
ETHOM: An Evolutionary Algorithm for
Optimized Feature Models Generation

TECHNICAL REPORT ISA-2012-TR-01 (v. 1.1)

Sergio Segura and J. A. Parejo
Software Engineering School

University of Seville
{japarejo,sergiosegura}@us.es

Robert M. Hierons
School of Information Systems, Computing and Mathematics

Brunel University
Rob.Hierons@brunel.ac.uk

David Benavides, and Antonio Ruiz-Cortés
Software Engineering School

University of Seville
{benavides,aruiz}@us.es

Applied Software Engineering Research Group
http://www.isa.us.es

University of Sevilla
http://www.us.es

This work is partially supported by:

Ministerio de Ciencia e Innovación Consejería Innovación, Ciencia y
Empresa de la Junta de Andalucía

February 1, 2012

http://www.isa.us.es
http://www.us.es

Contents 2

Contents

1. Introduction 3

2. Preliminaries 6
2.1. Feature models . 6
2.2. Evolutionary algorithms . 8

3. Automated generation of hard feature models 12
3.1. An evolutionary algorithm for feature models 12
3.2. Instantiation of the algorithm . 14

4. Evaluation 16
4.1. Experiment #1: Maximizing execution time 17

4.1.1. Maximizing execution time in a CSP Solver 17
4.1.2. Maximizing execution time in a SAT Solver 20

4.2. Experiment #2: Maximizing memory consumption in a BDD solver . . 21
4.3. Experiment #3: Evaluating the impact of the number of generations . . 26
4.4. Experiment #4: Evaluating the generalizability of hardness of Feature

Models . 27
4.5. Discussion . 28
4.6. Statistical Analysis . 28

5. Threats to validity 29

6. Related work 31

7. Conclusions and future work 33

8. Acnowledgements* 34

A. Statistical Analysis Data 40

S. Segura, J. A. Parejo, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés

1. Introduction 3

A feature model defines the valid combinations of features in a domain.
The automated extraction of information from feature models is a thriv-
ing topic involving numerous analysis operations, techniques and tools.
The progress of this discipline is leading to an increasing concern to test
and compare the performance of analysis solutions using tough input mod-
els that show the behaviour of the tools in extreme situations (e.g. those
producing longest execution times or highest memory consumption). Cur-
rently, these feature models are generated randomly ignoring the internal
aspects of the tools under tests. As a result, these only provide a rough idea
of the behaviour of the tools with average problems and are not sufficient
to reveal their real strengths and weaknesses.

In this technical report, we model the problem of finding computationally–
hard feature models as an optimization problem and we solve it using a
novel evolutionary algorithm. Given a tool and an analysis operation, our
algorithm generates input models of a predefined size maximizing aspects
as the execution time or the memory consumption of the tool when per-
forming the operation over the model. This allows users and developers to
know the behaviour of tools in pessimistic cases providing a better idea of
their real power. Experiments using our evolutionary algorithm on a num-
ber of analysis operations and tools have successfully identified input mod-
els causing much longer executions times and higher memory consumption
than random models of identical or even larger size. Our solution is generic
and applicable to a variety of optimization problems on feature models, not
only those involving analysis operations. In view of the positive results, we
expect this work to be the seed for a new wave of research contributions
exploiting the benefit of evolutionary programming in the field of feature
modelling.

1. Introduction
Software Product Line (SPL) engineering is a systematic reuse strategy to develop fam-
ilies of related software systems [16]. The emphasis is on deriving products from a
common set of reusable assets reducing production costs and time–to–market. The
products of an SPL are defined in terms of features where a feature is any increment
in product functionality [5]. A key aspect in SPLs is to capture the commonalities (i.e.
common features) and variabilities (i.e. variant features) of the systems that belong to
the product line. This is commonly done by using a so-called feature model. A feature
model [26] is a compact representation of all the products of a SPL in terms of features
and relationships among them (see example in Fig. 1).

The automated extraction of information from feature models (a.k.a automated anal-
ysis of feature models) is a thriving topic that has caught the attention of researchers for
the last twenty years [10]. Typical operations of analysis allow us to know whether a
feature model is void (i.e. it represents no products), what is the number of products rep-
resented by a feature model or whether a model contains any errors. Catalogues with up
to 30 analysis operations on feature models identified in the literature have been reported

S. Segura, J. A. Parejo, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés

1. Introduction 4

[10]. Common techniques to perform these operations are those based on propositional
logic [5, 39], constraint programming [8, 66] or description logic [61]. Also, these anal-
ysis capabilities can be found in several commercial and open source tools including
AHEAD Tool Suite [3], Big Lever Software Gears [15], FaMa Framework [17], Feature
Model Plug-in [18], pure::variants [45] and SPLOT [37].

Recent publications reflect an increasing interest to evaluate and compare the per-
formance of analysis techniques and tools on the analyses of feature models [19, 22,
39, 64, 65, 42, 44, 50, 52, 57, 67]. One of the main challenges when performing ex-
periments is finding tough problems that shows the strengths and weaknesses of the
tools under evaluation in extreme situations (e.g. those producing longest execution
times). Feature models from real domains are by far the most appealing input prob-
lems. Unfortunately, although there are references to real feature models with hundreds
or even thousands of features [6, 33, 56], only trivial examples from research publica-
tions or case studies are available. This lack of hard realistic feature models, has led
authors to evaluate their tools with large-scale randomly generated feature models of
5,000 [40, 66], 10,000 [22, 39, 57, 64] and up to 20,000 [42] features. More recently,
some authors have suggested looking for hard and realistic feature models in the open
source community [13, 19, 52, 53]. For instance, She et al. [52] extract a feature model
from the Linux kernel containing more than 5,000 features.

The problem of finding motivating input values to evaluate the performance of soft-
ware systems has been largely studied in the field of software testing. In this context,
researchers realized long ago of the ineffectiveness of using random values to reveal the
vulnerabilities of the systems under tests. As pointed out by McMinn [36]: “random
methods are unreliable and unlikely to exercise ‘deeper’ features of software that are not
exercised by mere chance". In this context, metaheuristic search techniques have proved
to be a promising solution for the automated generation of test data for both functional
[36] and non–functional properties [2]. Metaheuristic search techniques are frameworks
which use heuristics to find solutions to hard problems at an affordable computational
cost. Typical metaheuristic techniques are evolutionary algorithms, hill climbing or sim-
ulated annealing [60]. For the generation of test data, these strategies translate the test
criterion into an objective function (also called fitness function) that is used to evaluate
and compare the candidate solutions with respect to the overall search goal. Using this
information, the search is guided toward promising areas of the search space. Wegener
et al. [62, 63] were one of the first proposing using evolutionary algorithms to verify the
time constraints of software back in 1996. In their work, the authors used genetic algo-
rithms to find input combinations that violate the time constraints of real–time systems,
that is, those inputs producing an output too early or too late. Their experimental re-
sults showed that evolutionary algorithms are much more effective than random search
in finding input combinations maximizing or minimizing execution times. Since then, a
number of authors have followed their steps using metaheuristics and especially evolu-
tionary algorithms for the testing of non–functional properties such as execution time,
quality of service, security, usability or safety [2, 36].

Problem description. Current performance evaluations on the analysis of feature
model are mainly carried out using random feature models. However, these only pro-
vide a rough idea of the average performance of tools and do not reveal the specific
weak points related to the type of technique or algorithm under evaluation. Thus, the

S. Segura, J. A. Parejo, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés

1. Introduction 5

SPL community lacks specific mechanisms to generate computationally-hard feature
models that take analysis tools to their limits and reveal their real potential. This prob-
lem has negative implications for both tools’ users and developers. On the one hand,
tool developers have no means of performing exhaustive evaluations of the strengths and
weaknesses of their tools making it hard to find faults affecting their performance. On
the other hand, users are not provided with full information about the performance of
tools in pessimistic cases hindering them from choosing the tool that better meets their
needs. Hence, for instance, a user could choose a tool based on its average performance
and later realize that it performs very badly in particular cases that appear frequently in
its application domain.

The problem of generating hard feature model has been traditionally addressed by
the community by simply generating huge feature models with thousand of features
and constraints. That is, it is generally assumed that the larger the model the harder
its analysis. However, we remark that these models are still random and therefore,
as warned by software testing experts, they are not sufficient to exercise the specific
features of the tools under evaluation. Another negative consequence of using huge
feature models to evaluate the performance of tools is that they frequently fall out of
the scope of their users. Hence, both developers and users would probably be more
interested to know whether their tool may crash with a hard model of small or medium
size rather than knowing the execution times of huge random models out of their scope.

Finally, we may mention that using realistic or standard collection of problems (i.e.
benchmarks) is equally not sufficient for a rigorous performance evaluation since they
do not consider the internal aspects of the tools or techniques under tests. Thus, feature
models that are hard to analyse by one tool could be trivially processed by other and
vice versa.

Solution overview and contributions. In this article, we propose using evolution-
ary algorithms for the automated generation of hard feature models. In particular, we
propose to model the problem of finding computationally–hard feature models as an op-
timization problem and we solve it using a novel Evolutionary algoriTHm for Optimized
feature Models (ETHOM). Given a tool and an analysis operation, ETHOM generates
input models of a predefined size maximizing aspects such as the executions time or the
memory consumed by the tool when performing the operation over the model. For the
evaluation of our approach, we performed several experiments using different analysis
operations, paradigms, tools and optimization criteria. In particular, we used FaMa and
SPLOT, two tools for the automated analysis of feature models developed and main-
tained by independent laboratories. In total, we performed over 50 million executions
of analysis operations for the configuration and evaluation of our algorithm. The results
showed how ETHOM successfully identified input models causing much longer execu-
tions times and higher memory consumption than random models of identical or even
larger size. As an example, we compared the effectiveness of random and evolution-
ary search in generating feature models with up to 1,000 features maximizing the time
required by a constraint programming solver (a.k.a. CSP solver) to check their consis-
tency. The results revealed that the hardest random model found required 0.2 seconds
to be analyzed meanwhile ETHOM was able to find several models taking between 1
and 27.5 minutes to be processed. Not only that, we found the hardest feature mod-
els generated by ETHOM in the ranges 500-1,000 features were remarkably harder to

S. Segura, J. A. Parejo, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés

2. Preliminaries 6

process than random models with 10,000 features. More importantly, we found that
the hard feature models generated by ETHOM had similar properties to the realistic
models found in the literature. This suggests that the long execution times and high
memory consumption detected by ETHOM could be therefore reproduced when using
real models with the consequent negative effect in the user.

Our work enhances and complements the current state of the art of performance eval-
uation of feature model analysis tools as follows:

• Our approach is the first one using a search–based strategy to exploit the inter-
nal weaknesses of the analysis tools and techniques under evaluation rather than
trying to detect them by chance using random models.

• Our work allows developers to focus on the search of computationally–hard mod-
els of realistic size that could reveal deficiencies in their tools rather than using
huge feature models out of their scope.

• Our approach provides users with helpful information about the behaviour of tools
in pessimistic cases helping them to choose the tool that better meets their needs.

• Our algorithm is highly generic being applicable to any automated operation on
feature models in which the quality (i.e. fitness) of the models with respect to an
optimization criteria can be measured quantitatively.

• Our experimental results show that the hardness of feature models depends on
different factors in contrast to related works in which the complexity of the mod-
els is mainly associated to their size. Although this is generally true, our work
demystifies the belief that large models have to be necessarily harder to process
than small ones.

• Our algorithm is ready-to-use and publicly available as a part of the open-source
BeTTy Framework [14].

The rest of the article is structured as follows: Section 2 introduces feature models and
evolutionary algorithms. In Section 3.1, we present ETHOM, an evolutionary algorithm
for the generation of optimized feature models. Then, in Section 3.2, we propose a
specific configuration of ETHOM to automate the generation of computationally–hard
feature models. The empirical evaluation of our approach is presented in Section 4.
Section 5 presents the threats to validity of our work. The related works are presented
and discussed in Section 6. Finally, we summarize our conclusions and describe our
future work in Section 7.

