definition
of Kolmogorov n-width we observe that for any § > 1 we can find a subspace Y such
that E(S,Yar) < 0dar(S,R™). Hence we can find vectors vy, ..., vk, u1,...,ur € Yoi
such that

llei —vill2 < Odar (S, R™),

69
o | fi — will2 < Odar (S, R™).

Now we construct a set of 2(k + 1) new vectors

k+1 k+1

(70) @-:Zugvi—l—”ygui, Ej:ZAgvi—Fnzjui.
i=1 i=1
for 7 = 1,...,k + 1. Note that since u; and v; belong to Yo; so does their linear

combination including all ¢; and ¢;. We can use the inequality (68) to write

(71) € = Gill2 < 3'0dar(S,R™),  [[& — Gilla < 3'0day (S, R™).
Moreover since Yoy, is of dimension 2k we find x;, i = 1,...,2(k 4+ 1) such that
2(k+1) k+1 k+1 ~
(72) SokI=1, Y KiGi+ Y RiprirG=0.
i=1 i=1 =1

We have

k1 k41 ) k1 k1 o

Z ki&i + Z Ritk+1&i|| = Z Ki(& — G) + Z Kirk1(& — Gi)
(73) =1 1=1 2 1=1 =1 2

<2381 /2(k + 1)0dar (S, R™).

We know there exists 1 < j < 2k + 2 such that x; > 1/4/2(k + 1). Without loss of
generality let us assume that 7 < k + 1. This yields

k+1 k+1
(74) Ayt D mi&i Ry ikl <438 (k4 1)0dak (S, R™).
i=1,i#j i=1

2

Define ¢ = Iij_l Zf:llz oy k& + nj_l Zf:ll Kitri1&. Using that J% cis Jan-orthogonal
to £; we recover

€502 < [1&1l2 + llell2 = (&5, 13,&5) + Qc, I3,¢)
(75) = Q(&,13,&) + Q(c, I3,0) + Q& I3,,0) + (e, I3,65)
= Q& +¢.03,(& + ) = 1§ +cll

Combining this with (74) yields

(76) €112 < 4- 351 (k + 1)0dak (S, R™).
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Finally using the definition of ¢; for all s € .S we have

(77) Is = Pa—1)(8)ll2 < 15 = Pag—1y (Fi)ll2 = 1€ ll2 < 4 - 3¥F1 (k + 1)8d2k (S, R™)
Hence, for any given A > 1

(78) s — Par(s)ll2 < || — Pagj—1)(8)|l2 < 4- 3" (k + 1)0dar (S, R™).

This establishes the following theorem.

THEOREM 20. Let S be a compact subset of R?™ with exponentially small Kol-
mogorov n-width dy, < cexp(—ak) with o > log3. Then there exists 8 > 0 such that
the symplectic subspaces Aax generated by the greedy algorithm provide exponential
approzimation properties such that

(79) s — Par(s)|l2 < C exp(—pk)

for all s € S and some C > 0.

4.2. Symplectic Discrete Empirical Interpolation Method (SDEIM).
Consider the Hamiltonian system (27) and its reduced system (38) equipped with a
symplectic transformation A. One can split the Hamiltonian function H = Hy + Hy
such that VH; = Lz and VHs = g(z), where L is a constant matrix in R?"*2" and
g is a nonlinear function. The reduced system takes the form

d
(80) Pl AT ], LAy + AT Ja,g(Ay)

L

As discussed in Section 2.2, the complexity of evaluating the nonlinear term still de-
pends on n, the size of the original system. To overcome this computational bottleneck
we use the DEIM approximation for evaluating the nonlinear function g as

d .
(81) oY= Ly + At ], V(PTV) 1 PTg(Ay)

N(y)

For a general choice of V the system (81) is not guaranteed to be a Hamiltonian
system, impacting long time accuracy and stability. However, we can guarantee that
(81) is a Hamiltonian system by choosing V = (A1)T. To see this, we note that the
system (81) is a Hamiltonian system if and only if N(y) = JaxVyg(y). Also we have

(82) g(Ay) = V.Ha(z) = (AT)TVy Hy(Ay),

where the chain rule is used for the second equality. Substituting this into N we
obtain

(83) N(y) = A*Io, V(PTV) 1 PT(AT)T'V, Hy(Ay).
Taking V = (AT)7 yields
(84) N(y) = A" J2n(AT)TVy Hy(Ay) = JoxVy Ha(Ay),

since (AT)7 is a symplectic matrix. Hence, V = (A1)T is a sufficient condition for
(81) to be Hamiltonian.

