17 research outputs found

    Hybrid Algorithms Based on Integer Programming for the Search of Prioritized Test Data in Software Product Lines

    Get PDF
    In Software Product Lines (SPLs) it is not possible, in general, to test all products of the family. The number of products denoted by a SPL is very high due to the combinatorial explosion of features. For this reason, some coverage criteria have been proposed which try to test at least all feature interactions without the necessity to test all products, e.g., all pairs of features (pairwise coverage). In addition, it is desirable to first test products composed by a set of priority features. This problem is known as the Prioritized Pairwise Test Data Generation Problem. In this work we propose two hybrid algorithms using Integer Programming (IP) to generate a prioritized test suite. The first one is based on an integer linear formulation and the second one is based on a integer quadratic (nonlinear) formulation. We compare these techniques with two state-of-the-art algorithms, the Parallel Prioritized Genetic Solver (PPGS) and a greedy algorithm called prioritized-ICPL. Our study reveals that our hybrid nonlinear approach is clearly the best in both, solution quality and computation time. Moreover, the nonlinear variant (the fastest one) is 27 and 42 times faster than PPGS in the two groups of instances analyzed in this work.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Partially funded by the Spanish Ministry of Economy and Competitiveness and FEDER under contract TIN2014-57341-R, the University of Málaga, Andalucía Tech and the Spanish Network TIN2015-71841-REDT (SEBASENet)

    Time-Space Efficient Regression Testing for Configurable Systems

    Full text link
    Configurable systems are those that can be adapted from a set of options. They are prevalent and testing them is important and challenging. Existing approaches for testing configurable systems are either unsound (i.e., they can miss fault-revealing configurations) or do not scale. This paper proposes EvoSPLat, a regression testing technique for configurable systems. EvoSPLat builds on our previously-developed technique, SPLat, which explores all dynamically reachable configurations from a test. EvoSPLat is tuned for two scenarios of use in regression testing: Regression Configuration Selection (RCS) and Regression Test Selection (RTS). EvoSPLat for RCS prunes configurations (not tests) that are not impacted by changes whereas EvoSPLat for RTS prunes tests (not configurations) which are not impacted by changes. Handling both scenarios in the context of evolution is important. Experimental results show that EvoSPLat is promising. We observed a substantial reduction in time (22%) and in the number of configurations (45%) for configurable Java programs. In a case study on a large real-world configurable system (GCC), EvoSPLat reduced 35% of the running time. Comparing EvoSPLat with sampling techniques, 2-wise was the most efficient technique, but it missed two bugs whereas EvoSPLat detected all bugs four times faster than 6-wise, on average.Comment: 14 page

    CMSA algorithm for solving the prioritized pairwise test data generation problem in software product lines.

    Get PDF
    In Software Product Lines, it may be difficult or even impossible to test all the products of the family because of the large number of valid feature combinations that may exist (Ferrer et al. in: Squillero, Sim (eds) EvoApps 2017, LNCS 10200, Springer, The Netherlands, pp 3–19, 2017). Thus, we want to find a minimal subset of the product family that allows us to test all these possible combinations (pairwise). Furthermore, when testing a single product is a great effort, it is desirable to first test products composed of a set of priority features. This problem is called Prioritized Pairwise Test Data Generation Problem. State-of-the-art algorithms based on Integer Linear Programming for this problem are faster enough for small and medium instances. However, there exists some real instances that are too large to be computed with these algorithms in a reasonable time because of the exponential growth of the number of candidate solutions. Also, these heuristics not always lead us to the best solutions. In this work we propose a new approach based on a hybrid metaheuristic algorithm called Construct, Merge, Solve & Adapt. We compare this matheuristic with four algorithms: a Hybrid algorithm based on Integer Linear Programming, a Hybrid algorithm based on Integer Nonlinear Programming, the Parallel Prioritized Genetic Solver, and a greedy algorithm called prioritized-ICPL. The analysis reveals that CMSA is statistically significantly better in terms of quality of solutions in most of the instances and for most levels of weighted coverage, although it requires more execution time.This research has been partially funded by the Spanish Ministry of Economy and Competitiveness (MINECO) and the European Regional Development Fund (FEDER) under contract TIN2017-88213-R (6city project), the University of Málaga, Consejerıa de Economıa y Conocimiento de la Junta de Andalucıa and FEDER under contract UMA18-FEDERJA-003 (PRECOG project), the Ministry of Science, Innovation and Universities and FEDER under contract RTC-2017-6714-5 (ECOIoT project), the H2020 European Project Tailor (H2020-ICT-2019-3), the Spanish SBSE Research Network (RED2018-102472-T), and the University of Málaga under contract PPIT-UMA-B1-2017/07 (EXHAURO Project). J. Ferrer thanks University of Mállaga for his postdoc fellowship