2. Preliminaries

2.1. Feature models
A feature model defines the valid combination of features in a domain. These are com-
monly used as a compact representation of all the products of an SPL in terms of fea-
tures. A feature model is visually represented as a tree-like structure in which nodes

S. Segura, J. A. Parejo, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés

2. Preliminaries 7

Figure 1: A sample feature model

represent features and connections illustrate the relationships between them. These re-
lationships constrain the way in which features can be combined. Fig. 1 depicts a
simplified sample feature model. The model illustrates how features are used to specify
and build software for Global Position System (GPS) devices. The software loaded in
the GPS is determined by the features that it supports. The root feature (i.e. ‘GPS’)
identifies the SPL.

Feature models were first introduced in 1990 as a part of the FODA (Feature–Oriented
Domain Analysis) method [26]. Since then, feature modelling has been widely adopted
by the software product line community and a number of extensions have been proposed
in attempts to improve properties such as succinctness and naturalness [46]. Neverthe-
less, there seems to be a consensus that at a minimum feature models should be able to
represent the following relationships among features:

• Mandatory. If a child feature is mandatory, it is included in all products in which
its parent feature appears. In Fig. 1, all GPS devices must provide support for
Routing.

• Optional. If a child feature is defined as optional, it can be optionally included
in products in which its parent feature appears. For instance, the sample model
defines Auto-rerouting as an optional feature.

• Alternative. A set of child features are defined as alternative if only one feature
can be selected when its parent feature is part of the product. In our SPL, software
for GPS devices must provide support for either a LCD or Touch screen but only
one of them in the same product.

• Or-Relation. A set of child features are said to have an or-relation with their
parent when one or more of them can be included in the products in which its
parent feature appears. In our example, GPS devices can provide support for a
MP3 player, a Photo viewer or both of them.

Notice that a child feature can only appear in a product if its parent feature does.
The root feature is a part of all the products within the SPL. In addition to the parental
relationships between features, a feature model can also contain cross-tree constraints
between features. These are typically of the form:

S. Segura, J. A. Parejo, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés

2. Preliminaries 8

• Requires. If a feature A requires a feature B, the inclusion of A in a product
implies the inclusion of B in such product. GPS devices with Traffic avoiding
requires Auto-rerouting.

• Excludes. If a feature A excludes a feature B, both features cannot be part of
the same product. In our sample SPL, GPS with Touch screen cannot include a
Keyboard and vice-versa.

2.2. Evolutionary algorithms
Principles of biological evolution have inspired the development of a whole branch of
optimization techniques called Evolutionary Algorithms (EAs). These algorithms man-
age a set of candidate solutions to an optimization problem that are combined and mod-
ified iteratively to obtain better solutions. Each candidate solution is referred to as
individual or chromosome in analogy to the evolution of species in biological genet-
ics where DNA of individuals is combined and modified along generations enhancing
species through natural selection. Two of the main properties of EAs are that they are
heuristic and stochastic. The former means that there is no guarantee of obtaining the
global optimum for the optimization problem. The latter means that different executions
of the algorithm with the same input parameters can produce different output, i.e. they
are not deterministic. Despite this, EAs are among the most widely used optimization
techniques being applied successfully in nearly all scientific and engineering areas by
thousands of practitioners [4, Section D]. This success is due to the ability of EAs to
obtain near optimal solutions to extremely hard optimization problems with affordable
time and resources.

As an example, let us consider the design of a car as an optimization problem. A
similar example was used to illustrate the working of EAs in [63]. Let us consider that
our goal is to find a car design that maximize speed. This problem is hard since a car
is a highly complex system in which speed depends on a number of parameters such
as engine type, components as well as shape and body elements. Moreover, this prob-
lem is likely to have extra constraints like keeping the cost of the car under a certain
value, making some designs infeasible. All EA variants are based on a common work-
ing scheme shown in Fig. 2. Next, we detail its main steps relating them to our example.

Initialization. The initial population (i.e. set of candidate solutions to the problem) is
usually generated randomly. In our example, this could be done by choosing a set of
random values for the design parameters of the car. Of course, the chances of finding
optimal or near optimal car designs in this initial population are very small. However,
promising values found at this step will be used to produce variants along the optimiza-
tion process leading to better designs.

Evaluation. Next, individuals are evaluated using a fitness function. A fitness function
is a function that receives an individual as input and returns a numerical value indicat-
ing its optimality for the problem. This enables the objective comparison of candidate
solutions with respect to an optimization problem. The fitness function should be deter-
ministic to avoid interferences in the algorithm, i.e. different calls to the function with

S. Segura, J. A. Parejo, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés

2. Preliminaries 9

Figure 2: UML activity diagram of evolutionary algorithms

the same set of inputs parameters should produce the same output. In our car example,
a simulator could be used to provide the maximum speed prediction as fitness.

Stop criteria. Iterations on the remainder of the algorithm are performed until a ter-
mination criterion is met. Typical stop criteria are: reaching a maximum or average
fitness value, maximum execution times of the fitness function, number of iterations of
the loop (so-called generations) or number of iterations without improvements on the
best individual found.

Encoding. In order to create offspring, individuals need to be encoded expressing its
characteristics in a form that facilitates its manipulation during the rest of the algorithm.
In biological genetics, DNA encodes individual’s characteristics on chromosomes that
are used on reproduction and whose modifications produce mutants. For instance, clas-
sical encoding mechanisms on EAs are binary vectors encoding numerical values in
genetic algorithms (so-called binary enconding) [4, Sec. C1.2] and tree structures en-
coding abstract syntax of programs in genetic programming (so-called tree encoding)
[31]. In our car example, this step would imply to express design parameters of cars
using some kind of data structure, e.g. binary vectors for each design parameter.

Selection. In the main loop of the algorithm (see Fig. 2), individuals are selected from
current population in order to create new offspring. In this process, better individuals
usually have more probability of being selected resembling the natural evolution where
stronger individuals have more chances of reproduction. For instance, two classic se-
lection mechanisms are roulette wheel and tournament selection [21]. When using the
former, the probability of choosing an individual is proportional to its fitness determin-
ing the width of the slice of a hypothetic spinning roulette wheel. This mechanism
is often modified assigning probability based on the position of the individuals in a

S. Segura, J. A. Parejo, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés

2. Preliminaries 10

Figure 3: Sample crossover and mutation in the search of an optimal car design.

fitness–ordered ranking (so-called rank-based roulette wheel). When using tournament
selection, a group of n individuals is randomly chosen from the population and a win-
ning individual is selected according to its fitness.

Crossover. These are the techniques used to combine individuals and produce new
individuals in an analogous way to biological reproduction. Crossover mechanisms de-
pend on the encoding scheme used but standard mechanisms are present in literature for
widely used encodings [4, Sec. C3.3]. For instance, two classical crossover mechanisms
for binary encoding are one-point crossover [24] and uniform crossover [1]. When us-
ing the former, a random location in the vector is chosen as break point and portions of
vectors after the break point are exchanged to produce offspring (see Fig. 5 for a graph-
ical example of this crossover mechanism). When using uniform crossover, the value of
each vector element is taken from one parent or other with a certain probability, usually
50%. Fig. 3(a) shows a high–level application of crossover in our example of car de-
sign. An F1 car and an small family car are combined by crossover producing a sports
car. The new vehicle has some design parameters inherited directly of each parent such
as number of seats or engine type and others mixed such as shape and intermediate size.

Mutation. At this step, random changes are applied to the individuals. Changes are per-
formed with certain probability where small modifications are more likely than larger
ones. This step is crucial to prevent the algorithm from getting stuck prematurely at a
locally optimal solution. An example of mutation in our car optimization problem is
presented in Fig. 3(b). The shape of a family car is changed by adding a back spoiler
while the rest of its design parameters remain intact.

Decoding. In order to evaluate the fitness of new and modified individuals decoding
is performed. For instance, in our car design example, data stored on data structures is
transformed into a suitable car design that our fitness function can evaluate. It often hap-
pens that the changes performed in the crossover and mutation steps create individuals
that are not valid designs or break a constraint, this is usually referred to as an infeasible
individual [4], e.g. a car with three wheels. Once an infeasible individual is detected,
this can be either replaced by an extra correct one or it can be repaired, i.e. slightly
changed to make it feasible.

Survival. Finally, individuals are evaluated and the next population is conformed in
which individuals with better fitness values are more likely to remain in the population.

S. Segura, J. A. Parejo, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés

2. Preliminaries 11

This process simulates the natural selection of the better adapted individuals that survive
and generate offspring improving species.

In order to better clarify the operation of EAs, in algorithm 1 we provide a pseudo-
code that complements the common working scheme shown in Fig. 2.

Algorithm 1 Evolutionary Algorithm pseudocode
bestEval← −∞
Population← initialPopulation() {Initialization of Population}
for all individual ∈ Population do
nextEval ← f(decode(individual))
if nextEval < bestEval then
bestSolution← individual
bestEval ← nextEval

end if
end for
repeat

{Main loop}
Parents← crossoverSelection(Population)
{Select Individuals for Crossover}
Offspring ← crossover(Parents) {Crossover}
Population← mutation(Population) {Mutation}
for all individual ∈ (Population ∪Offspring) do
{Evaluation of new population and Offspring}
nextEval ← f(decode(individual))
if nextEval < bestEval then
bestSolution← decode(individual)
bestEval ← nextEval

end if
end for
{Selection of survival individuals (Next population)}
Population← survivalSelection(Population ∪Offspring)

until Termination Criteria is satisfied
return bestSolution

The first nine lines of the algorithm correspond to the initialization, where the individ-
uals of the population are generated randomly based on the function initialPopulation.
The loop in this section searches for the best individual present in this initial popula-
tion and stores it in the variable bestSolution. Next, the main loop of the algorithm
executes the main elements of the evolutionary algorithm: crossover, mutation and se-
lection for survival. Along the iterative execution of this loop, the best individual found
is maintained and stored in the variable bestSolution, that is returned as a result or the
algorithm.

S. Segura, J. A. Parejo, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés

3. Automated generation of hard feature models 12

3. Automated generation of hard feature models
In this section, we present the core of our contribution. First, we introduce a novel
evolutionary algorithm to deal with optimization problems on feature models. Then,
we present a specific instantiation of the algorithm to search for computationally-hard
feature models.

3.1. An evolutionary algorithm for feature models
In this section, we present ETHOM, a novel evolutionary algorithm for the generation
of optimized feature models. The algorithm takes several size constraints and a fitness
function as input and returns a feature model of the given size maximizing the opti-
mization criteria defined by the function. Key benefit of our algorithm is that it is very
generic being applicable to any automated operation on feature models in which the
quality (i.e. fitness) of the models can be measured quantitatively. In the following, we
describe the basic steps of ETHOM as shown in Fig. 2.

Initial population. The initial population is generated randomly according to the size
constraints received as input. The current version of ETHOM allows the user to specify
the number of features, percentage of cross-tree constraints and maximum branching
factor of the feature model to be generated. Several algorithms for the random genera-
tion of feature models have been proposed in the literature [47, 57, 67]. There are also
tools supporting the random generation of feature models such as BeTTy [14] or SPLOT
[37, 55]

Evaluation. Feature models are evaluated according to the fitness function received as
input obtaining a numeric value that represents the quality of the candidate solution (i.e.
its fitness).

Encoding. For the representation of feature models as individuals (a.k.a. chromosomes)
we propose using a custom encoding. Generic encodings for evolutionary algorithms
were ruled out since these were either not adequate to represent tree structures (i.e. bi-
nary encoding) or were not able to produce solutions of a fixed size (e.g. tree encoding),
a key requirement in our approach. Fig. 4 depicts an example of our encoding. As
illustrated, each model is represented by means of two arrays, one storing information
about the tree and another one with information about Cross-Tree Constraints (CTC).
The order of each feature in the array corresponds to the Depth–First Traversal (DFT)
order of the tree. Hence, feature labelled with ‘0’ in the tree is stored in the first posi-
tion of the array, feature labelled with ‘1’ is stored the second position and so on. Each
feature in the tree array is defined as a two-tuple < PR,C > where PR is the type of
relationship with its parent feature (M: Mandatory, Op: Optional, Or: Or-relationship,
Alt: Alternative) and C is the number of children of the given feature. As an example,
first position in the tree array, < Op, 2 >, indicates that feature labelled with ‘0’ in the
tree has an optional relationship with its parent feature and has two child features (those
labelled with ‘1’ and ‘3’). Analogously, each position in the CTC array stores informa-
tion about one constraint in the form < TC,O,D > where TC is the type of constraint

S. Segura, J. A. Parejo, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés

3. Automated generation of hard feature models 13

Figure 4: Encoding of a feature model in ETHOM

Figure 5: Example of one-point crossover in ETHOM

(R: Requires, E: Excludes) and O and D are the indexes of the origin and destination
features in the tree array respectively.