This manuscript is for review purposes only.
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18 B. MABOUDI AFKHAM, AND J. S. HESTHAVEN

Regarding the construction of the projection space, suppose that we have already
constructed a symplectic basis A = {es,...,ex, f1,... fr} using the greedy algorithm.
Note that (AT)T is a symplectic basis and (AT)* = A. Thus, we can move between
these two symplectic bases by simply using the transpose operator and the symplectic
inverse operator. Let Sg = {g(x(t;,w;))} withi =1,...,.M and j = 1,...,N be
the nonlinear snapshots that were gathered in the greedy algorithm. We then form
(AT ={e,...,€}, fl,-.., fi} and use a greedy approach to add new basis vectors
to (A1)T. At the i-th iteration of the symplectic DEIM, we use (AT)? to approximate
elements in Sg and choose the vector that maximizes the error as the next basis vector

(85) s* := argmax ||s — (AT)T AT s]|s.
SESg

After applying the symplectic Gram-Schmidt on s*, we update (AT)T as

*

s
(86) Chpitl = =T Srrizr = IonChri-

Finally when (A*)” approximates elements Sg with the desired accuracy, we trans-
pose and symplectically invert (A+)7 to obtain A. We summarize the symplectic
DEIM algorithm in Algorithm 3.

Algorithm 3 Symplectic Discrete Empirical Interpolation Method

Input: Symplectic basis A = {e1,...,ex, f1,---, fx}, nonlinear snapshots Sg =
{g(x(t;,w;))} and tolerance §

1. Compute (AN)T = {el,... e\, f1,---, fi.}
2.1+ 1
3. while max|s — (AT)TA%s|| > ¢ for all s € Sg
4. s* ¢+ argmax ||s — (AT)TATs||
SESg
5. Apply symplectic Gram-Schmidt on s*
6. ey ="/
7. Jii = Jon€ly
8. (AN —leh, ..o €y 1o s frgd]
9. 1+ 1+1
10. end while
11. take transpose and symplectic inverse of (A+)T

Output: Symplectic basis A that guarantees a Hamiltonian reduced system.

When using an implicit time integration scheme we face inefficiencies when eval-
uating the Jacobian of nonlinear terms, as discussed in Section 2.2. We recall that
the key to fast approximation of the Jacobian is that the interpolating index ma-
trix P, obtained in the DEIM approximation, commutes with the nonlinear function.
Nonlinear terms in Hamiltonian systems often take the from

g1 (Q1 ) p1)

(87) o) =glap) = | 727

g2n(Qn7 pn)

This manuscript is for review purposes only.
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Thus, the interpolating index matrix, obtained by Algorithm 1 does not necessarily
commute with the function g. To overcome this, when index p; with p; < n or
p; > n is chosen in Algorithm 1 we also include p; +n or p; — n, respectively. Simple
calculations verifies that g and P then commute.

In case g is not of the form (87) one can use MDEIM [13, 36] to accelerate the
assembling of the Jacobian matrix.

5. Numerical Results. In this section, we illustrate the performance of the
greedy generation of a symplectic basis. The parametric linear wave equation is
considered to compare SVD based methods with the greedy method. The symplectic
model reduction of nonlinear systems is then illustrated by considering the parametric
nonlinear Schrédinger equation. Finally we discuss the numerical convergence of the
greedy method introduced in Algorithm 2.

5.1. Parametric Linear Wave equation. Consider the parametric linear wave
equation

U (T, t,w) = K(W)Uge (X, T, W),
- 01, = a0,
u(z,0) = u’(z),
where = belongs to a one-dimensional torus of length L, w = (w1,...,ws) and
1
(89) Kk(w) = ( l—2wl> .
1=1
Here w; € [0,1] for I = 1,...,4 and ¢ € R is a constant number. By rewriting (88)

in canonical form, using the change of variable ¢ = u and 9q/0t = p, we obtain the
symplectic form

(90) { qt(z, t,w) = p(z, t,w),

pt(xv ta W) = K(W)sz (I; tv CU),

with the associated Hamiltonian

1 L
(91) H(q,p,w) = 3 / p° + m(w)qi dx.
0

We discretize the torus into N equidistant points and define Az = L/N, x; = iAx,
qi = q(t,z;,w) and p; = p(t,x;,w) for ¢ = 1,..., N. Furthermore, we discretize (90)
using a standard central finite differences scheme to obtain

d
(92) EZ = J2NLZ7

where z = (q,---7QN7pq7-"7p7l)T and

(93) L= (éN H(LB)]BM) :

with D, the central finite differences matrix operator. The discrete Hamiltonian can
finally be written as

N
(94)  Haulz —Azz(pzm MH(M)M)

2
=1
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The initial condition is given by

(95) qi(O):h(10x|xi—%|), pi=0, i=1,...,N
where h(s) is the cubic spline function

3 3
1——s2+—53, 0<s<1,

2 4
-71
(96) h(s) = Z(2 —s)3, 1<s<2,
0, 5> 2.