    Comprehending Variability in Analysis Results of Software Product Lines

    Full text link
    Analyses of a software product line (SPL) typically report variable results that are annotated with logical expressions indicating the set of product variants for which the results hold. These expressions can get complicated and difficult to reason about when the SPL has lots of features and product variants. Previous work introduced a visualizer that supports filters for highlighting the analysis results that apply to product variants of interest, but this work was weakly evaluated. In this paper, we report on a controlled user study that evaluates the effectiveness of this new visualizer in helping the user search variable results and compare the results of multiple variants. Our findings indicate that the use of the new visualizer significantly improves the correctness and efficiency of the user's work and reduces the user's cognitive load in working with variable results

    ETHOM: An Evolutionary Algorithm for Optimized Feature Models Generation - TECHNICAL REPORT ISA-2012-TR-01 (v. 1.1)

    Get PDF
    A feature model defines the valid combinations of features in a domain. The automated extraction of information from feature models is a thriv ing topic involving numerous analysis operations, techniques and tools. The progress of this discipline is leading to an increasing concern to test and compare the performance of analysis solutions using tough input mod els that show the behaviour of the tools in extreme situations (e.g. those producing longest execution times or highest memory consumption). Cur rently, these feature models are generated randomly ignoring the internal aspects of the tools under tests. As a result, these only provide a rough idea of the behaviour of the tools with average problems and are not sufficient to reveal their real strengths and weaknesses. In this technical report, we model the problem of finding computationally– hard feature models as an optimization problem and we solve it using a novel evolutionary algorithm. Given a tool and an analysis operation, our algorithm generates input models of a predefined size maximizing aspects as the execution time or the memory consumption of the tool when per forming the operation over the model. This allows users and developers to know the behaviour of tools in pessimistic cases providing a better idea of their real power. Experiments using our evolutionary algorithm on a num ber of analysis operations and tools have successfully identified input mod els causing much longer executions times and higher memory consumption than random models of identical or even larger size. Our solution is generic and applicable to a variety of optimization problems on feature models, not only those involving analysis operations. In view of the positive results, we expect this work to be the seed for a new wave of research contributions exploiting the benefit of evolutionary programming in the field of feature modelling