Selection. Selection strategies are generic and can be applied regardless of how the in-
dividuals are represented. In our algorithm, we implemented both rank-based roulette-
wheel and binary tournament selection strategies. The selection of one or the other
mainly depends on the application domain.

Crossover. We provided our algorithm with two different crossover techniques, one-
point and uniform crossover. Fig. 5 depicts an example of the application of one-point
crossover in ETHOM. The process starts by selecting two parent chromosomes to be
combined. For each array in the chromosomes, the tree and CTC arrays, a random point
is chosen (so-called crossover point). Finally, the offspring is created by copying the
content of the arrays from the beginning to the crossover point from one parent and the
rest from the other one. Notice that the characteristics of our encoding guarantee a fixed
size for the individuals.

Mutation. Mutation operators must be specifically designed for the type of encoding
used. ETHOM uses four different types of custom mutation operators, namely:

• Operator 1. It changes randomly the type of a relationship in the tree array, e.g.
from mandatory,< M, 3 >, to optional,< Op, 3 >.

• Operator 2. It changes randomly the number of children of a feature in the tree,
e.g. from < M, 3 > to < M, 5 >. The new number of children is in the range
[0, BF] where BF is the maximum branching factor indicated as input.

S. Segura, J. A. Parejo, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés

3. Automated generation of hard feature models 14

• Operator 3. It changes the type of a cross-tree constraint in the CTC array, e.g.
from excludes < E, 3, 6 > to requires < R, 3, 6 >.

• Operator 4. It changes randomly (with equal probability) the origin or destination
feature of a constraint in the CTC array, e.g. from < E, 3, 6 > to < E, 1, 6 >.
Origin and destination features are ensured to be different.

These operators are applied randomly with the same probability.

Decoding. At this stage, the array-based chromosomes are translated back into feature
models in order to be evaluated. In ETHOM, we identified three types of patterns mak-
ing a chromosome infeasible or semantically redundant, namely: i) those encoding set
relationships (or- and alternative) with a single child feature (e.g. Fig. 6(a)), ii) those
containing cross-tree constraints between features with parental relationship (e.g. Fig.
6(b)), and iii) those containing features sharing contradictory or redundant cross-tree
constraints (e.g. Fig. 6(c)). The specific approach used to address infeasible individu-
als, replacing or repairing (see Section 2.2 for details), mainly depend on the problem
and it is ultimately up to the user. In our work, we used a repairing strategy described
in the next section.

Figure 6: Examples of infeasible individuals and repairs

Survival. Finally, the next population is created by including all the new offspring plus
those individuals from the previous generation that were selected for crossover but did
not generate descendants due to probability.

3.2. Instantiation of the algorithm
In this section, we propose to model the problem of finding computationally–hard fea-
ture models as an optimization problem and to solve it using an instantiation of our
evolutionary algorithm. We chose evolutionary computation because it has proved to be
a robust search technique suited for the complex search spaces and noisy objective func-
tions used when dealing with non–functional properties [2]. Key benefit of our approach
is that it takes into account the characteristics of the tools under test trying to exploit its
vulnerabilities. Also, our approach is very generic being applicable to any automated

S. Segura, J. A. Parejo, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés

3. Automated generation of hard feature models 15

operation on feature models, not only analyses, in which the quality (i.e. fitness) of the
models can be measured quantitatively.

In order to find a suitable configuration of our algorithm, we performed numerous
executions of a sample optimization problem evaluating different combination of values
for the key parameters of the algorithm, presented in Table 1. The optimization problem
was to find a feature model maximizing the execution time invested by the analysis tool
when checking the model consistency (i.e. whether it represents at least one product).
We chose this analysis operation because it is currently the most quoted in the literature
[10]. In particular, we looked for feature models of different size maximizing execution
time in the CSP solver JaCoP integrated into the FaMa framework v1.0. FaMa is a
widely-used tool of significant size, highly tested [48] and integrated into tools like
MOSKitt [41]. These reasons, coupled to our familiarity with the tool as leaders of the
project, made us choose FaMa as a good tool to be use in our work. Next, we clarify the
main aspects of the configuration of our algorithm:

• Fitness function. Our first attempt was to measure the execution time in millisec-
onds invested by FaMa to perform the operation. However, we found that this was
very inaccurate since the result of the function was deeply affected by the system
load, i.e. it was not deterministic. To solve this problem, we decided to measure
the fitness of a feature model as the number of backtracks produced by the analy-
sis tool during its analysis. A backtrack represents a partial candidate solution to
a problem that is discarded because it cannot be extended to a full valid solution
[58]. In contrast to the execution time, most CSP backtracking heuristics are de-
terministic. Together with execution time, the number of backtracks is commonly
used to measure the complexity of constraint satisfaction problems [58]. Thus, we
may assume that the higher the number of backtracks the longer the computation
time.

• Infeasible individuals. We evaluated the effectiveness of both replacement and
repairing techniques. More specifically, we evaluated the following repairing al-
gorithm with infeasible individuals: i) isolated set relationships are converted into
optional relationships (e.g. the model in Fig. 6(a) is changed as in Fig. 6(d)), ii)
cross-tree constraints between features with parental relationships are removed
(e.g. the model in Fig. 6(b) is changed as in Fig. 6(e)), and iii) two features
cannot share more than one constraint (e.g. the model in Fig. 6(c) is changed as
in Fig. 6(f)).

• Stop criteria. There is no means of deciding when an optimum input has been
found and the evolutionary algorithm should be stopped [63]. Therefore, we de-
cided to allow the algorithm to continue for a given number of executions of the
fitness function taking the largest number of backtracks obtained as the optimum,
i.e. solution to the problem.

Table 1 depicts the values evaluated for each parameter. These values were based
on: related works using evolutionary algorithms [22], the literature on parameter setting
[4, Section E], and our previous experience in this domain [43]. Each combination of
parameters was executed 10 times to avoid heterogeneous results and to allow us to

S. Segura, J. A. Parejo, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés

4. Evaluation 16

perform statistical analysis on the data. Underlined values were those providing better
results and therefore those selected for the final configuration of ETHOM. In total, we
performed over 40 million executions of the objective function to find a good setup for
our algorithm.

Parameter Values evaluated and selected

Selection strategy Roulette-wheel, 2-Tournament
Crossover strategy One-point, Uniform
Crossover probability 0.7, 0.8, 0.9
Mutation probability 0.0075, 0.005, 0.02
Size initial population 50, 100, 200
#Executions fitness function 2000, 5000
Infeasible individuals Replacing, Repairing

Table 1: Algorithm configuration

4. Evaluation
In order to evaluate our approach, we developed a prototype implementation of ETHOM
in Java. The program was developed on top of the BeTTy Framework [14], an open-
source tool for functional and performance testing on the analysis of feature models
developed by the authors.

In general, it is not possible to verify that the solution obtained by ETHOM represents
a global optimum. Although there are static techniques that could be used for this
(e.g. control flow graph analysis), these are not affordable in general for large complex
software [63]. Thus, we decided to evaluate the efficacy of our approach by comparing
it to random search since this is the most extended strategy for performance testing in
the analysis of feature models. In particular, the evaluation of our evolutionary program
was performed through a number of experiments. On each experiment, we compared
the effectiveness of random generators and ETHOM on the search of feature models
maximizing properties such as the execution time or memory consumption required
for their analysis. Additionally, we performed some extra experiments studying the
characteristics of the hard feature models generated and the behaviour of ETHOM when
allowed to run for a large number of generations. The results of these extra experiments
as well as the statistical analysis of the data are briefly mentioned in this section and
fully reported in an external technical report due to space limitations [49].

All the experiments were performed on a cluster of four virtual machines equipped
with an Intel Core 2 CPU 6400@2.13GHz running Centos OS 5.5 and Java 1.6.0_20
on 1400 MB of dedicated memory. These virtual machines ran on a cloud of servers
equipped with Intel Core 2 CPU 6400@2.13Ghz and 4GB of RAM memory managed
using Opennebula 2.0.1.

S. Segura, J. A. Parejo, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés

4. Evaluation 17

4.1. Experiment #1: Maximizing execution time
In this experiment, we evaluated the ability of ETHOM to search for input feature mod-
els maximizing the analysis time of a solver. In particular, we measured the execution
time required by a CSP solver to find out if the input model was consistent (i.e. it rep-
resents at least one product). This was the same problem used to tune the configuration
of our algorithm. Again, we chose the consistency operation because it is currently the
most used in the literature. Next, we present the setup and results of our experiment.

4.1.1. Maximizing execution time in a CSP Solver

Experimental setup. This experiment was performed through a number of iterative
steps. On each step, we generated 5,000 random feature models and checked their con-
sistency saving the maximum fitness obtained. Then, we executed ETHOM and allowed
it to run for the same number of executions of the fitness function (5,000) and compared
the results. We may recall that the size of population in our algorithm was set to 200 in-
dividuals which meant that the maximum number of generations was 25, i.e. 5,000/200.
This process was repeated with different model sizes to evaluate the scalability of our
algorithm. In particular, we generated models with different combinations of features,
{200, 400, 600, 800, 1,000} and percentage of constraints (with respect to the number
of features), {10%, 20%, 30%, 40%}. The maximum branching factor was set to 10
in all the experiments. For each model size, we repeated the process 25 times to get
averages and perform statistical analysis of the data. In total, we performed about 5
million executions1 of the fitness function for this experiment. The fitness was set equal
to the number of backtracks obtained by the analysis tool when checking the model
consistency. For the analysis, we used the solver JaCoP integrated into FaMa v1.0 with
the default heuristics MostConstrainedDynamic for the selection of variables and Indo-
mainMin for the selection of values from the domains. To prevent the experiment from
getting stuck, a maximum timeout of 30 minutes was used for the execution of the fit-
ness function in both the random and evolutionary search. If this timeout was exceeded
during random generation, the execution was cancelled and a new iteration was started.
If the timeout was exceeded during evolutionary search, the best solution found until
that moment was returned. After all the executions, we measured the execution time
of the hardest feature models found for a full comparison, i.e. those producing a larger
number of backtracks. More specifically, we executed 10 times each returned solution
to get average execution times.

Analysis of results. Fig. 7 depicts the effectiveness of ETHOM for each size range
of the feature models generated. We define the effectiveness (a.k.a score) of our evolu-
tionary program as the percentage of times (out of 25) in which the program found a
better optimum than random models, i.e. a higher number of backtracks. As illustrated,
the effectiveness of ETHOM was over 80% in most of the size ranges reaching 96% or
higher in nine of them. Overall, our evolutionary program found harder feature models

15 features ranges x 4 constraints ranges x 25 iterations x 10,000 (5,000 random search + 5,000 evolu-
tionary search)

S. Segura, J. A. Parejo, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés

4. Evaluation 18

Figure 7: Effectiveness of ETHOM in Experiment #1.

than those generated randomly in 85.8% of the executions. We may remark that our
algorithm revealed the lowest effectiveness with those models containing 10% of cross-
tree constraints. We found that this was due to the simplicity of the analysis in this size
range. The number of backtracks produced by these models was very low, zero in most
cases, and thus ETHOM had problems finding promising individuals that could evolve
towards optimal solutions.

Table 3 depicts the evaluation results for the range of feature models with 20% of
cross-tree constraints. For each number of features and search technique, random and
evolutionary, the table shows the average and maximum fitness obtained as well as
the average and maximum execution times of the hardest feature models found. The
effectiveness of the evolutionary program is also presented in the last column. As il-
lustrated, the evolutionary program found feature models producing a number of back-
tracks larger by several orders of magnitude than those produced by random models.
The fitness of the hardest models generated using our evolutionary approach was on
average over 3,500 times higher than that of random models (200,668.05 backtracks
against 45.35) and 40,500 times higher in the maximum value (23.5 million backtracks
against 1,279). As expected, these results were also reflected in the execution times. On
average, the CSP solver invested 0.06 seconds to analyse the random models and 8.96
seconds to analyse those generated using our evolutionary generator. The superiority
of evolutionary search was especially remarkable in the maximum times ranging from
the 0.2 seconds of random models to the 1,032.19 seconds (17.2 minutes) invested by
the CSP solver to analyse the hardest feature model generated by our evolutionary pro-
gram. Overall, our evolutionary approach produced a harder feature model than random
techniques in 92% of the executions in the range of 20% of constraints.