This will result in waves propagating in both directions on the torus.

For numerical time integration we use the Stérmer-Verlet (33) scheme, which is
explicit since the Hamiltonian is separable for the linear wave-equation. The full
model uses the following parameter set

Domain length L=1

No. grid points N =500
Space discretization size | Az = 0.002
Time discretization size | At = 0.01
Wave speed =01

We compare the reduced system obtained by the greedy algorithm with the methods
based on SVD. To generate snapshots, we discretize the parameter space [0, 1]* into in
total of 5% equidistant grid points. For the SVD based methods and POD, snapshots
are gathered in the snapshot matrices S, Scombined and Scomplex, respectively, and
the SVD is performed to construct the reduced basis. The greedy method is applied
following Algorithm 2; as input, the tolerance for the error in the Hamiltonian is set
to § =5 x 1073, All reduced systems are taken to have an identical size (k = 80 for
POD and k = 40 for the symplectic methods). We use the Stérmer-Verlet scheme
for symplectic methods and a second order Runge-Kutta method for the POD. The
choice of different time integration routines is due to the fact that the POD destroys
the canonical form of the original equations and a symplectic integrator cannot be
applied. One can alternatively use separate reduced subspaces for the potential and
the momentum spaces, which however is not a standard model reduction approach and
requires further analysis. Finally we use transformation (35) to transfer the solution
of the reduced systems into the high-dimensional space for illustration purposes.

We reduced the cost by 50% in the offline stage when using the greedy method
as compared to SVD-based methods (cotangent lift and complex SVD method). This
happens because the SVD-based methods require time integration of the full system
for all discrete parameter points, while the greedy method picks a number of param-
eters from the parameter space.

Figure la shows the solution of the linear wave equation for parameter values
(w1, wa,ws, wq) = (0.8456,0.1320,0.9328,0.5809) or k(w) = 0.1019, chosen to be dif-
ferent from training parameters, at t = 0, t = 1 and ¢t = 2. While we see instability
and divergence from the exact solution for the POD reduced system, the symplectic
methods provide a good approximation of the full model.

The decay of the singular values for the POD are shown in Figure 5a. The decay
of the singular values suggests that a low dimensional solution manifold indeed exists.
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1.2 1.2
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Fig. 1: The solution ¢ at ¢t = 0, t = 1 and ¢ = 2 of the linear wave equation for
parameter value ¢ = 0.1019 different from training parameters. Here, the solution of
the full system together with the solution of the POD, cotangent lift, complex SVD
and the greedy reduced system is shown.

108 — POD o—o cotangent lift
—  cotangent lift 1.0 s—4 complex SVD
10! —  complex SVD —a greedy
101 — greedy 0.8 =—a POD
—3
L0 s
2w <
= - = o4
107 02
0!
- 0.0
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0 5 10 15 20 25 30 0 5 10 15 20 25 30
t t
(a) (b)

Fig. 2: (a) The L2-error between the solution of the full system and the reduced system
for different model reduction methods for ¢ € [0,30]. (b) Plot of the Hamiltonian
function for ¢ € [0, 30].
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However, since the linear subspace, constructed by the POD, is not symplectic, we
observe blow up of the Hamiltonian function in Figure 2b and the instability of the
solution in Figure 1. The symplectic methods (using a reduced basis of the same size
as POD) preserve the Hamiltonian function as shown in Figure 2b.

Figure 2a shows the L2?-error between the solution of the full model and the
reduced systems constructed by different methods. We note that the error for the POD
reduced system rapidly increases, confirming that the projection based reduced system
does not yield a stable solution. Furthermore, the symplectic methods provide a
better approximation since the geometric structure of the original system is preserved.
Although the greedy method is almost twice faster than the SVD-based methods in
the offline stage, its accuracy is comparable. The cotangent lift method provides a
more accurate solution, on the other hand the cotangent lift basis (43) takes a less
general form and usually computationally more demanding than the greedy method.

For complex systems were the solution of the full system is expensive and for high
dimensional parameter domains, POD-based methods become impractical [21, 42].
However, the greedy method requires substantially fewer (proportional to the size of
the reduced basis) evaluation of the time integration of the original system.