    A Configuration Management System for Software Product Lines

    Get PDF
    Software product line engineering (SPLE) is a methodology for developing a family of software products in a particular domain by systematic reuse of shared code in order to improve product quality and reduce development time and cost. Currently, there are no software configuration management (SCM) tools that support software product line evolution. Conventional SCM tools are designed to support single product development. The use of conventional SCM tools forces developers to treat a software product line as a single software project by introducing new programming language constructs or using conditional compilation. We propose a research conguration management prototype called Molhado SPL that is designed specifically to support the evolution of software product lines. Molhado SPL addresses the evolution problem at the configuration level instead of at the code level. We studied the type of operations needed to support the evolution of software product lines and proposed a versioning model and eight cases of change propagation. Molhado SPL supports independent evolution of core assets and products, the sharing of code and the tracking relationships between products and shared code, and the eight cases of change propagation. The Molhado SPL consists of four layers with each layer providing a different type of service. At the heart of Molhado SPL are the versioning model, component object, shared component object, and project objects that allow for independent evolution of products and shared artifacts, for sharing, and for supporting change propagation. Furthermore,they allow product specific changes to shared code without interfering with the core asset that is shared. Products can also introduce product specific assets that only exist in that product. In order to for Molhado SPL to support product line, we implemented XML merging, feature model editing and debugging, and version-aware XML documents. To support merging of XML documents, we implemented a 3-way XML document merging algorithm that uses versioned data structures, change detection, and node identity. To support software product line derivation or modeling of software product line, we implemented support for feature model including editing and debugging. Finally, we created the version-aware XML document framework to support collaborative editing of XML documents without requiring a version repository. The version history is embedded in the documents using XML namespaces, so that the documents remain valid under the XML specification. The version-aware XML framework can also be used to support the exporting of documents from Molhado SPL repository to be edit outside and import back the change history made to the document. We evaluated Molhado SPL with two product lines: a document product line and a the graph data structures product line. This evaluation showed that Molhado SPL supports independently evolution of products and core assets and the eight change propagation cases. We did not evaluate MolhadoSPL in terms of scalability or usability. The main contributions of this dissertation research are: 1) Molhado SPL that supports the evolution of product lines, 2) a fast 3-way XML merge algorithm, 3) a version-aware XML document framework, and 4) a feature model editor and debugger

    ETHOM: An Evolutionary Algorithm for Optimized Feature Models Generation (v. 1.2): Technical Report ISA-2012-TR-05

    Get PDF
    A feature model defines the valid combinations of features in a domain. The automated extraction of information from feature models is a thriving topic involving numerous analysis operations, techniques and tools. The progress of this discipline is leading to an increasing concern to test and compare the performance of analysis solutions using tough input models that show the behaviour of the tools in extreme situations (e.g. those producing longest execution times or highest memory consumption). Currently, these feature models are generated randomly ignoring the internal aspects of the tools under tests. As a result, these only provide a rough idea of the behaviour of the tools with average problems and are not sufficient to reveal their real strengths and weaknesses. In this technical report, we model the problem of finding computationally– hard feature models as an optimization problem and we solve it using a novel evolutionary algorithm. Given a tool and an analysis operation, our algorithm generates input models of a predefined size maximizing aspects as the execution time or the memory consumption of the tool when performing the operation over the model. This allows users and developers to know the behaviour of tools in pessimistic cases providing a better idea of their real power. Experiments using our evolutionary algorithm on a number of analysis operations and tools have successfully identified input models causing much longer executions times and higher memory consumption than random models of identical or even larger size. Our solution is generic and applicable to a variety of optimization problems on feature models, not only those involving analysis operations. In view of the positive results, we expect this work to be the seed for a new wave of research contributions exploiting the benefit of evolutionary programming in the field of feature modelling

    A systematic literature review on the semi-automatic configuration of extended product lines

    Get PDF
    Product line engineering has become essential in mass customisation given its ability to reduce production costs and time to market, and to improve product quality and customer satisfaction. In product line literature, mass customisation is known as product configuration. Currently, there are multiple heterogeneous contributions in the product line configuration domain. However, a secondary study that shows an overview of the progress, trends, and gaps faced by researchers in this domain is still missing. In this context, we provide a comprehensive systematic literature review to discover which approaches exist to support the configuration process of extended product lines and how these approaches perform in practice. Extend product lines consider non-functional properties in the product line modelling. We compare and classify a total of 66 primary studies from 2000 to 2016. Mainly, we give an in-depth view of techniques used by each work, how these techniques are evaluated and their main shortcomings. As main results, our review identified (i) the need to improve the quality of the evaluation of existing approaches, (ii) a lack of hybrid solutions to support multiple configuration constraints, and (iii) a need to improve scalability and performance conditions

    Granularity in software product lines

    Full text link
    corecore