Tables 2, 4, and 3 depict the evaluation results for feature models with 10%, 30%, and
40% of cross–tree constraints repectively. Like in Table 3, Tables 2, 4, and 5 show the
average and maximum fitness obtained, as well as the average and maximum execution
times of the hardest feature models found, and the effectivennes of ETHOM in the last
column. It is important to note that the effectiveness of ETHOM is higher than 80%
on all the cases of tables 4, and 3, supporting the consclussions stated above. However,
table 2 shows a significantly lower effectiveness, drawing a limitation in the applicability
of the proposal.

A global summary of the results is presented in Table 6. The table depicts the max-

S. Segura, J. A. Parejo, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés

4. Evaluation 19

Random Testing ETHOM

#Features Avg Fitness Max Fitness Avg Time Max Time Avg Fitness Max Fitness Avg Time Max Time Score (%)

200 5.24 17 20.97 38.90 24.64 361.00 27.77 60.50 44
400 11.72 96 35.06 51.80 417.60 7871.00 57.97 330.40 64
600 28.56 287 50824.00 96.30 72508.72 1780227.00 2525.58 59862.30 52
800 15.16 87 61.25 89.00 336715.28 5316995.00 18007.71 280405.60 88

1000 40.6 186 94.09 120.70 1184620.60 29491237.00 66244.50 1643863.60 68

Total 20.256 287 10207.07 120.70 318857.37 29491237.00 17372.71 1643863.60 63.2

Table 2: Evaluation results on the generation of feature models maximizing execution time in a
CSP solver. CTC=10%

Random Testing ETHOM

#Features Avg Fitness Max Fitness Avg Time Max Time Avg Fitness Max Fitness Avg Time Max Time Score (%)

200 8.08 61 0.02 0.03 63.36 215 0.04 0.06 96
400 30.08 389 0.04 0.07 7,128.44 106,655 0.24 2.93 88
600 40.28 477 0.05 0.09 9,188.20 116,479 0.70 7.98 92
800 91.08 1,279 0.08 0.20 22,427.60 483,971 1.28 24.56 88
1000 57.24 582 0.10 0.13 964,532.64 23,598,675 42.54 1,032.19 96

Total 45.35 1,279 0.06 0.20 200,668.05 23,598,675 8.96 1,032.19 92

Table 3: Evaluation results on the generation of feature models maximizing execution time in a
CSP solver. CTC=20%

Random Testing ETHOM

#Features Avg Fitness Max Fitness Avg Time Max Time Avg Fitness Max Fitness Avg Time Max Time Score (%)

200 10.4 32 22.94 37.20 526.00 8069.00 52.16 171.30 84
400 19.28 103 35.57 41.90 1212.56 21696.00 93.46 611.00 92
600 11.72 26 48.99 64.10 8826.72 214536.00 345.91 6621.50 96
800 18.32 80 70.31 97.50 11487.36 174361.00 787.81 13940.30 96

1000 23.08 170 87.78 117.20 1510.76 15372.00 287.13 1617.10 96

Total 16.56 170 53.12 117.20 4712.68 214536.00 313.29 13940.30 92.8

Table 4: Evaluation results on the generation of feature models maximizing execution time in a
CSP solver. CTC=30%

Random Testing ETHOM

#Features Avg Fitness Max Fitness Avg Time Max Time Avg Fitness Max Fitness Avg Time Max Time Score (%)

200 9,6 39 25,78 35,50 132,24 959,00 38,26 83,10 80
400 11,28 56 39,00 75,90 131,76 987,00 56,45 130,80 96
600 8,76 31 50,09 68,80 6224,72 77181,00 352,03 4087,10 100
800 7,64 14 64,50 85,90 386,84 4299,00 111,38 519,00 100

1000 8,24 19 82,09 101,40 133,72 949,00 120,36 274,80 100

Total 9,104 56 52,29 101,40 1401,86 77181,00 135,70 4087,10 95,2

Table 5: Evaluation results on the generation of feature models maximizing execution time in a
CSP solver. CTC=40%

S. Segura, J. A. Parejo, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés

4. Evaluation 20

imum execution times invested by the CSP solver to analyse the hardest models found
using random and evolutionary search. The data show that our approach was more
effective than random models in all size ranges. The hardest random model required
0.2 seconds to be processed. In contrast, our evolutionary approach found four mod-
els requiring between 1 and 27.3 minutes to be analysed. Interestingly, our algorithm
was able to find smaller and significantly harder feature models (e.g. 600 features and
10% of CTC) than the hardest random model found which had 800 features and 20%
of constraints. This emphasizes the ability of our approach to generate motivating input
models of realistic size that reveal the vulnerabilities of tools and heuristics instead of
just stressing them using large random models.

10% CTC 20% CTC 30% CTC 40% CTC

#Features Random Time ETHOMTime Random Time ETHOMTime Random Time ETHOMTime Random Time ETHOMTime

200 0.04 0.06 0.03 0.06 0.04 0.17 0.04 0.08
400 0.05 0.33 0.07 2.93 0.04 0.61 0.08 0.13
600 0.10 59.86 0.09 7.98 0.06 6.62 0.07 4.09
800 0.09 280.41 0.20 24.56 0.10 13.94 0.09 0.52
1,000 0.12 1,643.86 0.13 1,032.19 0.12 1.62 0.10 0.27

Table 6: Maximum execution times produced by random models and our evolutionary program.

Fig. 8 compares random and evolutionary techniques for the search of a feature model
maximizing the number of backtracks in two sample executions. This occurred because
the results obtained by our evolutionary program were so much higher than those of ran-
dom models that it was unfeasible to represent them using a similar scale. Horizontally,
the graphs show the number of generations where each generation represent 200 execu-
tions of the fitness function. Fig. 8(a) shows that random models reaches its maximum
number of backtracks after only 5 generations (about 1000 executions). That is, the gen-
eration of 4,000 other random models do not produce any higher number of backtracks
and therefore are useless. In contrast to this, our evolutionary approach shows a con-
tinuous improvement. After 13 generations (about 2600 executions), the fitness found
by evolutionary search are above of those of random models. Fig. 8(b) depicts another
example in which random models are lucky to find a high number of backtracks in the
14th generation. Evolutionary optimization, however, once again manages to improve
the execution times continuously overcoming the best random fitness after 22 genera-
tions. In generation number 23, even a significant leap of about 200 backtracks can be
observed. In both examples, the curve trace suggests that the evolutionary algorithm
would find even better solutions if the number of generations were increased. This was
confirmed in a later experiment in which the program was allowed to run for up to 125
generations (25,000 executions of the fitness function) finding feature models producing
more than 70 million backtracks (see Section 4.5 for details).

4.1.2. Maximizing execution time in a SAT Solver

Experimental setup. The experimental setup used for SAT-based analysis is the equal
to that used with the CSP-based one. For the analysis, we used the SAT solver inte-
grated into FaMa v1.0. Just as in the experiment above described, in order to prevent
the experiment from getting stuck, a maximum timeout of 30 minutes was used for the
execution of the fitness function in both the random and evolutionary search. If this

S. Segura, J. A. Parejo, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés

4. Evaluation 21

Figure 8: Comparison of random models and our evolutionary algorithm for the search of the
highest number of backtracks

Figure 9: Effectiveness of our evolutionary algorithm in Experiment #1.

time was exceeded, a new iteration was started. After all the executions, we measured
the execution time of the hardest feature models found for a full comparison, i.e. those
producing a larger number of backtracks. More specifically, we executed 10 times each
optimal solution to get average execution times.

Analysis of results. Fig. 9 depicts the effectiveness of our algorithm for each size
range of the feature models generated. As illustrated, the effectiveness of evolutionary
program was over 80% in most of the cases reaching 92% or higher in nine of them.
Overall, our evolutionary program found harder feature models than those generated
randomly in 87.8% of the executions.

Tables 7, 8, 9, and 10 depict the evaluation results obtained using the SAT-based
analysis for feature models with 10%, 20% 30%, and 40% of cross–tree constraints
repectively. Specifically, those tables show the average and maximum fitness obtained,
as well as the average and maximum execution times of the hardest feature models
found, and the effectivennes of ETHOM in the last column.

4.2. Experiment #2: Maximizing memory consumption in a
BDD solver

In this experiment, we evaluated the ability of ETHOM to generate input feature models
maximizing the memory consumption of a solver. In particular, we measured the mem-
ory consumed by a BDD solver when finding out the number of products represented

S. Segura, J. A. Parejo, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés

4. Evaluation 22

Random Testing ETHOM

#Features Avg Fitness Max Fitness Avg Time Max Time Avg Fitness Max Fitness Avg Time Max Time Score (%)

200 100.64 121.00 35.72 146.50 148.44 208.00 29.54 59.70 96
400 163.76 221.00 69.53 73.70 234.72 338.00 65.38 77.60 88
600 227.64 306.00 121.63 144.00 299.84 423.00 120.72 128.20 88
800 289.20 397.00 188.85 201.30 390.36 546.00 188.87 199.40 88

1000 316.88 463.00 270.38 316.10 504.88 703.00 287.44 313.20 100

Total 219.62 463.00 137.22 316.10 315.65 703.00 138.39 313.20 92

Table 7: Evaluation results on the generation of feature models maximizing execution time in a
SAT solver. CTC=10%

Random Testing ETHOM

#Features Avg Fitness Max Fitness Avg Time Max Time Avg Fitness Max Fitness Avg Time Max Time Score (%)

200 97.64 116.00 31.79 36.10 151.44 244.00 28.72 33.60 100
400 164.36 211.00 75.18 83.20 230.28 406.00 691.72 76.90 92
600 219.36 285.00 12.61 133.90 303.36 408.00 126.80 137.30 84
800 278.44 398.00 198.87 210.60 317.24 399.00 197.79 224.40 84

1000 321.80 457.00 282.14 291.60 422.32 582.00 299.70 312.00 84

Total 216.32 457.00 120.12 291.60 284.93 582.00 268.95 312.00 88.8

Table 8: Evaluation results on the generation of feature models maximizing execution time in a
SAT solver. CTC=20%

Random Testing ETHOM

#Features Avg Fitness Max Fitness Avg Time Max Time Avg Fitness Max Fitness Avg Time Max Time Score (%)

200 92.96 116 33.16 35.00 146.52 257.00 28.95 37.40 100
400 131.72 164 78.48 84.60 190.84 252.00 74.12 83.00 100
600 176.24 229 134.12 150.30 252.64 356.00 133.52 143.40 92
800 218.04 276 207.63 247.40 257.36 388.00 212.49 256.50 72

1000 227.4 280 297.06 315.00 271.48 395.00 311.38 334.30 80

Total 169.27 280.00 150.09 315.00 223.77 395.00 152.09 334.30 88.8

Table 9: Evaluation results on the generation of feature models maximizing execution time in a
SAT solver. CTC=30%

Random Testing ETHOM

#Features Avg Fitness Max Fitness Avg Time Max Time Avg Fitness Max Fitness Avg Time Max Time Score (%)

200 79.96 130 35 39.1 133.52 181 30 33.1 100
400 108.88 147 82.34 87.5 174.88 244 78 85.7 96
600 137.08 190 140 149.1 184.12 298 141 157.6 92
800 145.28 206 217.64 242.8 181.96 334 223 257.6 72

1000 145.68 216 310 320.5 150.92 214 328 364

Total 117.8 206 118.661 242.8 168.62 334 118.018 257.6 90

Table 10: Evaluation results on the generation of feature models maximizing execution time in
a SAT solver. CTC=40%

S. Segura, J. A. Parejo, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés

4. Evaluation 23

by the model. We chose this analysis operation because it is the hardest one in terms
of complexity and it is currently the second operation most quoted in the literature [10].
We decided to use a BDD-based reasoner for this experiment since it has proved to be
the most efficient option to perform this operation in terms of time [10]. A Binary Deci-
sion Diagram (BDD) solver is a software package that takes a propositional formula as
input and translates it into a graph representation (the BDD itself) that provides efficient
algorithms for counting the number of possible solutions. The number of nodes of the
BDD is a key aspect since it determines the consumption of memory and can be expo-
nential in the worst case [40]. Next, we present the setup and results of our experiment.