5.2. Nonlinear Schrodinger equation. Let us consider the one-dimensional
parametric Schrodinger equation

(97) iug(t, z,€) = —ugs(t, z,€) — elu(t, z, €)[*u(t, z, ),
u(0,2) = up(x),
where u is a complex valued wave function, 7 is the imaginary unit, |- | is the modulus

operator and € is a parameter that belongs to the interval I' = [0.9, 1.1]. We consider
periodic boundary conditions, i.e., x belongs to a one-dimensional torus of length L.
We consider the initial condition

V2 c(z — o)

(98) UQ((E) = m eXp(Z?),

for a positive constant c. In quantum mechanics, the quantity |u(t, z)|? represents the
probability of finding the system in state x at time ¢. For the choice of € = 1, |u(z, )|
becomes a solitary wave, and the initial condition will be transported in the positive
x direction with a constant speed. For other choices of €, the solution comprises an
ensemble of solitary waves, moving in either direction [19].

By introducing the real and imaginary variables u = p + ig, we can rewrite (97)
in canonical form as

(99)

G = Poo + €(¢* + p°)p,
Pe = —quz — €@ +p?)g,

with the Hamiltonian function

€

5 (¢® + p*)? da.

L
(100 Hap = [ @4+
0
We discretize the torus into N equidistant points and take Az = L/N, x; = iAx,
qi = q(t,z;,€) and p; = p(¢t,z;,w) for i =1,..., N. A central finite differences scheme
is used to discretize (99) as

d
(101) Ez :JQNLZ—FJQNg(Z).
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)T and

Herez:(qla"'anvpla"'apn

(102) L= (ON Dﬂ) .

Here g is a vector valued nonlinear function defined as

(@ +phHa

(a% + P )N

We discretize the Hamiltonian to obtain

N 2 2
qiQi—1 — q; PiDi—1 — D; €
(100 Haue) = Acd (BIRLZ 4 PRI L S 2).
i=1

and use a Stormer-Verlet (33) scheme for time integration. Since the Hamiltonian
function (104) is non-separable, this scheme becomes implicit so in each time iteration,
a system of nonlinear equations is solved using Newton'’s iteration. We summarize
the physical and numerical parameters for the full model in the following table

Domain length L =2r/l
Domain scaling factor [=0.11
wave speed c=1

No. grid points N = 256
Space discretization size | Az = 0.2231
Time discretization size | At = 0.01

Regarding computation of the nonlinear terms of reduced systems, we compare the
DEIM with the symplectic DEIM. For generation of the DEIM reduced basis we apply
Algorithm 1 to the set of nonlinear snapshots. Algorithm 3 is used to construct a re-
duced basis appropriate for the symplectic DEIM. As input, we provide the symplectic
basis generated by Algorithm 2 with the set of nonlinear snapshots and a tolerance
for the error § = 1074,

We compare the reduced system obtained using the greedy algorithm with the
cotangent lift, the complex SVD, DEIM, the symplectic DEIM and also the POD. For
the SVD-based methods, we discretize the parameter space [0.9,1.1] into M = 500
equidistant grid points across the discrete parameter space I'y; = {e1,...,en}, and
gather trajectory snapshots for each ¢; for i = 1,..., M in the snapshots matrix S. All
reduced systems are taken to have identical sizes (k = 90 for the symplectic methods
and k = 180 for the POD method). Following Algorithm 2 we construct the reduced
system using the same discrete parameter space I'y;. The tolerance for the error in
the Hamiltonian is set to § = 1073. Moreover, for DEIM and symplectic DEIM,
we construct bases of size k' = 80. Note that the reduced system, generated in the
symplectic DEIM, will be of size k + k" = 170.

The cost of the offline stage is reduced to 20% when using the greedy method
for constructing a symplectic basis of size k& = 90, as compared to the SVD-based
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Fig. 3: The solution |u(t,z)| = \/q> + p? at t = 0, ¢t = 10 and ¢t = 20 of the Nonlinear
Schrédinger equation for parameter value e = 1.0932. Here the solution of the full
system, together with the solution of the POD, cotangent lift, complex SVD and the
greedy reduced system, is shown.

methods. The online stage, i.e., time integration for a new parameter in I', is generally
more than 3 times faster than for the original system. We point out that the efficiency
of reduced systems are implementation and platform dependent and we expect further
reduction as the size of the problem increases.