Experimental setup. The experiment consisted of a number of iterative steps. At each
step, we generated 5,000 random models and compiled each of them into a BDD for
counting the number of solutions measuring its size. We then executed our evolutionary
program and allowed it to run for 5,000 executions of the fitness function looking for
feature models maximizing the size of the BDD and compared the results. Again, this
process was repeated with different combination of features, {50, 100, 150, 200, 250}
and percentage of constraints, {10%, 20%, 30%} to evaluate the scalability of our ap-
proach. For each size of the model, we repeated the process 25 times to get statistics
from the data. In total, we performed 3.75 million executions of the fitness function for
this experiment. We may remark that we generated smaller feature models than those
presented in previous experiment in order to reduce BDD building time and make the
experiment affordable. Measuring memory usage in Java is difficult and computation-
ally expensive since memory profilers usually add a significant overload to the system.
To simplify the fitness function, we decided to measure the fitness of a model as the
number of nodes of the BDD representing it. This is a natural option used in the re-
search community to compare the space complexity of BDD tools and heuristics [40].
For the analysis, we used the solver JavaBDD integrated into the feature model analysis
tool SPLOT. We chose SPLOT because it integrates highly efficient ordering heuristics
specifically designed for the analysis of feature models using BDDs. In particular, we
used the heuristic ‘Pre-CL-MinSpan’ presented by Mendonca et al. in [40]. As in our
previous experiment, we set a maximum timeout of 30 minutes for the fitness function
to prevent the experiment from getting stuck when finding too good solutions. After all
the executions, we measured the compilation and execution time of the hardest feature
models found for a more detailed comparison, i.e. those producing a largest BDD. Each
optimal solution was compiled and executed 10 times to get average times.

Analysis of results. Fig. 10 depicts the effectiveness of ETHOM for each size range of
the feature models generated, i.e. percentage of times (out of 25) in which evolution-
ary search found feature models producing higher memory consumption than random
models. As illustrated, the effectiveness of ETHOM was over 96% in most of the cases
reaching 100% in 10 out of the 15 size ranges. The lowest percentages were registered
in the range of 250 features. When analysing the results, we concluded that this was not
a limitation but a proof of the quality of the solutions found. In particular, we found that
timeout of 30 minutes was reached frequently in the range of 250 features hindering
ETHOM from evolving toward promising solutions. In other words, the feature model
generated were so hard that they often took more than 30 minutes to be analyzed and

S. Segura, J. A. Parejo, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés

4. Evaluation 24

Figure 10: Effectiveness of ETHOM in Experiment #2.

were discarded. In fact, the maximum timeout was reached 18 times during random
generation and 62 times during evolutionary search, 25 of them in the range of 250
features and 30% of constraints. In this size range, ETHOM exceeded the timeout af-
ter only 7 generations on average (25 being the maximum). Overall, ETHOM found
feature models producing higher memory consumption than random models in 94.4%
of the executions. The results suggest, however, that increasing the maximum timeout
would increase the effectiveness significantly.

Table 11 depicts the number of BDD nodes of the hardest feature models found using
random and evolutionary search. For each size range, the table also shows the compu-
tation time (BDD building time + execution time) invested by SPLOT to analyse the
model. As illustrated, ETHOM found higher maximum values than random techniques
in all size ranges. On average, the BDD size found by our evolutionary approach was be-
tween 1.03 and 10.3 times higher than those obtained with random models. The largest
BDD generated from random models had 14.8 million nodes while the largest BDD
obtained using ETHOM had 20.6 million nodes. Again, results revealed that ETHOM
was able to find smaller but harder models (e.g. 150-30%, 17.7 million nodes) than
the hardest random model found, 250-30% 14.8 million nodes. We may recall that the
maximum timeout was reached 62 times during the execution of ETHOM. This result
suggests that the maximum found by evolutionary search would have been much higher
if we would not have limited the time to make the experiment affordable. As expected,
the superiority of ETHOM was also observed in the computation times required by each
model to be compiled and analysed. This suggests that our approach can also deal with
optimization criteria involving compilation time in BDD solvers.

10% CTC 20% CTC 30% CTC

Random Evolutionary Random Evolutionary Random Evolutionary

#Features BDD size Time BDD Size Time BDD size Time BDD Size Time BDD size Time BDD Size Time

50 781 0 1,963 0 2,074 0 8,252 0.01 2,455 0.01 10,992 0.01
100 7,629 0.01 20,077 0.02 33,522 0.03 161,157 0.20 95,587 0.08 419,835 0.73
150 65,627 0.10 188,985 0.31 374,675 0.91 3,060,590 12.80 673,410 1.28 11,221,303 24.22
200 203,041 0.09 924,832 0.86 2,735,005 4.34 19,698,780 75.05 3,394,435 58.22 23,398,161 380.52
250 1,720,983 3.69 7,170,121 25.94 25,392,597 82.28 27,970,630 253.32 20,579,015 343.72 22,310,416 431.62

Table 11: BDD size and computation time of the hardest feature models found using random
techniques and our evolutionary program.

Fig. 11 shows the frequency with which each fitness value was found during the
search of a feature model producing the largest BDD. The data presented corresponds

S. Segura, J. A. Parejo, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés

4. Evaluation 25

Figure 11: Histograms with the distribution of fitness values for random and evolutionary tech-
niques when searching for a feature model maximizing the size of the BDD.

to the hardest feature models generated in the range of 50 features and 10% of cross-
tree constraints. We chose this size range because it produced the smallest BDD sizes
and facilitated the comparison of the results of both techniques using the same scale.
For random models (Fig. 11(a)), a narrow Gaussian-like curve is obtained with more
than 99% of the executions producing fitness values under 310 BDD nodes. During
evolutionary execution (Fig. 11(b)), however, a wider curve is obtained with 40% of
the execution producing values over 310 nodes. Both histograms clearly show how
evolutionary programming performed a more exhaustive search in a larger portion of
the solution space than that explored by random models. This trend was also observed
in the rest of size ranges.

S. Segura, J. A. Parejo, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés

4. Evaluation 26

4.3. Experiment #3: Evaluating the impact of the number of
generations

During the work with ETHOM, we detected that the maximum number of generations
used as stop criterion had a great impact in the results of the algorithm. In this ex-
periment, we evaluated that impact with a double aim. First, we tried to find out the
minimum number of generations required by ETHOM to offer better results than ran-
dom techniques on the search of hard feature models. Second, we wanted to find out
whether ETHOM was able to find even harder models than in our previous experiments
when allowed to run for a large number of generations. Next, we present the setup and
results of our experiment.

Experimental setup. We repeated Experiments #1 and #2 using different number of
generations from 10 to 25, 50, 75, 100 and 125. To make the experiments affordable,
we used a fixed size for the models being generated. In particular, we searched for: i)
feature models with 500 features and 20% CTCs maximizing the number of backtracks
in the CSP solver JaCoP, and ii) feature models with 100 features and 20% CTCs max-
imizing the number of BDD nodes in JavaBDD. In total, we performed over 7.5 million
executions of the fitness functions for this experiment. A timeout of 30 minutes was
used for all the executions.

Analysis of results. Table 12 depicts the results for this experiments. For each num-
ber of generations (i.e. stop criterion), the maximum fitness and the effectiveness of
both random and evolutionary search are presented. The results revealed that the effec-
tiveness of ETHOM was around 96% (CSP solver) and 100% (BDD solver) when the
number of generations was 25 or higher. More importantly, we found that the results
provided by evolutionary search were better and better as the number of generations
was increased without reaching a clear peak meanwhile the results of random search
showed little or no improvement at all. In the execution with the CSP solver, ETHOM
produced a new maximum fitness of more than 77 million backtracks meanwhile ran-
dom search found a maximum value of only 1,603 backtracks. Similarly, the maximum
random fitness produced in our experiment with BDD was 89,779 nodes, far from the
best fitness obtained by our evolutionary program, 22.7 million nodes. Finally, we may
emphasize that the maximum number of BDD nodes found by ETHOM in the range of
125 generations (22.2 million nodes) was 120 times higher than the maximum obtained
when using 25 generations as stop criterion (185,203 nodes). This shows the power of
ETHOM when it is allowed to run for a long number of generations.

CSP Solver (fitness=#backtracks) BDD Solver (fitness=#BDD nodes)

#Generations Random Fitness ETHOM Fitness Score (%) Random Fitness ETHOM Fitness Score (%)

10 1,603 258 84 36,975 46,023 92
25 588 34,185 96 33,876 185,203 100
50 234 1,123,030 96 89,779 1,531,579 100
75 573 25,603,183 96 66,950 10,831,443 100
100 917 15,085,200 92 38,267 22,714,010 100
125 438 77,635,583 96 80,101 22,237,169 100

Max 1,603 77,635,583 96 89,779 22,714,010 100

Table 12: Maximum fitness values obtained in Experiment #3

S. Segura, J. A. Parejo, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés

4. Evaluation 27

4.4. Experiment #4: Evaluating the generalizability of
hardness of Feature Models

In this experiment, we checked whether the hard feature models generated by ETHOM-
for a specific tool and configurarion were also hard for other tools and heuristics. In
particular, we first checked whether the hardest feature models found in Experiment 1
using a CSP solver were also hard when using a SAT solver. The results showed, as
expected, that all models were trivially analyzed in a few seconds. Then, we repeated
the analysis of the hardest feature models found in Experiment 1 using the other seven
heuristics available in the CSP solver JaCoP. This last experiment is described in detail
in this section.
Experimental setup. In this expecirment we fixed the value generation heurisitic of the
CSP solver JaCoP to “IndomainMin”, and repeated the analysis of the hardest feature
models found in Experiment 1 using the other seven heuristics available for variable
selection, {MaxRegret, LargestMin, SmallestMax, MostConstrainedDynamic,
SmallestMin, MinDomainOverDegree, LargestDomain,SmallestDomain}. A
timeout of 30 minutes was used for all executions.

Features % CTC Variable Selection Heuristic
MaxRegret LargestMin SmallestMax MostConstrainedDynamic SmallestMin MinDomainOverDegree LargestDomain SmallestDomain

200 10 383645.0 1,65E+14 383645.0 361.0 383645.0 361.0 Ex. time > 3600 383645.0
200 20 56.0 3043.0 56.0 215.0 56.0 215.0 65987.0 56.0
200 30 Ex. time > 3600 Ex. time > 3600 Ex. time > 3600 8069.0 Ex. time > 3600 8069.0 Ex. time > 3600 Ex. time > 3600
200 40 200.0 602.0 200.0 959.0 200.0 959.0 417858.0 200.0
400 10 159652.0 Ex. time > 3600 159652.0 7871.0 159652.0 7871.0 Ex. time > 3600 159652.0
400 20 5.0 6.0 5.0 106655.0 5.0 106655.0 Ex. time > 3600 5.0
400 30 649.0 Ex. time > 3600 649.0 21696.0 649.0 21696.0 Ex. time > 3600 649.0
400 40 Ex. time > 3600 Ex. time > 3600 Ex. time > 3600 987.0 Ex. time > 3600 987.0 Ex. time > 3600 Ex. time > 3600
600 10 1.0 11.0 1.0 1780227.0 1.0 1780227.0 Ex. time > 3600 1.0
600 20 2507.0 1407.0 2507.0 116479.0 2507.0 116479.0 Ex. time > 3600 2507.0
600 30 1.0 5.0 1.0 214536.0 1.0 214536.0 Ex. time > 3600 1.0
600 40 13.0 17542.0 13.0 77181.0 13.0 77181.0 Ex. time > 3600 13.0
800 10 43.0 3205.0 43.0 5316995.0 43.0 5316995.0 Ex. time > 3600 43.0
800 20 39.0 2897.0 39.0 483971.0 39.0 483971.0 Ex. time > 3600 39.0
800 30 Ex. time > 3600 Ex. time > 3600 Ex. time > 3600 174361.0 Ex. time > 3600 174361.0 Ex. time > 3600 Ex. time > 3600
800 40 1.0 1.0 1.0 4299.0 1.0 4299.0 Ex. time > 3600 1.0

1000 10 Ex. time > 3600 Ex. time > 3600 Ex. time > 3600 2,95E+14 Ex. time > 3600 2,95E+14 Ex. time > 3600 Ex. time > 3600
1000 20 Ex. time > 3600 Ex. time > 3600 Ex. time > 3600 2,36E+14 Ex. time > 3600 2,36E+14 Ex. time > 3600 Ex. time > 3600
1000 30 Ex. time > 3600 Ex. time > 3600 Ex. time > 3600 15372.0 Ex. time > 3600 15372.0 Ex. time > 3600 Ex. time > 3600
1000 40 1093.0 2090.0 1093.0 949.0 1093.0 949.0 Ex. time > 3600 1093.0

Table 13: Number of backtracks generated in the analysis of the hardest FMs of Exp. 1 with
diffferent variable selection heuristics in JaCoP

Analysis of results. Table 13 shows the number of backtracks generated in the analysis
of the hardest FMs of Exp. 1 with diffferent variable selection heuristics in JaCoP. The
two first columns of this table indentify the feature model used for the analysis in this
row. For instance, the feature model used in the first data row was the hardest obtained
in experiment 1 with 200 feature and 10% of CTC. The results have shown that the
hardest feature models found in our experiment, using the heuristic “MostConstrained-
Dynamic”, were trivially solved by some of the others heuristics. This finding supports
our working hypothesis: feature models that are hard to analyse by one tool or technique
could be trivially processed by others and vice-versa. Hence, we conclude that using
standard set of problems, random or not, is therefore not sufficient for a full evaluation
of the performance of different tools. Instead, as in our approach, the characteristics of
the techniques and tools under evaluation must be carefully examined to identify their
strengths and weaknesses providing helpful information for both users and developers.
Hence, for instance, the hardest model in the range of 800 features and 10% CTC pro-
duced 5.3 million backtracks when usingthe heuristic “MostConstrainedDynamic’’, and
only 43 backtracks when using the heuristic “SmallestMin”.

S. Segura, J. A. Parejo, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés

4. Evaluation 28

4.5. Discussion
As a part our evaluation, we also studied the characteristics of the hardest feature mod-
els generated using our evolutionary approach in the experiments with CSP, SAT and
BDD solvers, presented in Table 14. The data reveals that the models generated have
a fair proportion of all different relationships and constraints. This is interesting since
ETHOM was free to remove any type of relationship or constraints from the model if
this helped to make it harder, but this did not happen in our experiments. We recall that
the only constraints imposed by our algorithm are those regarding the number of fea-
tures, number of constraints and maximum branching factor. Another piece of evidence
is that differences between the minimum and maximum percentages of each modelling
element are considerably small. More importantly, the average percentages found are
very similar to those of feature models found in the literature. In [52], She et al. stud-
ied the characteristic of 32 published feature models and reported that they contain, on
average, 25% of mandatory features (between 17.1% and 27.9% in our models), 44%
of set subfeatures (between 37.0% and 46.3% in our models), 16% of set relationships
(between 13.8% and 16.1% in our models), 6% of or-relationships (between 7.0% and
8.9% in our models) and 9% of alternative relationships (between 6.7% and 7.2% in
our study). As a result, we conclude that the models generated by our algorithm are
by no means unrealistic. On the contrary, in the context of our study, they are a fair
reflection of the realistic models found in the literature. This suggests that the long ex-
ecution times and high memory consumption detected by ETHOM could be therefore
reproduced when using real models with the consequent negative effect in the user.

CSP Solver SAT Solver BDD Solver

Modelling element Min Avg Max Min Avg Max Min Avg Max

% relative to no. of features
Mandatory 25.3 27.9 31.0 20.0 25.1 28.0 10.0 17.1 24.8
Optional 27.5 34.9 45.0 30.5 36.9 44.0 18.0 35.7 46.5
Set subfeatures 29.0 37.0 41.5 31.0 37.8 45.5 34.5 46.3 62.0
Set relationships 11.0 14.1 16.0 12.0 13.8 15.3 13.3 16.1 20.0

- Or 5.5 7.0 9.0 5.5 7.1 8.3 6.0 8.9 12.0
- Alternative 5.5 7.1 8.5 4.0 6.7 8.8 3.3 7.2 10.0

% relative to no. of constraints
Requires 31.3 47.5 56.6 41.1 51.9 68.4 31.0 48.5 64.3
Excludes 43.4 52.5 68.8 31.6 48.1 58.9 35.7 51.5 69.0

Table 14: Statistics of the hardest feature models found in our experiments.

4.6. Statistical Analysis
The goal of statistical analysis is to provide formal and quantitative evidences showing
that the algorithm works and that the results were not obtained by mere chance. In fact,
this type of analysis is considered mandatory in fields such as data mining and bio-
informatics with a long experience in the analysis of experimental data. The statistical
analysis of the data was performed using the SPSS 17 statistical package [25].

S. Segura, J. A. Parejo, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés

5. Threats to validity 29

Statistical analysis is usually performed by formulating two contrary hypothesis. The
first hypothesis is referred to as null hypothesis (H i

0) and assume that the algorithm has
no impact at all on the goodness of the results obtained, i.e. there is no difference be-
tween our algorithm and random search. Opposite to the null hypothesis, an alternative
hypothesis (H i

1) is formulated, stating that the algorithm has a significant effect in the
quality of the results obtained. Statistical tests provide a probability (named p-value)
ranging in [0,1]). The lower the p-value of a test is, the more likely that the null hypoth-
esis is false and the alternative hypothesis is true, i.e. the algorithm works. Alternatively,
high p-values indicates more chances of the null hypothesis being true i.e. the algorithm
does not work. Researchers have established by convention that p-values under 0.05 or
0.01 are so-called statistically significant and are sufficient to reject the null hypothesis,
i.e. prove that the algorithm is actually working.

The techniques used to perform the statistical analysis and obtain the p-values depend
on whether the data follow a normal frequency distribution or not. The former assumes
that data has come from a type of probability distribution and makes inferences about
the parameters. The latter makes no assumptions at all. After some preliminary tests
(Kolmogorov-Smirnov [30, 54] and Shapiro-Wilk [51] tests) we concluded that our data
did not follow a normal distribution and thus our tests required the use of so-called non–
parametric techniques. In particular, we applied the Mann-Withney U non–parametric
test [35] to the experimental results obtained with our evolutionary algorithm and ran-
dom search. Tables 17 and 18 show the results of these tests in SPSS for the experiments
#1 and #2 respectively. For each number of features and percentage of cross-tree con-
straints, the values of the test are provided. As illustrated, tests rejected null hypotheses
with extremely low p-values (zero in most of the cases) for nearly all experimental
configurations of both experiments. This, coupled with the results shown in previous
sections, clearly shows the great superiority of our algorithm when compared to ran-
dom search. Only when the percentage of cross tree constraints (CTC) was 10% in
Experiment #1, statistical test accepted some null hypotheses. As explained in Section
5, this problem is due to the small complexity of the analysis on those models. This
problem makes our fitness landscape extremely flat, with scarce and disperse points of
high fitness, where a random algorithm can find solutions nearly as good as those found
by our evolutionary algorithm. In experiment #2 all null hypotheses where rejected ex-
cept for the last one. In this last hypothesis, the number of features, and percentage
of cross tree constraints becomes bigger, and consequently it is easier for the random
algorithm find hard feature models. Moreover, as described in section 4.2, in this case
the maximum timeout of 30 minutes was reached frequently hindering the evolution-
ary program from evolving toward promising solutions. This effect gives the random
algorithm more chance to find solutions similar to those obtained with ETHOM.

For more details about statistical tests and their meaning we refer the reader to [59].

5. Threats to validity
In order to clearly delineate the limitations of the experimental study, next we discuss
internal and external validity threats [29].

S. Segura, J. A. Parejo, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés

5. Threats to validity 30

Internal validity. This refers to whether there is sufficient evidence to support the con-
clusions and the sources of bias that could compromise those conclusions. In order to
ensure internal validity of the experimental approach, experiments were performed in
a randomized order and were replicated 25 times for each experimental configuration.
Moreover, statistical tests were performed to ensure significance of the differences iden-
tified between the results obtained using random and evolutionary search. Finally, the
experiments were executed in a cluster of virtual machines running in a powerful cloud
of servers for computing-intensive tasks which provided us with a stable and efficient
experimental platform.

External validity. This is concerned with how the experiments capture the objectives
of the research and the extent to which the conclusions drawn can be generalized. This
can be mainly divided into:

• Limitations of the approach. Experiments showed no significant improvements
when using ETHOM with problems of low complexity, i.e. feature models with
10% of constraints in Experiment #1. As stated in section 4.1, this limitation is
due to the extremely flat shape of fitness landscape found in simple problems in
which most fitness values are equal or close to zero. Another limitation of the
experimental approach is that experiments for extremely hard feature models be-
come too time consuming, e.g. feature models with 250 features in Experiment
#2. This threat is caused by the nature of hard feature models we intend to find.
As the analysis of those promising feature models becomes more time consuming
and memory intensive, evaluating fitness function becomes a difficult task leading
to a collapse in the experiment or to a nearly nil advance of the experiment exe-
cution along time. We may remark, however, that this limitation is intrinsic to the
problem of looking hard feature models and thus it equally affects random search.
Finally, we emphasize that in the worst case ETHOM behaves randomly equalling
the strategies for the generation of hard feature models used in the current state of
the art.

• Generalizability of the conclusions. In our experiments, we used two different
analysis operations which could seem not to be sufficient to generalize the con-
clusions of our study. We remark, however, that these operations are currently the
most quoted in the literature, have significantly different complexity and, more
importantly, are the basis for the implementation of many other analysis opera-
tions on feature models [10]. Thus, feature models that are hard to analyze for
these operations would certainly be hard to analyze for those operations that use
them as an auxiliary function making our results extensible to other analyses.
Similarly, we just used two different analysis tools for the experiments, FaMa
and SPLOT. However, these tools are developed and maintained by independent
laboratories providing a sufficient degree of heterogeneity for our study. Finally,
the results revealed that the properties of the hard feature models generated are
similar to those models found in the literature and therefore there is little threat to
validity due to the lack of realism of the generated models.

S. Segura, J. A. Parejo, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés

6. Related work 31

6. Related work
A number of authors have used realistic feature models to evaluate and show the per-
formance of their tools [7, 8, 9, 12, 23, 27, 40, 39, 57, 61]. By realistic models we
intend those modelling real–world domains or a simplified version of them. Some of
the realistic feature models most quoted in the literature are e-Shop [32] with 287 fea-
tures, graph product line [34] with up to 64 features and BerkeleyDB [28] with 55
features. Although there are reports from the industry of feature models with hundreds
or even thousands of features [6, 33, 56], only a portion of them is typically published.
This has led authors to generate feature models automatically to show the scalability
of their approaches with large problems. These models are generated either randomly
[12, 11, 20, 38, 42, 47, 64, 65, 66, 67, 68] or trying to imitate the properties of the
realistic models found in the literature [22, 39, 57]. More recently, some authors have
suggested looking for tough and realistic feature models in the open source commu-
nity [13, 19, 52, 53]. As an example, She et al. [52] extract a feature model from the
Linux kernel containing more than 5,000 features and compare it with publicly available
realistic feature models.

Fig. 12 summarizes the number of related works using realistic and automatically
generated models as well as those extracted from other variability domains per each
year2. For each type of model, we also show the number of features of the largest fea-
ture model for each year. As illustrated, first works back in 2004 and 2005 used small
realistic feature models in their experiments. However, since 2006, far more automat-
ically generated feature models than realistic ones have been used. Regarding the size
of the problems, there is a clear ascendant tendency ranging from the model with 15
features used in 2004 to models with 10,000 and 20,000 features used in the last years.
These findings reflect an increasing concern to evaluate and compare the performance
of different solutions using complex feature models. This also suggests that the only
known mechanism to increase the complexity of the models is by increasing its size.
When compared to previous works, our approach is the first one using a search–based
strategy to exploit the internal weaknesses of the tools and techniques under evalua-
tion rather than simply using large random models. This allows developers to focus on
the search for tough models of realistic size that could reveal deficiencies in their tools
rather than using huge feature models out of their scope. Similarly, users could have
more information about the expected behaviour of the tools in pessimistic cases helping
them to choose the tool or technique that better adapts to their needs.