Figure 3 shows the solution of the Schrédinger equation for parameter value € =
1.0932 at t = 0, t = 10 and ¢t = 20. We first compare the reduced system obtained
by the greedy algorithm with the POD, the cotangent lift, and the complex SVD
method. The size of the reduced systems are taken identical for all methods (k = 180
for POD and k = 90 for the rest). Although the decay of the singular values in Figure
5b suggests that the accuracy of the POD reduced system should be comparable to
that of the other methods, we observe instabilities in the solution at ¢ = 10. The
greedy, the cotangent lift and the complex SVD method, on the other hand, generate
a stable reduced system that accurately approximates the solution of the full model.

In Figure 4b we observe that the symplectic methods preserve the Hamiltonian
function, unlike the POD and the DEIM methods. We emphasise that using the

This manuscript is for review purposes only.



SYMPLECTIC MODEL REDUCTION OF HAMILTONIAN SYSTEMS 25

POD o—e cotangent lift

10° cotangent lift ! —a complex SVD
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greedy+DEIM -1 > greedy+SDEIM
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< s
= 107 T -3
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Fig. 4: (a) Plot of the Hamiltonian function for ¢ € [0,30]. (b) The L? error between
the solution of the full system and the reduced system for different model reduction
methods for ¢ € [0, 30].

reduced basis, obtained by the greedy, together with the DEIM (purple line) does not
preserve the symplectic structure as suggested in this figure.

Figure 4a illustrates the L2-error between the solution of the full model with the
reduced systems, generated by different methods. We first observe that symplectic
methods yield a lower computational error when compared to non-symplectic meth-
ods. Secondly, we observe that although the reduced systems from the cotangent lift
and the complex SVD are of the same size, their accuracy is different by an order
of magnitude. We notice that the greedy algorithm is slightly less accurate than the
cotangent lift method while its offline computational cost is reduced to 20% when
compared to the cotangent lift. Lastly we notice that the combination of the greedy
reduced basis and DEIM yields large errors in the solution while the solution using the
symplectic DEIM is very accurate. We note that the symplectic DEIM is even more
accurate than the greedy itself since it has been enriched by the nonlinear snapshots.

5.3. Numerical Convergence. In this section we discuss the numerical con-
vergence of the symplectic greedy method introduced in Section 4. The exponential
convergence properties of the conventional greedy [42] is presented in [9, 8]. Theorem
20 suggests that the symplectic greedy method has similar properties. To illustrate
this we compare the convergence of the conventional greedy with the convergence of
the symplectic greedy method through the numerical simulations in Sections 5.1 and
5.2.

The decay of the singular values of the snapshot matrix for the parametric wave
equation and the nonlinear Schrédinger equation are given in Figure 5. The decay
rate of the singular values is a strong indicator for the decay rate of the Kolmogorov
n-width of the solution manifold. We expect that the conventional greedy method
and the symplectic greedy method provide a similar rate in the decay of the error.

Figure 5 shows the maximum L? error between the original system and the re-
duced system at each iteration of different greedy methods. In this figure we find
the conventional greedy with orthogonal projection error as a basis selection criterion
(orange), the symplectic greedy method with a symplectic projection error as a basis
selection criterion (green), and the symplectic greedy method with energy loss AH
as a basis selection criterion (red).

It is observed that the decay rate of the error for greedy with the orthogonal
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Fig. 5: (a) Convergence of the greedy method for the wave equation. (b) Convergence
of the greedy method for the nonlinear Schrédinger equation equation.

projection and the greedy with the symplectic projection is similar to the decay of
the singular values. This matches our expectation from Theorem 20. We also notice
that the greedy method with the loss in Hamiltonian provides an excellent error
indication as a basis selection criterion.

6. Conclusion. In this paper, we present a greedy approach for the construction
of a reduced system that preserves the geometric structure of Hamiltonian systems.
An iteration of the greedy method comprises searching the parameter space using
the error in the Hamiltonian, to find the best basis vectors that increase the overall
accuracy of the reduced basis. We argue that for a compact subset with exponentially
small Kolmogorov n-width we recover exponentially fast convergence of the greedy
algorithm. For fast approximation of nonlinear terms, the basis obtained by the
greedy was combined with a symplectic DEIM to construct a reduced system with a
Hamiltonian that is arbitrary close to the Hamiltonian of the original system.

The numerical results demonstrate that the greedy method can save substantial
computational cost in the offline stage as compared to alternative SVD-based tech-
niques. Also since the reduced system obtained by the greedy method is Hamiltonian,
the greedy method yields a stable reduced system. Symplectic DEIM effectively re-
duces computational cost of approximating nonlinear terms while preserving stability
and symplectic structure. Hence, the greedy method is an efficient model reduction
technique that provides an accurate and stable reduced system for large-scale para-
metric Hamiltonian systems.
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