Regarding related works with evolutionary algorithms, Wegener et al. [62] were the
first ones using genetic algorithms to search for input situations that produce very long
or very short execution times in the context of real time systems. In their experiments,
they used C programs receiving hundreds or even thousands of integer input param-
eters. Their results showed that genetic algorithms obtained more extreme execution
times with equal or less testing effort than random testing. Many authors continued
the work of Wegener in the application of metaheuristic search techniques to test non-
functional properties such as execution time, quality of service, security, usability or
safety. For a detailed survey of these works we refer the reader to [2]. Our approach

2Until August 2011

S. Segura, J. A. Parejo, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés

6. Related work 32

Figure 12: Type and maximum size of the feature models used in experimentation for each year

may be considered a specific application of the ideas of Wegener and later authors to the
domain of feature modelling. In this sense, our main contribution is the development
and configuration of a novel evolutionary algorithm to deal with optimization problems
on feature models and its application to performance testing in this domain.

The application of genetic algorithms to the context of software product lines was
explored by Guo et al. [22]. In their work, the authors proposed a genetic algorithm
called GAFES for optimized feature selection in feature models, e.g. selecting the set
of features that minimizes the total cost of the product. Compared to their work, our ap-
proach differs in several aspects. First, our work addresses a different problem domain,
hard feature model generation. Second, ETHOM produces optimum feature models
meanwhile GAFES produces optimum product configurations. This means that both al-
gorithms bear no resemblance and face different challenges. For instance, GAFES uses
a standard binary encoding to represent product configurations meanwhile ETHOM uses
a custom array encoding to represent feature models of fixed size.

Pohl et al. [44] presented a performance comparison of nine CSP, SAT and BDD
solvers on the automated analysis of feature models. As input problems, they used 90
realistic feature models with up to 287 features taken from the SPLOT repository [55].
The longest execution time found in the consistency operation was 23.8 seconds, far
from the 27.5 minutes found in our work. Memory consumption was not evaluated.
As a part of their work, the authors tried to find correlations between the properties of
the models and the performance of the solvers. Among other results, they identified an
exponential runtime increase with the number of features in CSP and SAT solvers. This
is not supported by our results, at least not in general, since we found feature models
producing much longer execution times than random models of larger size. Also, the
authors mentioned that SAT and CSP solvers provided a similar performance in their
experiment. This was not observed in our work in which the SAT solver showed to
be much more efficient than the CSP solver, i.e. ETHOM was not able to find hard
problems for SAT. Overall, we consider that using realistic feature model is helpful but
not sufficient to understand the true nature of solvers. In contrast, our work provides the
community with a limitless source of motivating problems to exploit the strengths and
weaknesses of analysis tools.

Finally, we would like to remark that our approach does not intend to replace the
usage of realistic or random models which have proved to be adequate to evaluate the

S. Segura, J. A. Parejo, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés

7. Conclusions and future work 33

average performance of analysis techniques. Instead, our work complements previous
approaches enabling a more exhaustive evaluation of the performance of analysis tools
using hard problems.

7. Conclusions and future work
In this paper, we presented ETHOM, a novel evolutionary algorithm to solve optimiza-
tion problems on feature models and showed how it can be used for the automated gen-
eration of computationally–hard feature models. Experiments using our evolutionary
approach on different analysis operations and independent tools successfully identified
input models producing much longer executions times and higher memory consumption
than random models of identical or even larger size. In total, more than 50 million exe-
cutions of analysis operations were performed to configure and evaluate our approach.
When compared to previous works, our approach is the first one using a search-based
strategy to exploit the internal weaknesses of the tools and techniques under evaluation
rather than simply using large-scale random models. This allows developers to focus on
the search of tough models of realistic size that could reveal deficiencies in their tools
rather than using huge feature models out of their scope. Similarly, users are provided
with more information about the expected behaviour of the tools in pessimistic cases
helping them to choose the tool or technique that better meets their needs. Contrary to
general belief, we found that the size of the models has an important impact, but not de-
cisive, in the performance of analysis tools. Also, we found that the hard feature models
generated by ETHOM had similar properties to the realistic models found in the litera-
ture. This means that the long execution times and high memory consumption detected
by our algorithm could be therefore reproduced in real scenarios with the consequent
negative effect in the user. In view of the positive results obtained, we expect this work
to be the first of many other research contributions exploiting the benefits of ETHOM in
particular and evolutionary computation in general on the analysis of feature models. In
particular, we envision two main research directions to be explored by the community
in the future, namely:

• Algorithms development. The combination of different encodings, selection
techniques, crossover strategies, mutation operators and other parameters may
lead to a whole new variety of evolutionary algorithms for feature models to be
explored. Also, the development of more flexible algorithms would be desirable
in order to deal with other feature modelling languages (e.g. cardinality-based
feature models) or stricter structural constraints, e.g. enabling the generation of
hard models with a given percentage of mandatory features. Also, the generation
of feature models with complex cross-tree constraints (those involving more than
two features) remains as an open challenge.

• Applications. Further applications of our algorithm are still to be explored. Some
promising applications are those dealing with the optimization of non–functional
properties in other analysis operations or even different automated treatments (e.g.
feature models refactorings). The application of our algorithm to minimization

S. Segura, J. A. Parejo, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés

8. Acnowledgements* 34

problems is also an open issue in which we have started to obtained promising re-
sults. Additionally, it would be nice to apply our approach to verify the time con-
straints of real time systems dealing with variability like those of mobile phones
or context–aware pervasive systems. Last, but not least, we plan to study the hard
feature models generated and try to understand what make them hard to analyse.
From the information obtained, more refined applications and heuristics could
be developed leading to a more efficient tool support for the analysis of feature
models.

A Java implementation of ETHOM is ready-to-use and publicly available as a part of
the open-source BeTTy Framework [14].

8. Acnowledgements*
We would like to thank Dr. J.C. Riquelme, Dr. D. Batory, Dr. J. Dolado and Dr. J. Tuya
whose comments and suggestions helped us to improve the article substantially. We
would also like to thank Dr. M. Mendonca for kindly sending us a standalone version
of SPLOT to be used in our evaluation.

This work has been partially supported by the European Commission (FEDER) and
Spanish Government under CICYT project SETI (TIN2009-07366) and the Andalusian
Government projects ISABEL (TIC-2533) and THEOS (TIC-5906).

http://www.micinn.es/

http://www.juntadeandalucia.es/organismos/economiainnovacionyciencia.html

References
[1] D.H. Ackley. A connectionist machine for genetic hillclimbing. Kluwer Academic

Publishers, Norwell, MA, USA, 1987.

[2] W. Afzal, R. Torkar, and R. Feldt. A systematic review of search-based test-
ing for non-functional system properties. Information and Software Technology,
51(6):957–976, 2009.

S. Segura, J. A. Parejo, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés

http://www.micinn.es/
http://www.juntadeandalucia.es/organismos/economiainnovacionyciencia.html

References 35

[3] AHEAD Tool Suite. http://www.cs.utexas.edu/users/schwartz/
ATS.html, accessed January 2012.

[4] T. Back, D.B Fogel, and Z. Michalewicz, editors. Handbook of Evolutionary Com-
putation. IOP Publishing Ltd., Bristol, UK, UK, 1997.

[5] D. Batory. Feature models, grammars, and propositional formulas. In Software
Product Lines Conference (SPLC), volume 3714 of Lecture Notes in Computer
Sciences, pages 7–20. Springer–Verlag, 2005.

[6] D. Batory, D. Benavides, and A. Ruiz-Cortés. Automated analysis of feature mod-
els: Challenges ahead. Communications of the ACM, December:45–47, 2006.

[7] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Coping with automatic reasoning
on software product lines. In Proceedings of the 2nd Groningen Workshop on
Software Variability Management, November 2004.

[8] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Automated reasoning on feature
models. In 17th International Conference on Advanced Information Systems En-
gineering (CAiSE), volume 3520 of Lecture Notes in Computer Sciences, pages
491–503. Springer–Verlag, 2005.

[9] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Using constraint programming to
reason on feature models. In The Seventeenth International Conference on Soft-
ware Engineering and Knowledge Engineering (SEKE), pages 677–682, 2005.

[10] D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated analysis of feature mod-
els 20 years later: A literature review. Information Systems, 35(6):615 – 636,
2010.

[11] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés. A first step towards a
framework for the automated analysis of feature models. In Managing Variability
for Software Product Lines: Working With Variability Mechanisms, 2006.

[12] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés. Using Java CSP solvers
in the automated analyses of feature models. LNCS, 4143:389–398, 2006.

[13] T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki. Variability modeling
in the real: a perspective from the operating systems domain. In Proceedings of the
IEEE/ACM international conference on Automated software engineering, pages
73–82. ACM, 2010.

[14] BeTTy Framework. http://www.isa.us.es/betty, accessed January
2012.

[15] BigLever. Biglever software gears. http://www.biglever.com/, accessed
January 2012.

[16] P. Clements and L. Northrop. Software Product Lines: Practices and Patterns.
SEI Series in Software Engineering. Addison–Wesley, August 2001.

S. Segura, J. A. Parejo, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés

http://www.cs.utexas.edu/users/schwartz/ATS.html
http://www.cs.utexas.edu/users/schwartz/ATS.html
http://www.isa.us.es/betty
http://www.biglever.com/

References 36

[17] FaMa Tool Suite. http://www.isa.us.es/fama/, accessed January 2012.

[18] Feature Modeling Plug-in. http://gp.uwaterloo.ca/fmp/, accessed Jan-
uary 2012.

[19] J.A. Galindo, D. Benavides, and S. Segura. Debian packages repositories as soft-
ware product line models. towards automated analysis. In Proceedings of the 1st
International Workshop on Automated Configuration and Tailoring of Applications
(ACoTA), Antwerp, Belgium, 2010.

[20] R. Gheyi, T. Massoni, and P. Borba. A theory for feature models in alloy. In
Proceedings of the ACM SIGSOFY First Alloy Workshop, pages 71–80, Portland,
United States, nov 2006.

[21] D.E. Goldberg and K. Deb. A comparative analysis of selection schemes used in
genetic algorithms. 1991.

[22] J. Guo, J. White, G. Wang, J. Li, and Y. Wang. A genetic algorithm for optimized
feature selection with resource constraints in software product lines. Journal of
Systems and Software, 84:2208–2221, December 2011.

[23] A. Hemakumar. Finding contradictions in feature models. In First International
Workshop on Analyses of Software Product Lines (ASPL), pages 183–190, 2008.

[24] J.H. Holland. Adaptation in natural and artificial systems: An introductory anal-
ysis with applications to biology, control, and artificial intelligence. University of
Michigan Press, 1975.

[25] IBM. SPSS 17 Statistical Package. http://www.spss.com/, accessed
November 2010.

[26] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature–Oriented Domain
Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, SEI,
1990.

[27] A. Karatas, H. Oguztüzün, and A. Dogru. Global constraints on feature models.
In D. Cohen, editor, Principles and Practice of Constraint Programming, volume
6308 of Lecture Notes in Computer Science, pages 537–551, 2010.

[28] C. Kastner, S. Apel, and D. Batory. A case study implementing features using
AspectJ. In SPLC ’07: Proceedings of the 11th International Software Product
Line Conference, pages 223–232, Washington, DC, USA, 2007. IEEE Computer
Society.

[29] B.A. Kitchenham, S.L. Pfleeger, L.M. Pickard, P.W. Jones, D.C. Hoaglin,
K. Emam, and J Rosenberg. Preliminary guidelines for empirical research in
software engineering. IEEE Transactions on Software Engineering, 28:721–734,
2002.

S. Segura, J. A. Parejo, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés

http://www.isa.us.es/fama/
http://gp.uwaterloo.ca/fmp/
http://www.spss.com/

References 37

[30] A. Kolmogorov. Sulla determinazione empirica di una legge di distribuzione. G.
Inst. Ital. Attuari, 4:83, 1933.

[31] J.R. Koza. Genetic programming: on the programming of computers by means of
natural selection. MIT Press, Cambridge, MA, USA, 1992.

[32] S.Q. Lau. Domain analysis of e-commerce systems using feature–based model
templates. master’s thesis. Dept. of ECE, University of Waterloo, Canada, 2006.

[33] F. Loesch and E. Ploedereder. Optimization of variability in software product
lines. In Proceedings of the 11th International Software Product Line Conference
(SPLC), pages 151–162, Washington, DC, USA, 2007. IEEE Computer Society.

[34] R.E Lopez-Herrejon and D. Batory. A standard problem for evaluating product-
line methodologies. In GCSE ’01: Proceedings of the Third International Con-
ference on Generative and Component-Based Software Engineering, pages 10–24,
London, UK, 2001. Springer-Verlag.

[35] H.B. Mann and D.R. Whitney. On a test of whether one of two random variables
is stochastically larger than the other. Ann. Math. Stat., 18:50–60, 1947.

[36] P. McMinn. Search-based software test data generation: a survey. Software Testing
Verification and Reliability., 14(2):105–156, 2004.

[37] M. Mendonca, M. Branco, and D. Cowan. S.P.L.O.T.: Software Product Lines
Online Tools. In Companion to the 24th ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA), pages 761–762, Orlando, Florida, USA, October 2009. ACM.

[38] M. Mendonca, D.D. Cowan, W. Malyk, and T. Oliveira. Collaborative product con-
figuration: Formalization and efficient algorithms for dependency analysis. Jour-
nal of Software, 3(2):69–82, 2008.

[39] M. Mendonca, A. Wasowski, and K. Czarnecki. SAT–based analysis of feature
models is easy. In Proceedings of the International Sofware Product Line Confer-
ence (SPLC), 2009.

[40] M. Mendonca, A. Wasowski, K. Czarnecki, and D.D. Cowan. Efficient compi-
lation techniques for large scale feature models. In 7th International Conference
on Generative Programming and Component Engineering (GPCE), pages 13–22,
2008.

[41] Moskitt Feature Modeler. http://www.pros.upv.es/mfm, accessed Jan-
uary 2012.

[42] A. Osman, S. Phon-Amnuaisuk, and C.K. Ho. Using first order logic to vali-
date feature model. In Third International Workshop on Variability Modelling in
Software-intensive Systems (VaMoS), pages 169–172, 2009.

S. Segura, J. A. Parejo, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés

http://www.pros.upv.es/mfm

References 38

[43] José Antonio Parejo, Pablo Fernandez, and An. Qos-aware services composition
using tabu search and hybrid genetic algorithms. In Proceeding of the workshops
of the JISB2008, volume 2, pages 55–66, 2008. ISSN: 1988-3455.

[44] R. Pohl, K. Lauenroth, and K. Pohl. A performance comparison of contemporary
algorithmic approaches for automated analysis operations on feature models. In
26th International Conference on Automated Software Engineering, pages 313–
322. IEEE, 2011.

[45] pure::variants. http://www.pure-systems.com/, accessed January 2012.

[46] P. Schobbens, P. Heymans, J. Trigaux, and Y. Bontemps. Feature Diagrams: A
Survey and A Formal Semantics. In Proceedings of the 14th IEEE International
Requirements Engineering Conference (RE’06), Minneapolis, Minnesota, USA,
September 2006.

[47] S. Segura. Automated analysis of feature models using atomic sets. In First Work-
shop on Analyses of Software Product Lines (ASPL), pages 201–207, Limerick,
Ireland, September 2008.

[48] S. Segura, R.M. Hierons, D. Benavides, and A. Ruiz-Cortés. Automated test data
generation on the analyses of feature models: A metamorphic testing approach. In
International Conference on Software Testing, Verification and Validation, pages
35–44, Paris, France, 2010. IEEE press.

[49] S. Segura, J.A. Parejo, R.M. Hierons, D. Benavides, and A. Ruiz-Cortés. ETHOM:
An evolutionary algorithm for optimized feature models generation (v1.1). Tech-
nical Report ISA-2012-TR-01, Applied Software Engineering Research Group,
Seville, Spain, 2012.

[50] S. Segura and A. Ruiz-Cortés. Benchmarking on the automated analyses of feature
models: A preliminary roadmap. In Third International Workshop on Variability
Modelling of Software-intensive Systems, pages 137–143, Seville, Spain, 2009.

[51] S. S. Shapiro and M. B. Wilk. An analysis of variance test for normality (complete
samples). Biometrika, 52(3/4):pp. 591–611, 1965.

[52] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki. The variability
model of the linux kernel. In Fourth International Workshop on Variability Mod-
elling of Software-intensive Systems (VaMoS), Linz, Austria, January 2010.

[53] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki. Reverse engineering
feature models. In Proceeding of the 33rd International Conference on Software
Engineering, pages 461–470. ACM, 2011.

[54] N. V. Smirnov. Tables for estimating the goodness of fit of empirical distributions.
Annals of Mathematical Statistic, 19:279, 1948.

[55] S.P.L.O.T.: Software Product Lines Online Tools. http://www.
splot-research.org/, accessed January 2012.

S. Segura, J. A. Parejo, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés

http://www.pure-systems.com/
http://www.splot-research.org/
http://www.splot-research.org/

References 39

[56] M. Steger, C. Tischer, B. Boss, A. Müller, O. Pertler, W. Stolz, and S. Ferber.
Introducing PLA at Bosch gasoline systems: Experiences and practices. In Inter-
national Sofware Product Line Conference (SPLC), pages 34–50, 2004.

[57] T. Thüm, D. Batory, and C. Kästner. Reasoning about edits to feature models. In
International Conference on Software Engineering, pages 254–264, 2009.

[58] Edward Tsang. Foundations of Constraint Satisfaction. Academic Press, 1995.

[59] I. Valiela. Doing science: design, analysis, and communication of scientific re-
search. Oxford University Press New York, 2001.

[60] S. Voß. Meta-heuristics: The state of the art. In ECAI ’00: Proceedings of the
Workshop on Local Search for Planning and Scheduling-Revised Papers, pages
1–23. Springer-Verlag, London, UK, 2001.

[61] H. Wang, Y.F. Li, J. un, H. Zhang, and J. Pan. Verifying Feature Models using
OWL. Journal of Web Semantics, 5:117–129, June 2007.

[62] J. Wegener, K. Grimm, M. Grochtmann, and H. Sthamer. Systematic testing of
real-time systems. In Proceedings of the Fourth International Conference on Soft-
ware Testing and Review (EuroSTAR), 1996.

[63] J. Wegener, H. Sthamer, B.F. Jones, and D.E. Eyres. Testing real-time systems
using genetic algorithms. Software Quality Control, 6(2):127–135, 1997.

[64] J. White, B. Doughtery, and D. Schmidt. Selecting highly optimal architectural
feature sets with filtered cartesian flattening. Journal of Systems and Software,
82(8):1268–1284, 2009.

[65] J. White, B. Doughtery, D. Schmidt, and D. Benavides. Automated reasoning for
multi-step software product-line configuration problems. In Proceedings of the
Sofware Product Line Conference, pages 11–20, 2009.

[66] J. White, D. Schmidt, D. Benavides P. Trinidad, and Ruiz-Cortés. Automated
diagnosis of product-line configuration errors in feature models. In Proceedings of
the 12th Sofware Product Line Conference (SPLC), Limerick, Ireland, September
2008.

[67] H. Yan, W. Zhang, H. Zhao, and H. Mei. An optimization strategy to feature
models’ verification by eliminating verification-irrelevant features and constraints.
In ICSR, pages 65–75, 2009.

[68] Wei Zhang, Hua Yan, Haiyan Zhao, and Zhi Jin. A bdd–based approach to veri-
fying clone-enabled feature models’ constraints and customization. In 10th Inter-
national Conference on Software Reuse (ICSR), LNCS, pages 186–199. Springer,
2008.

S. Segura, J. A. Parejo, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés

A. Statistical Analysis Data 40

A. Statistical Analysis Data

Tests of Normality
Features CTC Algorithm Kolmogorov-Smirnov (a) Shapiro-Wilk

p-value p-value
200 10 ETHOM .000 .000

RANDOM .001 .000
20 ETHOM .003 .001

RANDOM .000 .000
30 ETHOM .000 .000

RANDOM .000 .000
40 ETHOM .000 .000

RANDOM .004 .000
400 10 ETHOM .000 .000

RANDOM .000 .000
20 ETHOM .000 .000

RANDOM .000 .000
30 ETHOM .000 .000

RANDOM .000 .000
40 ETHOM .000 .000

RANDOM .000 .000
600 10 ETHOM .000 .000

RANDOM .000 .000
20 ETHOM .000 .000

RANDOM .000 .000
30 ETHOM .000 .000

RANDOM .011 .001
40 ETHOM .000 .000

RANDOM .000 .000
800 10 ETHOM .000 .000

RANDOM .000 .000
20 ETHOM .000 .000

RANDOM .000 .000
30 ETHOM .000 .000

RANDOM .000 .000
40 ETHOM .000 .000

RANDOM .045 .015
1000 10 ETHOM .000 .000

RANDOM .000 .000
20 ETHOM .000 .000

RANDOM .000 .000
30 ETHOM .000 .000

RANDOM .000 .000
40 ETHOM .000 .000

RANDOM .004 .000
a. Lilliefors Significance Correction

Table 15: Experiment #1 Normality test results

S. Segura, J. A. Parejo, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés

A. Statistical Analysis Data 41

Tests of Normality
Features CTC Algorithm Kolmogorov-Smirnov (a) Shapiro-Wilk

p-value p-value
50 10 RANDOM .200* .639

ETHOM .200* .732
20 RANDOM .200* .078

ETHOM .089 .027
30 RANDOM .034 .004

ETHOM .003 .000
100 10 RANDOM .083 .007

ETHOM .005 .001
20 RANDOM .001 .000

ETHOM .000 .000
30 RANDOM .000 .000

ETHOM .000 .000
150 10 RANDOM .194 .009

ETHOM .062 .009
20 RANDOM .008 .001

ETHOM .000 .000
30 RANDOM .005 .002

ETHOM .000 .000
200 10 RANDOM .000 .000

ETHOM .014 .001
20 RANDOM .200* .002

ETHOM .032 .001
30 RANDOM .000 .000

ETHOM .200* .499
250 10 RANDOM .000 .000

ETHOM .002 .000
20 RANDOM .083 .030

ETHOM .200* .155
30 RANDOM .200* .475

ETHOM .200* .088
a. Lilliefors Significance Correction
*. This is a lower bound of the true significance.

Table 16: Experiment #2 Normality Tests results

Test Statisticsa
Features CTC p-value
200 10 .537

20 .000
30 .000
40 .000

400 10 .289
20 .000
30 .000
40 .000

600 10 .360
20 .000
30 .000
40 .000

800 10 .000
20 .000
30 .000
40 .000

1000 10 .123
20 .000
30 .000
40 .000

Table 17: Experiment #1 Test Statistics

S. Segura, J. A. Parejo, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés

A. Statistical Analysis Data 42

Test Statistics
Features CTC p-value
50 10 .000

20 .000
30 .000

100 10 .000
20 .000
30 .000

150 10 .000
20 .000
30 .000

200 10 .000
20 .000
30 .000

250 10 .000
20 .000
30 .854

Table 18: Experiment #2 Test Statistics

S. Segura, J. A. Parejo, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés

	Introduction
	Preliminaries
	Feature models
	Evolutionary algorithms

	Automated generation of hard feature models
	An evolutionary algorithm for feature models
	Instantiation of the algorithm

	Evaluation
	Experiment #1: Maximizing execution time
	Maximizing execution time in a CSP Solver
	Maximizing execution time in a SAT Solver

	Experiment #2: Maximizing memory consumption in a BDD solver
	Experiment #3: Evaluating the impact of the number of generations
	Experiment #4: Evaluating the generalizability of hardness of Feature Models
	Discussion
	Statistical Analysis

	Threats to validity
	Related work
	Conclusions and future work
	Acnowledgements*
	Statistical Analysis Data

